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Abstract. The independence between spacings of record values and of 
individual record values is well known when the records come from a 
geometric distribution. Here we examine the form a function of two 
record values must have if we require independence from a lower record 
value. Also similar questions are examined in relation to conditional 
expectation and conditional variance. 
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1. Introduction 

Let X1, X2,... be a sequence of i.i.d, r andom variables on the nonnega- 
tive integers, each with probability distribution P(i) = P ( X - -  i), i = O, 1,.... 
The sequence defined by N ( 0 ) =  1 and N ( n ) =  min{j :  Xj>XN(,-1)} for 
n = 1,2,... is called the sequence of (upper) record times, while the cor- 
responding sequence Rn = XN(~), n = 0, 1,... is called the sequence of (upper) 
records. The joint probability distribution of R0, R~,..., Rn is given by 

(1.1) 
n / n - 1  

P ( R 0  = r0, R1 = r l , . . . ,  Rn = rn) = i~=O P ( r i ) / H ^  a( r3 ,  / , -o 

r0 < rl < ' . .  < rn where Q(ri) = P ( X  > ri). 
Let X be a random variable on the nonnegative integers with probabili- 

ty distribution given by 

(1.2) P ( X = i ) = p q  i, i = 0 , 1 , . . . ,  q~(0 ,1 ) ,  p + q = l .  

This is the geometric distribution with parameter  q, and with left end zero. 
Substituting (1.2) in (1.1), we find that Ro, R 1 - R o , . . . , R , - R , - I  are 
independent and that R i -  Ri-1, i = 1,2 .... , n have the same distribution as 
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R0 + 1. Some direct consequences of these properties are: Ri and Rn - Rj, 
for i _<j _< n, are independent,  R~ - Ri has a constant conditional expecta- 
tion and a constant conditional variance given Ri, and R n - R j  has the 
negative binomial distribution with parameter q and left end n - j .  Some 
forms of these properties have been used to characterize (1.2) via order 
statistics properties, e.g., Pfeifer (1979), Deheuvels (1984) and Gupta 
(1984). Some distributional results in the discrete case are also given by 
Ahsanullah and Holland (1984) and several related questions are examined 
in a very general setup by Rao and Shanbhag (1986). Further  information 
is found in the papers cited in the above papers. 

In this paper, we examine the following problem: Suppose we are 
given an arbitrary function g(Rj, R~), when Rj and R, are coming from 
(1.1), and assume that some of the above-mentioned properties hold for it. 
What, then, would be the form of g(Rj, R,)? It is proved that, under some 
conditions, g(Rj, R,) would be either h(R ,  - Rj) or R, - Rj in some appro- 
priate region, the function h ( . )  being arbitrary. 

2. The results 

Let j <  n be two fixed nonnegative integers and let Rj, R, be the 
corresponding record values of the geometric distribution (1.2). The set of 
values taken by (Rj, Rn) is the set of pairs of integers D = {(rj, r,): rj = j ,  
j + 1 .... , rn = r~ + n - j } .  We start with a result related to the distribution of 
spacings of records. 

THEOREM 2.1. Let Rj and R~, j < n, be two record values coming 
f rom the geometric distribution (1.2) and let g(x ,y)  be a function strictly 
increasing in y. We assume that g(Rj, R,) has a negative binomial distribu- 
tion with parameter q, with left end n - j  and q being fixed. Then 
g(x, y) = x - y on D and it is arbitrary elsewhere. 

PROOF. Let Cz -- {(x,y) such that g(x,y) = z} for z = n - j , n  - j  + 1,... 
be a partition of the set D. According to the assumption, we have 

(2.1) 
z - 1  ) 

Z c P(Rj  = x, Rn = y) = p,-jqZ-,+j 
~x,~E : n - j -  1 ' 

z = n - j , n - j +  1,. . . .  

In the above equation, we use the independence of Rj and R n -  Rj. After 
some calculations, equation (2.1) is transformed into 

(x)(yx,) ( z , )  
(2.2) (x,v) ~Ec j n - j -  1 qy-n= n - j -  1 P j lqZ-n+j, 
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z =  n - j ,  n - j +  1, . . . .  

Expanding p-J-~ in equation (2.2), we obtain 

~,>')~ < j n - j -  1 qY " = x=j j n - j  - 1 q 

z = n - j , n - j +  l , . . . .  

Consider now equation (2.3) for z = n - j .  It takes the form 

X 
(2.4) J .  

