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Abstract. For a multivariate densityfwith respect to Lebesgue measure 

/l, the estimation offJ(f)fdl~, and in particularff2dl~ and - f f  log fdl~, 
is studied. These two particular functionals are important in a number of 
contexts. Asymptotic bias and variance terms are obtained for the 

estimators i =fJ(f)dF, and 7 --fJ(f)f  d#, where f is a kernel density 

estimate o f f  and F, is the empirical distribution function based on the 
random sample Xt,.. . ,X, from f. For the two functionals mentioned 
above, a first order bias term for i can be made zero by appropriate 
choices of non-unimodal kernels. Suggestions for the choice of band- 

width are given; for ? =ffdF,, a study of optimal bandwidth is possible. 

Key words and phrases: Kernel density estimation, multivariate density, 
empirical process, entropy. 

1. Introduction 

This paper is concerned with the nonparametric estimation of a func- 

tional of a multivariate density of the form I(f) =fJ(f)fd~, w h e r e f i s  a 

p-variate density with respect to Lebesgue measure/1 and J is a smooth 

real-valued function. Of particular interest are I~(f) =Jf2dlt and I2( f ) - -  

-ff log fd~. Ii(f) is important  in nonparametric  inference (Bhattacharya 

and Roussas (1969) and Schweder (1975)) and is called a projection index 
by Huber  (1985) in his paper on projection pursuit. The entropy function 
I2(f)  is a measure of dispersion of the d e n s i t y f a n d  negative entropy is also 
used as a projection index in Jones and Sibson (1987). The author's 
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motivation for this research is the estimation of relative entropies of a 
multivariate density with respect to products of marginal densities; for 

example, f f l og[ f / I f I f l dp ,  w h e r e f  are the univariate marginals 
p ~ ,11 

of the 
b / d 

p-variate density f.  This and other relative entropies are proposed as 
(probabilistic) measures of dependence and conditional dependence in Joe 
(1987, 1989). Sample estimates would provide measures of dependence for 
data. Some theory for the estimation of l(f)  is a starting point for 
estimation of relative entropies. 

The estimation of I~(f) and h ( f )  or the more general l(f)  have been 
discussed in the statistical literature only for the univariate case, and 
mainly asymptotic results have been obtained. Relevant references for 
estimation functionals of a density are Bhattacharya and Roussas (1969), 
Dmitriev and Tarasenko (1973, 1974), Schuster (1974), Schweder (1975), 
Ahmad (1976), Ahmad and Lin (1976), Prakasa Rao (1983), Pawlak (1986) 
and Silverman (1986). Schweder (1975) includes a method for choosing a 
bandwidth for the kernel density method. In this paper, the kernel density 
method is studied for finite samples; this method is easier to study 
analytically than other density estimation methods. Two estimators, ] and 
[, in (2.3) and (2.4), respectively, are considered--the first one avoids 
numerical integration and the second one does not. Asymptotic expected 
values and variances up to second order terms are derived after repre- 
senting the estimators in terms of the empirical process. From these, it can 
be seen that for i~(J'), it is possible to eliminate a bias term by subtracting 
a deterministic quantity or by choosing a suitable kernel, and for i2(f) ,  a 
choice of a kernel satisfying certain conditions will decrease the order of 
bias and mean squared error. It is indicated how to estimate the asymptotic 
variance to obtain a standard error. For i i ( f ) ,  a method for choosing a 
bandwidth based on a theoretical optimal bandwidth is given. Also, a 
method is given for choosing a bandwidth fo r / 2 ( f ) .  For functionals like 
I i ( f )  and I2(f), estimates can vary a lot as the bandwidth changes. Also, 
the "best" bandwidth depends on the functional. 

Representation in terms of the empirical process and a lemma for 
computat ion of asymptotic expected values and variances based on this 
representation are given in Section 2. The specific functionals l ] ( f )  and 
12(J) are studied in detail in Sections 3 and 4, respectively. All results and 
recommendations of estimators have been guided by some computer 
simulations and considerations of computational efficiency. 

