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Abstract. Let PN and QN, N>_ 1, be two possible probability distribu- 
tions of a random vector Xu = (Xm .... ,XNN), whose components are 

N 
independent. Suppose PN and QN have respective densities p s  = iH=~f(xNi -- 

N N 
ON) and qN - - - -  i~=l= f(xNi- ONi), where ON = N-1 i=1 y' ONi, such that ~i~umax [ONi- 

ON[ = O(N- 1/2), f ( x )  > 0 for almost every real x, f is absolutely continu- 

ous, and sup = [ f ' ( x  - O)]2/f(x)dx < ~ for some 00 > 0. The conti- 
0.~ 0-< 0o 

guity of {qN} to  {pN} is well known. In this paper it is proven that under 
these conditions {Qu} preserves C.-T.L.D. (Cram6r-type large deviation) 
from {PN} for a general class of statistics ~ r  which includes R-, U- and 
L-statistics as members. That means, for any {Su = SN(XN)} from ~ ,  a 
C.-T.L.D. theorem with range C <_ x <_ o(N ~) (any C _< 0), 0 < 6 _< 4 -1, 

holds for {SN} under {PN}, implying that the same theorem holds for {Su} 
under {QN}. It also provides a quick and simple way to establish 
C.-T.L.D. results for statistics under {QN}. 

Key words and phrases: Contiguous alternatives, Cram6r-type large 
deviations, linear rank statistics, U-statistics, linear combinations of order 
statistics. 

1. The definition and the main theorem 

Let PN and QN, N>_ 1, be two possible probabi l i ty  distr ibutions of  a 
r a n d o m  vector  XN = (XN1,..., XNN), whose components  are independent .  
Let SN = SN(XN) be a statistic. We use E0 and E1 to denote  the expecta t ion  
under  PN and QN, respectively (similarly, Var0, Vary, etc.). In what  follows, 
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0<fi_<4-~, A~>0, i_>l are absolute constants, and ~ =  t - ~  with q5 
denoting the standard normal d.f. 

DEFINITION 1.1. We say that for {SN} the sequence {QN} preserves 
C.-T.L.D. (Cram6r-type large deviation) with range C <_ x <_ o ( N  ~) (C <_ O) 
from {PN} if as N ~ o~ 

(1.1) PN[SN > EoSN ~- x(Var0  SN) 1/2] ~- ~ ( x ) ( 1  + o ( I ) )  

uniformly in C < x < o ( N  ~) (C < 0) implies that 

(1.2) QN[SN > E1SN + x(Varl SN) 1/2] = ~(X)(1 J- O(1)) 

uniformly in C < x <_ o ( N  ~) (C <_ 0). 

R e m a r k  1.1. We can extend Definition 1.1 to a family ~ of (se- 
quences of) statistics in the following way: We say that for ~ ' t h e  sequence 
{QN} preserves C.-T.L.D. with range C<_ x <_ o ( N  ~) (C<_ 0) from {PN} if for 
every {SN} from ~ "  the sequence {QN} preserves C.-T.L.D. with range 
C<_x <_ o ( N  ~) (C<_O) from {PN}. Furthermore, if PN and QN have the 
respective densities p u  and qN, we shall speak of "{qu} preserves ... from 
{pu}". Note that if {qN} is contiguous to {pu}, they by the well-known 
LeCam's lemmas we know that under suitable conditions {qN} will preserve 
asymptotic normality for {SN} from {pu}. It is natural to ask the following 
question: Can {qN} preserve some properties which are related to but 
beyond the asymptotic normality for {SN} from {pu}? The purpose of this 
paper is to give one answer to this question. 

For the rest of this paper, we assume that PN and QN, N>_ l, have 
respective densities 

N N 
(1.3) p u  = i~_~f(Xus -- -ON) and qN = ~H~f(XN~ - Oui) 

( N) 
ON N n = ~ Om such that 

(1.4) max [ONi- ON] = O ( N  -1/2) I~i~N 

(1.5) f ( x )  > 0 for almost every real x, f i s  absolutely 

f? continuous, and sup ~ [ f ' ( x  - O)]2/ f (x)dx < ~ 

for some O0 > 0.  
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Note that (1.5) is fulfilled by, for example, normal, double exponential, 
logistic and extreme value (minimum) densities, and {qN} is contiguous to 
{pu}. We also note that (1.5) is a location version of Assumption (V) of 
Hu~kov~ (1977). For simplicity we confine ourselves here to contiguous 
location alternatives, but extensions of the results to more general conti- 
guous alternatives are possible. 