~x,v,.co, j n j 1 - _ x = j  j 

Suppose that there exists (x0,y0) e Cn-j such that y0 > x0 + n - j .  As g ( x , y )  
is strictly increasing in y, we have n - j  = g(xo, yo) > g(xo, Xo + n - j ) .  But 
g(xo, xo + n - j )  is an admissible value of  g(Rj,  R,,), therefore, g(xo, Xo + 
n - j )  _> n - j  and this is a contradic t ion.  Hence,  ( x , y ) ~  C,,-j implies 
y - - x  + n - j .  Equa t ion  (2.4) implies the converse,  hence one obtains 
(x, y) e C~-z iff y -- x + n - j .  Working in exactly the same way for the other 
values of  z, we find induct ively (x ,y)  e Cz iff y = x + z for z --- n - j ,  
n - j +  1,... .  This implies that g ( x , y ) = y - x  on D with an arbitrary 
extension elsewhere. This concludes the proof  of the theorem. 

In the previous theorem it was assumed that g ( x , y )  is strictly increas- 
ing in y. This is not redundant  if no further assumptions are imposed on j 
and n. We can see that, if n = 2j + 1, there are functions g ( x , y )  ~ y - x 
which are not strictly increasing in y and at the same time, g(Rj,  Rn) has a 
negative binomial distribution with left end n - j .  Suppose that g ( x , y )  is 
nondecreasing in y; then either g(rs, rn) = rj + 1 on D or g(rj, rn) = rn - rj on 
D with r~ ~ n + 1 and is equal to r~ + rj - n for r~ = n + 1 are two examples 
where g(Rj,  R~) follows the required negative binomial distribution. If 
nothing is assumed about  g(x ,  y), then g(rj, rn) = r~ - rs on D for r~ # n + 2 
and is equal to r~ + r j - n -  1 for r~- -n  + 2 is an example of a function 
g(x , y )  not monotonous  in y and at the same time, g(Rj,  Rn) has the 
required property.  Further  examples can be constructed in a similar way. 
Finally, we remark that in Theorem 2.1, if we further impose the condition 
that the assumptions hold for all q e (0, 1), the result of the theorem 
remains the same while the counterexamples are still valid. 

Now we proceed to examine the consequences of the independence 
assumption. We know that Ri and R~ - Rj are independent for i <_j < n, 
and this implies the independence of  h(Rn - Rj) and Ri, where h ( . )  is any 
function. We next prove that this is the only function of Rj and R,  for 
which this holds. 
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THEOREM 2.2. Let g(x ,y)  be a function such that R~ and g(Rj, R~) 
are independent for  some f i xed  nonnegative integers, i <_j <_ n and for  all 
q e (0, 1). Then, g(x,y)  = h(y  - x) on D and arbitrary elsewhere, where 
h ( . )  is any function. 

PROOF. 

(2.5) 

The independence of g(Rj, R~) and R~ implies 

E(s g, R~, R,,)tn, ) = E(tR,) E(sg~R, R.)), 

for Isl < 1, Itl < 1. But 

P( R,, = r,, Rj = rj, Ri = ri) 

= P(Rn -- Rj = rn - ri)P(R ] - R, = rj - r~)P(Ri = r~), 

for r~--rj> n - j ,  r j - r g ~ j - i  and ri > _ i. Each difference and R~ have a 
negative b inomia l  dis t r ibut ion with appropria te  parameters .  Now in equa- 
t ion (2.5) we set r ~ - i = x ,  r j - j = y  and r ~ - n - z .  Then after some 
algebra, we obtain 

(2.6) ~ ~ ~ ( z - y + n - - - j - 1 ) ( y - x + j - - i - l )  
,.:0y . . . .  y n - j -  I j - i -  1 

" ( i + x )  pn+'qzsg~y+j'z*n)txx 

E(sg, Rj, R,,)) ~ ( i + x ) = • p'+ lqXtX 
x : 0  X 

for Is[, Itl < 1. Equat ing coefficients of t x in (2.6), we find 

(2.7) ~.=x~:y n - j  - I j .... i -  1 

= a(s,p) for x = 0, 1 ... . .  Isl < 1 . 

In equat ion  (2.7), we set y - x = u, z - y -- v and then subtract  the equat ion 
corresponding to x = 0 f rom it. The resulting equat ion is 

( 2 . 8 )  )( ) y~ ~ v + n - j - I  u + j - i - 1  qU+O 
,,:oo=o n - j -  1 j - i - 1  

• ( s  - s : 0 

for x - 0 , 1 , . . . ,  I s [ < l ,  I q l < l .  
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Setting m -- u + o in equation (2.8), and working as before, we have 

 (o+n ,)(m o i ,) 
o:0 n - j -  1 j - i -  1 

• ( sg(m-v+x+j ,m+x+n)  _ sg (m-v+j ,m+n))  m O ,  

We consider the equation which corresponds 
induction. This gives 

x , m  = 0, 1,. . . ,  I s l < l .  

to m = 0  and then use 

Change now m + x + n to y and x + j to x. Substitution gives 

g ( x , y )  = g ( j , y -  x + j ) - -  h ( y -  x )  on D ,  

with an arbitrary extension elsewhere. This concludes the proof  of the 
theorem. 