2. Estimation based on the kernel method 

Let X~,..., Xn be a random sample of size n from the p-variate densityJ 
with distribution function F. We consider estimation of 
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(2.1) I=  I ( f )  = fs  J(f) f  =is J ( f ) d F  

based on a kernel density estimate, where S may be a bounded or 
unbounded set. The kernel density estimate o f f ( x )  with bandwidth h > 0 is 

(2.2) f ( x )  = (nhP) -~ ~ k((x - X~)/h) = n -l ~ kh(X -- Xi) 
i=1 i=I 

x ~ g~P,  

where k is a p-variate density and kh(u) = hPk(u/h).  
Assumptions that are used are all summarized here for easier reference. 

A, B, C2, D and E are assumed throughout  (unless stated otherwise) and 
C4, F and G are used for some results. Assumpt ion  A means that  

f~ ;  J ( f ) f d t ~  is finite, so that it can be approximated arbitrarily closely by 

f s J ( f ) f d t  ~ a compact or bounded set S. means that we can ignore for This 

the "tails" w h e r e f i s  small for certain expansions. 
A. S is a bounded set such t h a t f i s  bounded below on it by a positive 

constant andf s  J ( f ) f  dlt J ( f ) f  dlz. 

B. The p components  of Xi have approximately the same scale (for 
some functionals l ( f )  such as for the two particular functionals mentioned 
in Section l, this can be assumed without loss of generality because the 
data can be scaled first and scaling affects I ( f )  by a known factor). 

Cm. f has continuous derivatives up to and including the m-th order. 

D. J is thrice differentiable and j J z ( f ) f d l t  exists. 

E. The kernel satisfies k(u) = k( - u). 
F. k(u) is a kernel of the form k(u) = k(ul,. . . ,  up) = 17 ko(uj), where k0 

J 

is a symmetric univariate density satisfyingfv2ko(v)dv -- 1. 

G. f = f ( x l , . . . , X p )  has continuous first and second order derivatives 
and ]Of/Oxjl, [O2f/Ox~l, j =  l , . . . ,p ,  are all dominated by integrable func- 
tions. 

Let Fn be the empir ical  d is t r ibut ion of XI .... ,Xn. Then  f ( x ) =  

fkh(x- y)dF.(y). Two estimators of I ( f )  are 

(2.3) i = i ( f )  : f s  J ( f ) d F ,  : n-' Z J ( f (Xi ) )  
k',{: S 

and 

(2.4) "[= l ( f )=fs d(f) f  dlx. 
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i replaces the right-hand side of (2.1) with a density estimate, and an 
empirical distribution and numerical integration is not necessary. ]" replaces 
the center term of (2.1) with a density estimate. The amount  of computa t ion  
for i increases in the square of the sample size n and linearly in p,  whereas 
the amount  of computa t ion  for [ increases linearly in n and exponentially 
in p. For n in the range of 50 to a few hundred,  7 may be faster to compute  
f o r p  -- 1, but / is generally much faster to compute  f o r p  _> 2. 

In order to study the asymptotic expected values, variances and bias 
terms of / and 7, we define a few quantities and state a lemma. The terms 
in the expansions are with the bandwidth  h fixed and the sample size n 
increasing to ~ .  The h order of the terms are then obtained by letting 
h - 0. In the expressions below, an integral without  a region specified will 
be assumed to be an integral over ~.P.  

Let fh(X) = Ef (x )  =fkh(x - y)dF(y). Let Un(x) = nl/2(Fn(x) - F(x)) 

and let G(x)= nl/2(.f(x)--fh(X)). Then, Vn(x)=fkh(x-  y)dU,(y). To study 

[, an asymptotic expansion (with Assumption D) is 

i :  L J( fh)dF q-f7 [ J ( ? )  J(fh)]dF q-El 1/2 L J(yh)dgn 

+ n ' /2L [ J ( f )  - J(fh)ldG 

= L  J(fh)dF + n-i~2 L J'(fh)VndF 

3/2 ., 3 . -1/2 f 1 n fs J (fh) V/,dF + J(fh)dUn + 0.5n ' fs J"(fa)V~dF + ~ n .I s 