In Theorem 1.1, we shall give general conditions on {Su} such that 
{qN} wilt preserve C.-T.L.D. for {SN} from {pN}. In Section 2, four 
applications of Theorem 1.1 are considered. It is proven that for (simple or 
signed) linear rank-, U- and L-statistics: (i) {qN} preserves C.-T.L.D. from 
{pN} (see Theorems 2.1-2.4) and, consequently, (ii) C.-T.L.D. results hold 
under {qN} (see Corollaries 2.1-2.4). The validity of C.-T.L.D. results for 
(simple or signed) linear rank- and L-statistics are already known under 
general alternatives by the work of Seoh et al. (1985). The results in 
Corollaries 2.1, 2.2 and 2.4 of the present paper indicate that under 
contiguous alternatives {qu} (here each XNi is continuous with a density 
func t ion f (XNi -  Ou~) satisfying (1.4) and (1.5)), some conditions of Seoh et 
al. (1985) can be relaxed (see Remarks 2.1 and 2.3 for details). C.-T.L.D. 
results for U-statistics under the null hypothesis were studied by Malevich 
and Abdalimov (1979). The results in Corollary 2.3 extend their results to 
contiguous alternatives {qu}. 

The results of this paper depend heavily on Lemma 3.6 of Hu~kovfi 
(1977). An adapted version of that lemma is given by the following 

LEMMA 1.1. Let {YN : YN(XN)} be any sequence o f  statistics. Assume 
(1.3)-(1.5). Then for  all N >  No and real k > 0 (No is some integer not 
depending on k), 

(1.6) El I YNI ~k ~ A~IEol  YNI~}  ~/~ . 

IN ] PROOF. Put BN = i~=l f (XNi -  ON)> 0 . Then (1.5) implies t h a t  

EII(Bh) = 0, N >  1, where I ( . )  denotes the indicator function. Thus 
EI IYNI 2k = EI{I YNIZkI(BN)}. The rest follows from (3.7)-(3.11) of Hugkov~t 
(1977). 

Let AN = (0u~ -- ON,..., ONN - -  ON). For any statistic WN ( = WN(XN)), we 
denote 

WN+A( = WN+A(XN))= WN(XN ~- A N ) ,  

WN-A = WN (XN - -  AN), m/~ ) =  WN--  Ei W N ,  

WN(i)+A = WN+A -- Ei WN+A and Wu~'~a = WN-A -- Ei WN-A, i = 0 , 1  . 
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(ii) 

(1.7) 

eventually,  and  

(1.8) P~v[] ,'r(°)u+a - T(N°)I > N -s]  = O(eN), 

THEOREM 1.1. A s s u m e  (1.3)-(1.5). Furthermore ,  assume: 
(i) liminf Varo SN > r2 f o r  s o m e  r > O. N-co 

There exist statistics { TN( = TN(XN))} such that 

_ A4N-86  PN[IS~N °t T~N011 > N -s] = O(C,N), E o I S N -  TNI 4 <_ 2 , 

Varo (TN+a- TN)= O(N-4Z) , 

where eN = exp ( - a N  2~) a n d  a > 0 is a cons tant  not  depend ing  on N. Then 
f o r  {SN} the sequence {qu} preserves  C. -T .L .D.  with range C <<_ x <_ o ( N  ~) 
( C < O) f r o m  {pN}. 

PROOF. Suppose (1.1) is true. It follows from Lemma 1.1, (1.7), and 
from H61der's inequality that for all sufficiently large N, 

and 

(1.9) 

E1 [SN -- TN[ ~ AI{EoISN - TNI2} ~/2 <_ A 1 A 2 N  -~ 

D m  < QN[ISN -- TNI > (A2 + 1)N -~] 

A 1 { P N [ I S N -  TNI > (A2 + 1)N-a]} v2 

<< A , {PN[IS~  ° ) -  T~u°)l > N-~]}'/2 : O(e~/2), 

where DNI : QN[IS(N 1) -- T(NI)[ > (A2 + A I A :  + 1)N-~]. Now, put 

2 aNO = Varo SN, DN2 = QN[I T(N 11 T(ul-)al > N - s ] ,  

DN3 = QN[] T~-!a - s~llal > N ~] 

and 

H~v(x) = QN[S~N1)a > (X + A3z - IN  /~)O'N0] , 

where A3 = A2 + A~A2 + 3. Note that 

DN2 = PN[I T~°2a - T~N°)I > N-S],  

DN3 = P [I Sk° l > N - q  

and 
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H~,(x) = PN[sN~O) > (X +-- A~r-1N-'~)O'uo] . 

By Slutsky's argument and (i) of Theorem 1.1, 

(l.lO) 
3 3 

- 2~ DNi + H~(x) <- QN[S~N l) > xam] < HN(X) + X DNi 
i:1 i:1 

for all N_> N~ (N1 is an integer not depending on x). By (1.1) and by 
Lemma A1 of Vandemaele  and Veraverbeke (1982), we get H k ( x ) =  
(~(x))(1 + o(1)) uniformly in C<_ x <_ o (N  ~) (C_< 0), which, together with 
(1.7)-(1.10) and the fact that eN<e~/2= (~(X))O(1) uniformly in C < x <  
o(N  ~) (C < 0), leads to 

(1.ii) QN[SN > E1SN + x(Varo SN) '/2] = ~(x)( l  + o(1)) 

uniformly in C<_x<<_o(N ~) (C<_O). By (1.11) and by Lemma A1 of 
Vandemaele and Veraverbeke (1982), the proof will be concluded if we 
show that 

[(Var0 SN) -1 Var~ S N ]  1/2 ~- I -~- O(N -26) . 

