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Abstract. Some goodness-of-fit tests based on the Ll-norm are con- 
sidered. The asymptotic distribution of each statistic under the null 
hypothesis is the distribution of the L~-norm of the standard Wiener 
process on [0, 1]. The distribution function, the density function and a 
table of some percentage points of the distribution are given. A result for 
the asymptotic tail probabili ty of the L~-norm of a Gaussian process is 
also obtained. The result is useful for giving the approximate Bahadur 
efficiency of the test statistics whose asymptotic distributions are re- 
presented as the L~-norms of Gaussian processes. 
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1. Introduction 

When we want to study the asymptotic distributions of some statistics, 
it is often useful to investigate the asymptotic behavior of a suitable 
stochastic process based on observations. A typical example is to study the 
asymptotic behavior of the empirical process in order to derive the asymp- 
totic distributions of some goodness-of-fit statistics such as the Kolmogorov- 
Smirnov statistic, Cram6r-von Mises statistic, etc. In fact, the asymptotic 
distributions of these statistics are the distributions of the supremum norm 
and of the L2-norm of the Brownian bridge, respectively. Recently, since 
Shepp (1982), Rice (1982) and Johnson and Killeen (1983) gave some 
properties of the Ll-norm of the Brownian bridge, the Ll-norm of the 
empirical process is available as a test statistic (cf. Shorack and Wellner 
(1986)). 
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Besides the empirical process, the martingale term of the empirical 
process plays an important  role in some cases. The martingale term of the 
uniform empirical process (see (3.1) in Section 3) converges to a standard 
Wiener process (cf. Khmaladze (1981) and Aki (1986)). Aki (1986) propos- 
ed some statistics based on the stochastic process, such as the supremum 
norm and the L2-norm of the martingale term of the empirical process. By 
using Khmaladze's result, we can construct some statistics like the above 
for testing composite hypotheses (el. Khmaladze (1981) and Prakasa Rao 
(1987)). Further,  as another  example, we can mention the stochastic 
process investigated by Aki (1987), which converges to a time-changed 
Wiener process as the sample size tends to infinity. 

From the examples described above, we are interested in the distribu- 
tions of some norms of the Wiener process. The distributions of the 
supremum norm and the Lz-norm of the Wiener process are well known as 
limit distributions of the statistics for testing symmetry (cf. Butler (1969) 
and Rothman and Woodroofe  (1972)). In Section 2, we study the distribu- 
tion of the L~-norm of the Wiener process. In Section 3, we give some 
statistics whose asymptotic distributions are the same as the distribution of 
the Ll-norm of the Wiener process. 

2. The L~-norm of the Wiener process 

fo Let W(t) be a standard Wiener process. We set ~ = [W(t)ldt. Kac 

(1946) proved that the Laplace transform L(z) of ~ is given by 

(2.1) 
o o  

Z exp { - (fi3/2z)2/3} j=IKJ 

where 

P ( Y ) -  (2Y)1/2 {J-1/3( (2y)3/2 )} 3 )+Jl /3(  (2y)3/23 ' 

dj is the positive j-th root of P'(y), and 

1 + 3fo ~' P(y)dy 
Kj = 3c~jP(aj) , j = 1,2 .. . . .  

Let G~ be the positive stable distribution of order a. For fixed 0 < ct < 1 the 
function exp { - z °} is the Laplace t ransform of Go (cf. e.g., Feller (1966), 
p. 424). Zolotarev ((1957), Theorem 4) proved that the characteristic 
function of Go (0 < a < 1) is given by 



(2.2) 
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[ /] f ( t ) = e x p  - I t l ~ e x p  - i - ~ - - ( 1 - ] l - a l )  sgnt . 

Further, Zolotarev ((1964), Theorem 1) showed by inverting (2.2) that the 
distribution function of Go is represented as 

(2.3) 
1 [ ~ / 2  

G(x, a) = -ffJ-~/2 exp { - V~(x, u)}du, 

where 

Vo(x, u) = x ~/l°-l) sin au + -~ K(a) cos (a - l)u + -~- K(a) 

COS H COS H 

and 

K(a) = 1 - I 1 -  a l .  