+ n ~fs J'(fh)VndUn + 0.5n-3/2fs J"(fh)V~dUn + 0(/"/-3/2) , 

where S is bounded  if necessary so that  the Taylor series expansion is valid 
(for example,  if J(t) = - log t, S must be bounded for the expansion to 
make sense, but for J(t) = t, S can be unbounded) .  For  s tudying 7, let 
L(t) = tJ(t). An asymptotic expansion for i" is 

~[: fs L(fh)d/~ + f s [L ( f )  - L(j~)]d/z 

: f s L( fh)d ,  -~ n-1/2 f s L'(yh) Vnd. ~- O.5n-I fs Lte(fh) V2dl ~ 

q- 6 jvl a S 
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Let Zs(X) be the indicator function for the set S. After some algebra, 
we can write 

(2.5) i =£  J(f.)dF + n '/~f A,(x)dU.(x) + n-'ff B,(x,y)dU.(x)dU.(y) 

+ , , -~ ' : f f f  <(x.  y, z)dU,(x)dU,(y)dU,(z) + o(n-3/2), 

where 

A l(X) = fs  J'(fh(y))kh(y -- x)dF(y)  + J(fh(x))Zs(X), 

Bi(x, y) = 0.5 fs  J"(fh(z))kh(z -- x)kh(z -- y)dF(z) + J'(fh(x))kh(x -- Y)Zs(X) 

and 

if, C i ( x ,  y ,  z) = 7 J"(fh(w))kh(W - x)kh(w - y)kh(w - z)dF(w) 

+ 0.5J"(fh(x))kh(X -- y)kh(x - Z)Zs(X). 

Similarly, 

(2.6) 7 = fs L(f ,)d~ + n-'/~f A:(x)dU.(x) + n -1 f f  B:(x.y)dU.(x)dU.(y) 

+ n -~ /~f f f  C~(x, y. z)dU.(x)dU.(y)dU,(z) + o(n-3/2), 

F F 

where A2(x) =is L'(fh(y))kh(y -- x)dy, B2(x, y )= 0.5is L"(fh(z))kh(z - x)kh(z 

- y)dz and C2(x, y, z) = (1~6)is L"(fh(w))kh(w - x)kh(w -- y)kh(w -- z)dw. 

To obtain asymptotic expected values and variances, the following 
lemma for working with U, is needed. The details are straightforward but a 
bit tedious, so that they will not be provided here. 

LEMMA 2.1. Assume that all integrals given here are well-defined 
and finite. 

(i) Let a(x) be a funct ion on .~P. I f  the integral f a(x)dF(x) exists, 

then E f a(x)dU,(x) = O. 

(ii) Let a(x, y) be a function on ,~P × .~P. Then 

E f f a( x, y)dU~(x)d U~(y) = f a(x, x)dF (x) - f f a( x, y )dF(x)dF (y) . 
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(iii) Let a(x, y, z) be a function on ,~J.P x ~.P x ~.P. Then 

E f f f a(x, y, z)dU,(x)d Un(y)dU,(z) 

n-lJ2 [ f a(x, x, x)dF(x) - f f a x, z)dg(x)dr(z) 

- f f  a(x, y, x )dF(x )dF(y ) -  f f  a(x, y, y)dg(x)dF(y) 

+ 2 f f fa (x ,  y, z)dF(x)dF(y)dr(z)]. 

(iv) Let a(w, x, y ,  z) be a function on . ~ P  x "J~? × °o,~; x ,~,P. Then 

E f f f f a(w, x, y, z)dUn(w)dU~(x)dUnO,)dU~(z) 

= f f [a(w, w, y, y) + a(w, y, w, y) + a(w, y, y, w)]dF(w)dF(y) 

- f f f [a(w, w, x, y)+ a(w, x, w, y)+ a(w, x, y, w) 

+ a(w, x, x, y) + a(w, x, y, x) 

+ a(w, x, y, y)]dF(w)dF(x)dF(y) 

+ 3 f f f f [ a ( w ,  x, y, z)dF(w)dF(x)dF(y)dF(z)] + O(n-1) . 