The independence of Ri and R , -  Rj, 1 < i < j < _  n for the geometric 
records implies that the conditional expectation of any function of R, - Rj, 
given Ri = n, does not depend on r,.. We prove now that the constancy of 
the conditional expectation leads to the same conclusion as in Theorem 
2.2. 

THEOREM 2.3. L e t  g ( x , y )  be  a n y  f u n c t i o n  s u c h  tha t  g ( R j ,  R , )  has  a 

f i n i t e  e x p e c t a t i o n .  S u p p o s e  tha t  f o r  all  q e (0, 1) 

(2.9) E ( g ( R j ,  R , ) I R i  = n ) =  d ,  

cons t ,  all  ri = i, i +  1,...,  w h e r e  i <  j<_ n are  f i x e d .  T h e n  g ( x , y )  = h ( y  - x )  

on  D a n d  it is a rb i t rary  e l sewhere .  

PROOF. From the properties of record values, we have 

P ( R n  = r.,  R j  = r j lR i  = n) = P ( R .  - R1 = r~ - r i ) P ( R  j - Ri  = rj - r~) , 

for rn - rj >_ n - j ,  rj - ri > j - i, ri >- i. Making use of the above relation in 
(2.9) and using arguments similar to the ones used in the proof of Theorem 
2.2, we arrive at the required result. 

For the conditional variance we need some restrictions on the form of 

g ( x  + j ,  m + x + n) = g ( j ,  m + n) for x, m = O, 1,. . . .  
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g(x , y )  to get a result analogous to the previous ones. We have the 
following theorem: 

THEOREM 2.4. Let g ( x , y )  be a func t ion  mono tonous  in y and such 
that E(gZ(Ri, R,))  is f ini te  f o r  some f i x e d  i < n. Then 

(2 .10)  V(g(R,, R , ) I  R;  = r;) = v ,  

o const., all ri = i, i + 1,... f o r  all q e (0, l), where V ( X )  denotes the 
variance o f  X ,  implies g ( x , y )  = a (y  - x) + b(x)  on D and arbitrary other- 
wise where a(x) is mono tonous  and b(x)  is any funct ion.  

PROOF. For  the condit ional  distribution, we have 

(2.11) p ( R n =  r~,Ri= r i )=(  r ~ -  r i - 1 ) p n - i q  ..... -~+~ 
n - i - 1  

r; = i, i + 1,..., rn > ri + n - i. Using (2.11) in (2.10) and introducing the 
no ta t ion  r i - i = x , r , - r i - n + i = z , n - i -  l = k  and g ( x + i , y + n ) =  
h(x ,y ) ,  equat ion (2.10) is written as 

(2.12) ~h2(x,x+z)(z+k) z=0 k pn-iqZ 

(z 0 ( I ) - h ( x , x + z )  z + k  p~-iq~ 2 
: k = o ,  

(2.13) Z=o(h2(x, x + z) - h2(O,z)) z + k q~p_,+i 
= k 

= ~ .h (x ,  x +  z) qZ _ ~,h(O,z)  
k = 

z + k ) q z )  2 

k 

all x =  0, 1,. . . ,  q e (0, 1). In equat ion (2.13), we expand p -n+i= (1 - q)-k-l. 
After the calculations have been made, we arrive at the following equat ion 

(m ( )( )) 
z~=o(h2(x, x + z) - h2(O, z)) z + k m - -  Z q- k m 

m=0 = k k q 

= ~ (h(x,  x + z)h(x ,  x + m - z) 
m = 0  = 

all x = 0 ,  1,..., q e (0, 1). In (2.12), set x = 0 and then subtract the resulting 
equation f rom (2.12). This gives 
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k k ' 

x = O, 1 , . . . ,  all q ~ (0, 1) a n d  e q u a t i n g  coef f ic ien t s  o f  e q u a l  p o w e r ,  we  h a v e  

t :  
z--0 k k ' 

all m ,  x = 0, 1 , . . . .  N o w  c h a n g e  the  v a r i a b l e  z to  m - z and  a d d  the  r e su l t i ng  

e q u a t i o n  to  the  one  a b o v e .  By this ,  we  f ind  

(2.14) z~o(h(x ,  x + z) - h ( x ,  x + m - z)) 2 z + k m - z + k 
= k k 

z=0 k k ' 

all m , z  = 0, 1 , . . . .  F r o m  e q u a t i o n  (2.14)  f o r  m = 1, u s ing  the  m o n o t o n i c i t y  

o f  h ( x , y )  in y,  we  o b t a i n  

h ( x ,  x )  - h ( x ,  x + 1) -- h (0 ,  0) - h(0 ,  1) x -- 0, 1 , . . . .  