THEOREM 2.1. The distribution function G¢ of ~ can be expressed in 
the form 

= (  ) (2.4) G¢(x) = Z_l xjG x 2 
j ~//2 , 3 " 

PROOF. AS we described above, (2.4) is given by inverting L(z) 
formally term by term using Zolotarev's result. We will justify the termwise 
inversion. Since G is nonnegative, it suffices to show that 

/ = 1  • ' 3  

converges. Note that 

1 + 3f~o'P(y)dy 

3gj e(c~j) 

We denote by Adz) the Airy function (cf. Abramowitz and Stegun (1964)). 
Let af be the j-th negative zero of A/(z) for each j =  1,2,.... Then the 

. r,~: c-c¢ 
relation ~ j  = - -  a}/21/3 holds. SmceJ0 P(y)dy =J0 A i (  - z)dz, the formula 

10.4.83 of Abramowitz and Stegun (1964) implies thatJo' P(y)dy is bound- 
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ed uniformly in j. Note that 6jP(6j)= -afAi(a / ) .  Johnson and Killeen 
(1983) showed that 

(2.5) ?Jj_>_~- 3~z j - 2 +  j_>3.  

Then the formula 10.4.60 of Abramowitz and Stegun (1964) implies that 
IKJl  = 0(j-5/6). Further, from Theorem 1 of Feller ((1966), p. 424), 

, (  2) 
e ~ G x , ~ -  --0 

Therefore, for any given e > 0 and x > 0, 

t 2) G ~]x/2, 3 < - - - -  

a s  x - -  0 .  

4 
1 + X2/3 

O "  ' -  2/3-~ holds for sufficiently large j. So we have G(x/33/2,2/3)= tY ), and 
hence we obtain 

IJqI G ( ~3x/2 
Thus, the desired result is proved. 

2) 
3 = 0 ( j - 3 / 2 )  

Differentiating (2.4) with respect to x, we have the next result. 

THEOREM 2.2. The probability density function g¢ of  ~ can be 
written as 

2 { 1 g~(x) =j~IKJ r c x  3 "~/~ exp - -  ~(u) q)(u)du X 2 (2.6) 

where 

sin 2 - ~ u +  cos - ~ - +  

~(u) = cod  (u) 

Before proving Theorem 2.2, we show the next lemma. 

LEMMA 2.1. For u ~ ( -  rc/2, zc/2), 9~(u) is monotonically increasing 
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and it holds that 

4 
(2.7) lim ~0(u)- ~L-,/2 27 

PROOF. The formula (2.7) can be easily seen, so we prove only that 
9~(u) is monotonically increasing. Differentiating f(u) with respect to u, we 
have 

(-~ ~) sin u + T 

~'(u) = 3 cos 4 u g(u), 

where 

(~ ~) g(u) = 4 cos u + -~- COS 
(u ~) 

3 3 cos u 

( u  ~z ) sin ( 2 u  + 3 )  sin u + 9 cos 3 3 

(~ 3)(~=) + c o s u s i n  ~ - u +  sin - - ~ - + ~ -  . 

It is easy to see that g(u) can be rewritten as 

g ( u ) = 4 c o s  2 -T+T +sin  2 Tu+T 

+ 4 s i n  2 --5-u+-~- cos 2 - ~ - +  

- s i n  u+-~-rc sin - ~ - u + - ~ - I t  . 

Noting that 

(2 2 ) (2  ~) 
sin -T.+T,~ =sin  T u +  T 

and 

( u . )  
co,~ - T + T = sin -3- + - g  ' 
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we set t = sin (u/3 + n/6). Then we can obtain that 

g(u) = - 4t4(8t 2 - 9) . 

Thus we see that g(u) is positive since t is between 0 and I when 
u e ( - re/2, re/2). This completes the proof. 

PROOF OF THEOREM 2.2. Let 0 < a < b < ~ be given constants. 
Then, it suffices to show that the right-hand side of (2.6) converges 
uniformly in x ~ [a, b]. Let d be a positive constant.  It is easy to see that, if 
v > 0, ( l / d )  exp (do) > o holds. Then, since 90(u) is positive for - re/2 < u < 
re/2, we have 

(2.8) 
f n/2 exp [ d3 
~,/2 7 9~(u) ) 9~(u)du 

-< d. ,  ~ / 2 e x p { - ( - ~  d)9~(u)ldu 

Take d = ~J(/2b 2. Then, for each x ~ [a, b] and for eve ry j  = 1,2,...,  it holds 
that d]/x 2 -  d > 0 .  Therefore, from Lemma 2.1, we see that (2.8) is less 
than 

, )} -~-rcexp - - ~  - - -~--~ . 