By applying Lemma 2.1 to (2.5), E l  = Oh + al(h)n -~ + az(h)n -2 + o(n 2), 

where Oh = fs J(fh)dF, 

K~ = f k2(x)dx, l(u) = kku)/ K2, fh*(y) = h-" f /((y - x)lh)ar(x) a n d  a 2 ( h )  = 

O(h-zP). The O(h -p) t e r m  of al(h) comes from fBl(X, x)dF(x). Also, E ( ]  - 

Oh) 2 = bl(h)n -1 + bz(h)n -2 + o(n-2), where by expansion with h ~ O, b1(h) = 
O(1) and b2(h) = O(h 2p) + O(h-p). The O(h -p) term of b2(h) comes from 
many sources when applying Lemma 2.1, and the O(h -2p) term of b2(h) 

comes from fB,(x ,x)dF(x)  With Assumption C2, Oh I is O(h2), so 
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that by combining all of the above, in general, the mean squared error is 

(2.8) E ( [  - 1) 2 - E ( [  - Oh) 2 + 2(Oh - I ) E ( [  - Oh) + (Oh -- 1) 2 

= O(n l) + O(n 2h-2p) + O(n-2h -p) + O(n-lh 2-p) 

+ O(H-2h 2-2p) + O(h  4) . 

It will be shown in Sections 3 and 4 for J(t)  = t and J(t)  = - log t that (2.8) 

and the order of bias can be improved on, because fB,(x, x )dF (x )  can be 0 

in the former case and O(h 4) in the latter case by choosing kernels that 
satisfies certain conditions. In general, improvement is not possible. 

Similarly, by applying Lemma 2.1 to (2.6), E I  = rib + c~(h)n -~ + c2(h)n -2 + 

o(n-2) ,  rib = i s  L( fh)dp,  where 

Cl(h) = 0.5h-P K2 f s f~(y)L"(fh(y))dy - 0.5 f s f20')L"(fh(Y))dY 

and c2(h)--- O(h-2P). The O(h -p) term in cl(h) comes from fB2(x ,  x )dF(x) .  

Also, E ( I -  r/h) 2 = dl(h)n -l + d2(h)n -2 + o(n-2), where by expansion with 
h ~ O, dl(h) = O(1) and d2(h) = O(h -2p) + O(h-P). The O(h -p) term of d2(h) 
comes f rom many sources when applying Lemma 2.1 and the O(h -2p) term 

of d2 comes from "[fB2(x, x)dF(x)"12. The O(n-lh -p) bias term cannot be 

improved by an appropriate choice of k. It can be estimated and then 
subtracted off from 7, but it can be shown that this would not eliminate the 
O(n-2h -2p) term from the mean squared error, and it may increase the mean 
squared error. In general, then, E ( I  - 1) 2 = O(n -1) + O(n-2h -2p) + O(n- lh  2-p) 
+ O(h4). 

3. Estimation of the integral of the square of the density 

In this section, we let I ( f )  = f f2dp.  With J(t)  = t and L(t)  -- t 2, S can 

be taken to be ,~P and the higher order terms in (2.5) and (2.6) are 0. Let 
wh = kh * kh be the convolution of kh with itself. It is straightforward to 

show that 7 = f f Z ( x ) d x  = n -2 Y, ~, wh(Xi -- Xj), which is the same as i with 
i j 

the kernel Wh (Jones and Sibson (1987) mention that for the normal kernel, 
[ with bandwidth h is the same as 7 with bandwidth x/~h. This is because 
if kh is the normal  density with covariance m a t r i x  hZlp, Wh is the normal 
density with covariance matrix 2hZIp, where lp is the identity matrix of 
order p). Therefore, we will deal only with f in this section. 
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From Section 2, 

El  = (1 - n-~) f fh(x)dF(x) + (nh p) ~k(O) , 

since C~ - 0, so that an adjustment of i to eliminate some bias is 

(3.1) i ' =  n[ i - (nhP)-l k(O)]l (n - 1) ~ i - (nhP)-ik(O) . 

Alternatively, this bias can be removed by choosing a kernel satisfying 
k(0) = 0. By using (2.2) in (3.1), i ' =  [n(n - 1)] -I ~]Y~ kh(Xi - Xj), which is a 

~#.l n 

U-statistic for f fh(x)dF(x) ,  i '  can also be written as n i y, f-i(Xi), where 
i=1 

f-~(Xi) = (n l) -1 i~ kh(Xj -- Xi) is a cross-validatory estimate off(XD. 