F o r  m -- 2, in (2.14) we  h a v e  

h (x,  x)  - h (x,  x + 2) = h (0, 0) - h (0, 2) x = 0, 1 . . . . .  

a n d  b y  s u b t r a c t i o n  

h ( x ,  x + 1) - h ( x ,  x + 2) = h(0 ,  l)  - h (0 ,  2) x --- 0, 1 , . . . .  

I n  the  s a m e  way ,  p r o c e e d i n g  induc t ive ly ,  o n e  o b t a i n s  

h (x,  x + s) - h (x,  x + s + t) = h (0, s) - h (0, s + t ) ,  

all x ,  s, t = 0, 1 , . . . .  N o w  set s = 0 a n d  x + t = y to  f ind 

h ( x , y )  -- h(O, y - x )  + h ( x , x )  - h ( 0 , 0 ) ,  

all x -- 0, 1 , . . . ,  y >_ x. Th i s  in t u r n  imp l i e s  t h a t  g ( x , y )  has  the  f o r m  

g ( x , y )  = a ( y -  x )  + b ( x )  , 
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on D with a ( . )  monotonous  and arbitrarily defined elsewhere. This con- 
eludes the proof. 

In Theorems 2.2 and 2.3 nothing was assumed about  the form of the 
distribution of g(Rj, Rn). If we further assume that it has the appropriate 
negative binomial distribution, then g(Rj, Rn)= R ~ - R i  on D. This is 
stated and proved in the theorem that follows. 

THEOREM 2.5. Suppose that either the conditions o f  Theorem 2.2 or 
of  Theorem 2.3 hold for g(Rj, R~). Assume in addition that g(Rj, R~) has 
the negative binomial distribution with parameter q, with left end n - j  for 
all q ~ (0, 1). Then g(x,y) = y - x on D and arbitrary elsewhere. 

PROOF. From the conclusion of either theorem we have g(x ,y )= 
h(y - x) on D. The joint distribution of Rj and R,  is given by 

P(Rj= rj, R , =  r,)= J n - j -  1 pn+lq~°-, , 

for (rj, r , ) e  D. Using the above  equa t ion  in the eva lua t ion  of  pz-- 
P(h(R~ - R~) = z) and the assumptions, we find 

~,v)~c~ j \ n - j -  1 pn.lqy ~= - 1  
n - j -  1 p ,  jqZ , + a  

z = n - j ,  n - j  + 1,... for all q ~ (0, 1). Now take a fixed value of z. Then 
we can see at once that a fixed (x,y) ~ Cz implies (x + u, y + u) ~ C~ for all 
u _ > j -  x. Therefore, ( j +  k , y -  x + j +  k) ~ Cz for k = 0, I , . . . .  F rom the 
l.h.s, of equation (2.15) using summation over k and the binomial expan- 
sion, we arrive at the inequality 

(2.16) p~>_( y -  x-1)pn-jqy-X-n+j 
n - j - 1  

z = n - j ,  n - j  + 1,.... We denote by wy-x the r.h.s, of the inequality (2.16). 
Since the above assumptions should be valid for all q e (0, 1), we can 
choose q in such a way that the sequence Pz, z = n - j ,  n - j  + 1,... satisfies 
pn-j+l > p n - j  >pn-j+2 > "'". For this to hold, it suffices to have (n - j ) - ~  < 
q < 2((n - j ) (n  - j  + 1)) -°5. But the possible values o f y  - x, when (x,y) ~ D, 
are n - j ,  n - j  + 1,.... Therefore, a similar relation holds for the sequence 
W y - x , y - x  = n - j ,  n - j +  1,... and the corresponding terms of the se- 
quences are equal, that is pr = wr for r = n - j ,  n - j  + 1,.... Now consider 
the term wn-j+l. Then the (x,y) 's which satisfy y - x  = n - j +  1 must 
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be long  to some Cz. Inequal i ty  ( 2 . 1 6 ) i m p l i e s  that pz>_wn-j+1 and this is 
poss ible  on ly  if z = n j + 1, because  both  terms are the unique  m a x i m a  of  
the correspond ing  sequences .  Hence ,  we have ( x , y ) ~  Cn-j+I iff y - x  = 
n - j +  1. Nex t  we consider  wn-j. Arguing  in the same way we find an 
a n a l o g o u s  result. By induct ion ,  we conc lude  (x , y )  ~ Cz iff z = y - x for all 
z = n - j ,  n - j  + 1 , . . . .  Hence,  g ( x , y )  = y  - x on D and arbitrary elsewhere. 
This finishes the proof  of  the theorem.  
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