Now it is easy to see the result by considering the orders of dj and xj. 

Table 1 was obtained by calculating (2.4) numerically. The series (2.4) 
converges very rapidly. It is indeed seen that 

j=ll • ' 3 < 2 . 0 ×  ~ r  0 < x < 2 .  

So, we truncated the summation of (2.4) at j - -  10. For  the calculation of 
d's and ~c's we used some formulas listed in Abramowitz  and Stegun (1964). 

We made Fig. 1 by using the formula (2.6). 
Besides the theoretical work, we checked the feasibility of Monte 

Carlo calculations for problems like this. Since the theoretical values of the 
percentage points are given in Table 1, we can compare the values obtained 
by Monte  Carlo calculations with the theoretical  values. We tried to 

£ evaluate the percentage points of ~ = I W(t)ldt by simulations of size 

(10,000,000, N),  where 10,000,000 is the number of repetitions of experi- 
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Table 1. 

x P(~<-x) x P(~<-x) x P ( ~ < x )  

.1914 .05 .4511 ,50 .9891 .91 

.2239 .10 .4882 .55 1.0204 ,92 

.2514 .15 .5293 .60 1.0550 .93 

.2774 .20 .5753 .65 1.0941 .94 

.3032 .25 .6275 .70 1.1390 .95 

.3295 .30 .6876 .75 1.1924 .96 

.3570 .35 .7586 .80 1.2588 .97 

.3861 .40 .8458 .85 1.3481 .98 
.4173 .45 .9607 .90 1.4911 .99 
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The probability density function g¢ of ~. 

ments and N is the number of uniform random numbers used for approxi- 
mating a sample path of a Wiener process. The results of the simulations 
are given in the following table. The series of random numbers we used was 
generated by a physical process available in the computer system of the 
Institute of Statistical Mathematics, which gives a quite satisfactory 
random character even in the case of a very long sequence. Considering the 
feasibility by the computer, we took N = 64, 128, 256, 512 and 1024. 

From Table 2, we see that, for the cases N =  512 and N =  1024, the 
values given by the simulations coincide with the corresponding theoretical 

Table 2. 

Prob. Theoretical N =  64 N = 128 N = 256 N -- 512 N = 1024 

.05 .1914 .1895 .1903 .1907 .1911 .1912 

.10 .2239 .2224 .2230 .2234 .2237 .2237 

.30 .3295 .3287 .3290 .3293 .3294 .3295 

.50 .4511 .4507 .4509 .4508 .4511 .4512 

.70 .6275 .6278 .6276 .6274 .6277 .6274 

.90 .9607 .9602 .9605 .9606 .9608 .9605 

.95 1.1390 1.1369 1.1380 1.1378 1.1391 1.1388 

.99 1.4911 1.4828 1.4870 1.4888 1.4888 1.4900 
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values up to about  the third decimal digit. We think that Monte Carlo 
calculations can be effective for similar problems for which theoretical 
results have not been obtained yet. For  example, we can mention a 
weighted Ll-norm of the Wiener process. 

Next we will state a theorem on the asymptotic tail probabili ty of the 
L~-norm of a Gaussian process. The theorem will be useful for giving the 
approximate Bahadur efficiency of test statistics whose asymptotic distribu- 
tions are represented as L~-norms of Gaussian processes (cf. Bahadur 
(1960)). 

THEOREM 2.3. Let X be a Gaussian process with values in C[0, 1]. 
Suppose that the covariance ./unction R(s, t) > 0 f o r  each s and t ~ [0, 1]. 
Then it holds that 

{So' } ' lim 4 log P I g ( s )  l d s  > t = - ~ 

t- 2fo fo R(s,,)dsd, 

PROOF. The idea of the proof  is due to Marcus and Shepp (1971). 
Consider a step function ~0 on [0, 1] which is represented as 

(2.9) 
n 

~(x)  = , 2  ~,ILI,- ~//.,,/./(x). 

where IA(" ) is the indicator function of the set A and ei = 1 or - 1 for each 
i = 1, 2,..., n. Let q) be the totality of the step functions which are written in 
the form (2.9) for an integer n. Then it holds that 

fo' fo 1 IX(s)tds = sup o X(s)~o(s)ds 

Let n be a fixed integer. Suppose that a step function 9~ is written as (2.9) 
f [i/n for the integer n. Setting Yi = ~-t)/~ X(t)dt ,  we have 

L1 
X~ = X(t)9)(t)dt = ~ ei Yi.  