The remaining bias term depends on h. Suppose Assumption F holds 
in the remainder of this section; then, fh(X) = f ( x )  + 0.5h 2 t r f " (x )  + o(h2), 
wheref"(x)  is the Hessian matrix of second derivatives at x. Therefore, 

(3.2) Ei'= f fhdF= f JdF + 0.5h2 f tr f " d F  + o(h2) . 

Using the results of Section 2, it can be shown that subtracting off an 
estimate of the O(h 2) bias term from 1' leads to an estimate with a larger 
mean squared error. However, an estimate of the bias can still be used with 
an estimated variance to get an estimate of the mean squared error. 
Assuming that k0 has support on the entire real line and that ko is twice 
d i f ferent iable  (cf. Schus ter  (1969)), an es t imate  of f " ( x )  is f " ( x ) =  
n-1 Y~ht-k"'x Xi), where k'~(z)= h-(P+Z)k"(z). After substitution of this into 

the O(h 2) bias term in (3.2) and making an adjustment, an estimate of it is 

(3.3) [ n ( n -  t)] - ly ,  tr k~(X i -  Xc) . 
i+'i' 

Given the assumptions on k a n d ~  the expected value of (3.3) i s f t r f " d F +  

o(1), as h --+ 0. 
From Section 2 with substitution of k(0) = 0, or from the formula for 

asymptotic variance of a U-statistic (see Serfling (1980), p. 183), the 
asymptotic variance of i '  is 

,3.. ,  4,,-, Issue,,,- ] + 

where K2 =fk2(u)du.  An unbiased estimate of 7 = f f ~ d F  is • = [ n ( n -  
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1 ) ( n -  2)]-~ i,j,j'distinct]~ kh(Xi-  Xs)kh(Xi- X i ) =  [ n ( n - 1 ) ( n -  2)]-~ ~. {(j~ kh(Xi 

- Xj) - ~k~(Xi - Xj) . Hence an estimated variance for P is 
t " 

(3.5) 4n-'[~ - (/,)2] + 2n-2h-PKj,. 

Now we discuss the choice of the bandwidth  h. The asymptotic mean 
squared error of [ '  is the sum of (3.4) and the square of the bias term in 
(3.2). Therefore, some simple algebra will show that  the asymptotically 
optimal bandwidth  is 

2pK20]l/(p 4) 
(3.6) h= fin 2 ] , 

whereO=ff2dltandfl=(Strf"dF) 2. With this choice of bandwidth, the 

mean squared error of [ '  is O(n  -1) + O(n -81(p+4)) and the O(n -1) term 
dominates  for p < 4. It can be shown that  (3.6) is scale equivariant,  that  is, 
a change of the density by a scale factor will change the optimal  bandwidth  
by the same factor. The factor fl suggests that  for a unimodal  density, the 
opt imal  bandwid th  depends on the peakedness or concentra t ion of mass 
near the peak. 

We come up with a rough rule for a bandwidth  based on computa t ion  
of the opt imal  bandwidth  for some densities. Let IQR denote the inter- 
quartile range. For  c o m m o n  unimodal  densities with a second derivative, 
(O/fl)°2/IQR ranges f rom 0.9 to 1.26 (it is 1.26 for normal,  0.94 for logistic, 
0.95 for Cauchy,  0.99 to 1.21 for G a m m a  (3) to G a m m a  (12), and 1.26 to 
1.15 for Weibull (3) to Weibull (20)). For a multivariate normal  density 
4b(x;Z) with zero mean vector and correlat ion and covariance matr ix Z, 
Olfl= 2p+2rcplZl-Flll2t(tr•-l)2; if 21,...,2p are the eigenvalues of S, then 
[ZlllZl(trX-1) 2= (21"".~.p)l/21(S'.~-jl) 2, SO that  the optimal  bandwidth  de- 
creases with more  dependence (eigenvalues more spread out). Provided IZI 
is not too close to zero, a rough approximat ion to (O/fl) llIp+4i is 

[ 2p+ 27zp/2 ] 1/(p+4)20"5--fRl~J(X;~)dx 
p 0.5 - 0.5 p 

where R = [ - 0.674, 0.674] p. F rom combining all of the above, a suggested 
bandwidth for a unimodal  density is 

[ 2p+37~p/2K2 IQR 0.5 - d 

(3.7) c P n  2 " 1.348 0.5 - 0.5 p ' 
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where c is between 0.75 and 1, IQR is the average o f p  interquarti le ranges 
(assumed to be of the same order), ~ is the propor t ion of data  in the 
rectangle × P=I [qlj, q3j] and qlj, q3j are the lower and upper  quartiles; for 

the product  normal  kernel k(u)= (2~) -p/2 exp - 0 . 5  Y~ u) , K2 = (2x/~) -p. 
j = l  

The last term of (3.7) is omit ted for p = 1. The use of (3.7) and (3.5) 
worked well for simulations for the densities ment ioned above, and also for 
densities of t ransformations of multivariate normal  random vectors with 
univariate marginal distributions all equal to a distribution function G. For  
a non-unimodal  density, measures of scale and concentrat ion should be 
used relative to a mode.  The suggestions here are like those in Silverman 
((1986), Subsection 3.4.2). 

4. Estimation of the entropy function -ff log fdp 

In this section, we study est imation of the entropy funct ion l ( f ) - -  

f s J ( f ) f d l t  with The results here will be useful for J(t) log 1. developed 

estimating the relative entropies ment ioned in Section 1. Using the results 
of Section 2, it will be shown that  a kernel satisfying certain condit ions can 
lead to f having improved bias and mean squared error. This improvement  
is not possible for 7 and since 7" is computat ional ly  more difficult for p _> 2, 
we study only / in this section. 

From (2.7) and Lemma 2.1, 

E l  = - f s  log fhdF+ al(h)n i + a2(h)rt-2 + 0(/7-2) , 

where 

-p • 2 
(4.1) a,(h) = 0.5 - h-Pk(O)fs f / fhdp + 0.5h K2fs J~ f/fhdt.t,  

= f lh(x - y) f (y)dy,  lh(u) = h-Pl(u/ h) and I is defined following (2.7), 

(4.2) 
1 j~** } , 

a2(h) = h 2p 0.5k2(O)fs f/f~d/J - -~- K3fs f/f3dl~ + O(h -p) 

= f mh(x -  y) f (y)dy ,  mh(z) = h-Pm(z/ h), m(u) = k3(u)/ K3 and K3 = 

fk3(u)du. Also, with the use of Lemma 2.1, 
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+ O(n-2h-p) + O(n-2h 2p), 

where d(x)  = - f s  [fh(Y)]-lkh(Y - x )dF(y) .  The O(n-Zh -p) term in (4.3) is too 

complicated to write down. The O(n-2h -2p) term comes from a~(h)/n 2. 
Suppose Assumptions C4 and F hold in the remainder of this section. 

(4.1) can written as 

al(h) 0.5+[0.5Kz k(O)]h-Pfs f / fhd l z+O.5Kzh-Pfs ( f*  2 = - - f h ) f / f ~ d / ~ ,  

and with Assumption C2, 

~(x)-j~*(x) = f[~h(y - x )  - l h ( y  - x ) ] f ( y )dy  

= f [k(u) - l (u ) ] f (x  + uh)du 

= 0.5h2 tr f"(x) [ ~ - f o2lo(o)do ] + o(h2) , 

where lo(v) = k2o(v)/ Ko2 and 1(o2 = f k~(o)dv. Therefore, affh) = 0.5 + O(h 2-p) 

if 

(4.4) 2-1/PKo2 - ko(0) = 0 .  

Assumption C4, af fh )= 0.5 + O(h4-p), ifflvl4ko(o)do Furthermore,  with 

exists, (4.4) is satisfied and 

(4.5) f o2kg(o)do//(o2 = 1. 