i=1 

From the assumption of the theorem, we can note that 

fi/n [ cJ/~ R s ) 
C o v ( Y i ,  Yj)~.j(i_l)/n[J(j_lj/n ( , t )dt  ds>_O, 

for each 1 <_ i _ j  < n. Then we can easily see that ei = 1 for all i (or ei = - 1 
for all i) maximize 
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2 
= v a r  X~ o~ 

n- i  
= ~ e 2 var (ii,.) + 2 E Y, e, ej cov (  Y,-, ~ ) ,  

i=1  i=1  j-=i+l 

under the condition that n is fixed. But, since the maximum value 

max a~ = fo' fo' R(s,t)dsdt (when n is fixed) 

does not depend on n, we conclude that 

~r:= sup var X¢= fo' folR(s,t)dsdt . 
qJ ~ cb 

Hence, the desired result follows from Theorem 2.5 of Marcus and Shepp 

(1971). 

Remark 2.1. In particular, the case where X is a standard Wiener 
process is known as Marlow's theorem (cf. Marcus and Shepp (1971)). 
Similarly, as the proof  of the above theorem, it is easy to prove the 
corresponding theorem of the multiparameter Gaussian processes. 

3. Goodness-of-fit tests 

3.1 A generalized test for symmetry 
Let 0 < a < I be a given constant  and let X1, X2,..., X, be independent 

random variables having a common continuous distribution function F on 
(0, 1). Our problem is to test the hypothesis H1 based on the observations 

X1,  X z , . . . ,  Xn ,  

HI: There exists a continuous distribution function G* defined on 
(0, 1) such that 

F ( t )  = 

1 
aG*(2t) if 0 < t _ < - -  

2 '  

a + (1 - a)(1 - G*(2 - 2t)) 
1 

if _--< t < 1 
2 

holds. 
If a = 1/2, then the corresponding hypothesis means that F is symmetric 
about  1 / 2. We define, for i = 1,..., n, 
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I1,= 

1 
2Xi if Xi _< - -  

2 '  

1 
2( 1 - X0 if Xi > -~-, 

1 - a i f  X z < - -  
a - 2 '  

1 
_ m , a if X~> 2 

1 a 

and 

1  ilE0, ,l ( Y/), 0 < t < l  
u . ( t ) =  , / n - i = ,  - - 

From Theorem 2.1 of Aki (1987) and the proof of Theorem 3.1 of Aki 
(1987), we see that u,(t) converges weakly to the process W(G*(t)) in 
D[0, 1], if F satisfies the hypothesis H~. Therefore, if we define 

f0 
1 

Tn = [u~(t)ldH,(t) , 

where  H,(t)  is the empir ical  d is t r ibut ion func t ion  of  the variables 
YI, Y2,..., In, then Tn converges in distribution to the Ll-norm of the 
Wiener process under the hypothesis H~. 

For more information about such tests, see Aki (1987), where the 
meaning of the hypothesis and some properties of statistics by other norms 
of u,(t) are discussed. 

3.2 The Ll-norm o f  the martingale term o f  the empirical process 
Let {Fo; 0 ~ O} be a set of continuous distribution functions on [0, 1]. 

We assume that there exists 00 ~ O such that FOo is the uniform distribution 
over [0, 1]. Let XI, X2, . . . ,X,  be independent random variables having a 
common distribution function Fo. F, denotes the empirical distribution 
function for XI, 2(2 ..... X,,. Let 

(3.1) W,(t) = x/~ ( F,(t) - fo t l - Fn(s) ) d s  . 

We consider testing the hypothesis that 0 = 00 by the test statistic Tn = 

follWn(t)bdt.  Then, f rom Theorem 2.1 of Aki (1986), under  the null 
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f0l hypothesis, Tn converges in distribution to I W( t ) ]d t  as n ~ ~ .  From 

Marlow's theorem (cf. Theorem 2.3 in this paper), it holds that 

1 {f01 } 3  lim 7 log e I W(s)  lds > t - 2 

Similarly, as the proof of Theorem 4.2 of Aki (1986), it is easy to see that 
{Tn} is a standard sequence in the Bahadur sense if Fo satisfies Conditions 
A and B of Aki (1986) for every 0 ~ O. Let 

b(0)=f0  ~ ] Fo(t) - f :  l - Fo(s) ds dt  i--s 

Then, the approximate Bahadur slope of T~ is given by 3b2(0). 
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