Similarly, (4.2) can be written as 

a2(h) [K3 / 3 0.5k2(O)]h -2p f s  2 = - - f / fhdla  

1 
K3h-2P f s (fh** - f h ) f / f 3 d p  + O(h -p) 

3 
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and a:(h) = O(h 2-2p) + O(h -p) if 

(4.6) (1.5) '/PKo3 - k2(O) = O, 

where/(o3 = fk3(o)do. 
For a unimodal density ko, 2-t/PKo2 < Ko2 <-k0(0), so that a non- 

unimodal density is needed in order for (4.4) to be satisfied. Equations (4.4) [s ]2 
and (4.6) together imply Ko3 = (0.375)~/PKo2. But K2o2 = ko(v).ko(v)dv <_ 

[fko(v).ko(o)do].[fl2ko(v)do]= K03 by the Cauchy-Schwarz inequality, so 

that (4.4) and (4.6) cannot be simultaneously satisfied. Hence we find 
kernels satisfying (4.4) and (4.5) to improve on the  O(n  -1) bias term. Table 
1 below gives kernels satisfying (4.4) and (4.5) for p = 1 to 4. These have 
the form 

/ax+a21°l' Iol  x, ko(o) I a 3 -  an101, fll <-I~1-</~2. 

Table I. 

1 1.17747 1.86016 0.15584 0.24042 1.19597 0.64294 
2 1.31849 1.85802 0.21082 0.13485 1.33829 0.72027 
3 1.40397 1.84445 0.23335 0.09345 1.52649 0.82761 
4 1.46008 1.83165 0.24568 0.07153 1.72603 0.94227 

Suppose Assumption G now holds. The remaining bias term, in (4.7) 
below, depends on h. With Assumption C2, fh(x)=f(x)+ 0.5h 2 trf"(x)+ 
o(h2), wheref"(x) is the Hessian matrix of second derivatives at x, and 

(4.7) - f s  [log ~ -  log f]dF=O.5h2fs tr f"dl~ + o(h2) • 

With Assumption C4 and iff[vl4ko(o)do exists, the two o(h 2) terms can be 

replaced by O(h4). F r o m  Assumption G,f~xp trf"dlz = 0; this can be shown 

by embedding f(x) in the location family f ( x ; v ) = f ( x l -  v~,...,xp- vp), 
taking derivatives with respect to vj, interchanging integration and differen- 
tiation- also needed is that if the j-th univariate marginal density J~ has a 
finite endpoint of upper or lower support x*, then the continuity of the 
first derivatives of f imply Of(xl,...,Xj-l, X*, Xj-l,...,Xp)/OXj = 0 .  Therefore, 

if S is such that fCp s tr ./'"d/u is negligible, we take - f s  [log f h -  logf]dF 
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to be O(h4)--that  is, the O(h 2) is negligible relative to the other bias terms. 
By combining the variance and bias terms, and using a kernel satisfying 

(4.4) and (4.5), the bias of i is O(n-~h 4-p) + O(n 2h-2p) + O(h 4) and 

(4.8) E ( i  - i)2 = O(n-1) + O(n-2hS-p) + O(n 2h-P) + O(n-lh 8-p) 

+ O(n-Zh4 2p) + O(h 8) . 

The number  of terms here, some of which cannot be simplified, makes the 
study of a choice of an optimal bandwidth impractical. We now restrict 
p_< 4 (partly because the sample size n required for estimation grows 
quickly with increasing p) and propose to choose a bandwidth order such 
that the O(n -1) term in (4.8) is dominant  and such that the bias terms are 
o(n-1/2). If h = 0(1"l-1/{0"5p+4)), then the bias i s  O(n -4/(0"5p+4}) and the second 
dominating term in (4.8) is O(rt-8/i°SP+4)); with this choice of the order of h, 
an estimate of the O(n -~) variance term can be used for a standard error. In 
addition, simulations show that the bandwidth should decrease with more 
dependence for a multivariate density. 

From these considerations, we propose the rule 

Cl'l -l/(0"5p+4). I Q R .  0 . 5 - f i  

0.5 - 0.5 p ' 

where c is between 0.75 and 1, IQR and fi are defined as at the end of 
Section 3, and the last term is omitted for p = 1 (comments at the end of 
Section 3 concerning unimodality of the density apply here as well). This 
rule was found to work quite well in simulations for p _< 4 with the kernels 
in Table 1, for various univariate densities satisfying Assumptions C4 and 
G, multivariate normal densities and densities of transformations of multi- 
variate normal random vectors with univariate distributions all equal to a 
distribution function G. The kernels in Table 1 led to estimates [ that 
varied much less with h than unimodal  kernels. Of course, as p increases, n 
needs to be larger in order to get reasonable estimates. For  example, for 
p = l, n can be as small as 50, whereas for p = 3, at least n = 200 is needed 
for good estimates. 

Finally, an estimate of (4.3) is n-~s 2, where 

s 2 = n  -1 ]~ [ - l o g f ( X i ) + d ( X i ) ]  2-(i+n -~ ~ d(Xi))2 
.Y,~S X,~S ' 

and d(x) = - n -l Y, kh(x - Xj)/f(Xj). This estimator, which estimates the 
Xj~S 

dominate  term of the asymptotic variance, was found in the simulations to 
be generally 10% to 25% smaller than the variance of i .  
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5. Discussion 

In this paper, we have shown how representation by an empirical 
process can be used to study estimation of a functional of a multivariate 
density based on the kernel density method. The estimation of the integral 
of the square of the density is easier to study than other functionals. For 

the entropy function -fflogJdl~, non-unimodal kernels satisfying certain 

conditions can reduce the bias and mean squared error. For other func- 
tionals, or with fewer assumptions on f for entropy, subtracting estimates 
of the first order bias term may reduce the mean squared error. Analysis 
and simulations show that the sample size needed for good estimates 
increases rapidly with the dimension p of the multivariate density, but the 
methods in this paper do work well for small p. This paper just begins to 
study the area of estimation of a functional of a multivariate density and 
further research, possibly with other density estimation methods, should 
lead to improvements. 

Acknowledgements 

The author is grateful to Dr. M. C. Jones for helpful correspondence 
and discussion, and to the referees for their useful comments. 

REFERENCES 

Ahmad, 1. A. (1976). On asymptotic properties of an estimate of a functional of a 
probability density, Stand. Actuar..1., 3, 176-- 181. 

Ahmad, I. A. and Lin, P.-E. (1976). A nonparametric estimation of the entropy for 
absolutely continuous distributions, IEEE Trans. lnjbrm. Theory, 22, 372-350. 

Bhattacharya, G. K. and Roussas, G. G. (1969). Estimation of a certain functional of a 
probability density function, Scand. Actuar. J., 201-206. 

Dmitriev, Yu. G. and Tarasenko, F. P. (1973). On the estimation of functionals of the 
probability density and its derivatives, Theory Probab. Appl., 18, 628-633. 

Dmitriev, Yu. G. and Tarasenko, F. P. (1974). On a class of nonparametric estimates of 
nonlinear functionals of density, Theory Probab. Appl., 19, 390 393. 

Huber, P. J. (1985). Projection pursuit, Ann. Statist., 13, 435-474. 
Joe, H. (1987). Majorization, randomness and dependence for mlfltivariate distributions, 

Ann. Probab., 15, 1217-1225. 
Joe, H. (1989). Relative entropy measures of multivariate dependence, J. Amer. Statist. 

Assoc., 84, 157-164. 
Jones, M. C. and Sibson, R. (1987). What is projection pursuit?, J. Roy. Statist. Soc. Ser. 

A, 150, 1-18. 
Pawlak, M. (1986). On nonparametric estimation of a functional of a probability density, 

IEEE Trans. Inform. Theory, 32, 79-84. 
Prakasa Rao, B. L. S. (1983). Nonparametric Functional Estimation, Academic Press, 

Orlando, Florida. 



ESTIMATION OF FUNCTIONALS OF A DENSITY 697 

Schuster, E. F. (1969). Estimation of a probability density function and its derivatives, Ann. 
Math. Statist., 40, 1187-1195. 

Schuster, E. F. (1974). On the rate of convergence of an estimate of a functional of a 
probability density, Scand. Actuar. J., 1,101-107. 

Schweder, T. (1975). Window estimation of the asymptotic variance of rank estimators of 
location, Stand. J. Statist., 2, 113-126. 

Serfling, R. J. (1980). Approximation Theorems in Mathematical Statistics, Wiley, New 
York. 

Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis, Chapman & 
Hall, London. 