By the fact that Varl S~-)~ = Varo S~v, we have 

I Varl S N -  Var0 SNI 

= IVarl (Stu ~) - su~l-Ja) + 2 cov~ (Su ") - SNt~)a, Stu~)a)l 

< D m  + 2(DN4 Var0 SN) 1/2 , 

where D m =  EI(Stu 1) - StN~)a) 2. NOW, (1.6) implies that for all N >  No, 

O N 4  <-- 3{EI(SN (1}- z(l)) 2 + EI(TN (1)-  ZN(1)a) 2 + E I ( T ( N I I a  - SN(1)a) 2} 

<- 3{4A1[Eo(SN- TN)'] 1/2 + E0(T~°+)a - TtN°l) 2 + 4E0(SN - TN)2}. 

The proof follows. 

Remark 1.2. Note that in Theorem 1.1 we may pick TN----- SN for all 
N > 1. However, if SN is a sum of dependent r.v.'s, then generally we will 
pick TN such that: (i) It is a sum of independent r.v.'s. (ii) (1.7) is either 
already known to be true or can be established. Moreover,  in such 
situations, (1.8) involves the tail probabilities of sums of independent r.v.'s 
with vanishing expectations and, therefore, some standard theorems can be 
applied. 
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It is easy to see that  (1.9)-(1.11) remain true if condi t ion (ii) 
Theorem 1.1 is replaced by the following weaker condition: 

(ii)' There exist statistics {T N( = TN(XN))} such that  

of 

PN[IS(N ° ) -  T(N°)I > N -~] = O(~N), EoISN-- TNI 2 = O(N 2~), 

and 

PN[I "T(O)N+a -- T(NO)I > N ~] -- O(eN), 

where ~N is defined in Theorem I. 1. 
We therefore immediately have the following 

COROLI, ARY 1.1. Assume (1.3) (1.5) and condition (ii)'. Further- 
more, assume that there exists some {ou} such that l iminf aN > 0 and 

N ~ c ~  

PN[SN > EoSN + XaN] = ~ ( x ) ( l  + O(1))  uniformly in C <  x <_ o ( N  ~) (C <_ 0). 
Then (1.1 l) remains true ! f in  it (Var0 SN) 1/2 is replaced by aN. 

COROLLARY 1.2. Assume (1.1), (1.3)-(1.5), condition (i) o f  Theorem 
1.1, and condition (ii)'. Then (1.11) holds true. 

2. Applications: Contiguous alternatives which preserve Cram6r-type 
large deviations for R-, U- and L-statistics 

In this section, we give four applications of Theorem 1.1. Let F denote 
the c.d.f, associated withJl  In the sequel we suppress the index N whenever 
it causes no confusion. 

Application I. (Simple linear rank statistics) Let nNi be the rank of 
XNi among XN~,..., XNN. Let CUt,..., CNN be constants satisfying 

(2.1) 

N m 9 
~-~ ( C N i -  CN) ~ =  l ,  

i=! 
max I CNi - CNI ~ A4N-1/3 
l ~ - i : N  

N 
~, (CNi- ~VX)3 <_ A4N l/~_ N > 1 
.= t I 

N 

where Fu = N -1 ~, CNi. Let a N ( I )  . . . . .  aN(N) be scores generated by a non- 
i=1 

constant function ~(u), 0 < u < 1, according to either 

(2.2) au( i )=q~( i / (N+l ) )  or aN(i)=E~(U~)),  l<_ i<_N,  

where U# ~ denotes the i-th order statistic in a sample of size N f rom the 
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uniform (0, 1) distribution, and 9~ satisfies 

(2.3) 19~(u)- 9~(0)1 <_As lu -o  I for all u ,v e (0, 1). 

( 
THEOREM 2.1. Assume (1.3)-(1.5) and (2.1)-(2.3). Then for { SN = 

t 
i2=l(CNi --cN)aN(RNi) the sequence {qu} preserves C.-T.L.D. with range 

C <_ x ~ o ( N  1/6) (C <_ O)from {pu}. 

N 

PROOF. Put  TN = £ (c i -  ~)q)(F(Xi - 0)), ZN = 1199 - -  ~llz ( > 0) with 
i=1 

~ = j o  l r  f(u)du. From the proof  of the theorem in Kallenberg (1982), we 

know (1.7) with 6 = 6 -1 and (i) of Theorem 1.1 are satisfied. Now, TN+a -- 
N 

TN = Y~ (Ci -  -C ) Yi with Yi = f (F(Xi  + Of- 20)) - ~o(F(Xi - 0)). Note that  
i=1 

(1.5) implies t h a t f i s  bounded  on ( - ~ , ~ )  (cf. L e m m a  1.2.4a of H~ijek and 
Sid/tk (1967)). It follows that  II1,1 -< l lg¢ll=llf l l=10i- 01, all N_> 1, i =  
1, . . . ,N. Hence, (1.8) is satisfied with 6 =  6 -1, as a consequence of (1.4), 
(2.1) and an application of Theorem 2 of Hoeffding (1963). The proof  
follows. 

By (the proof  of) Theorem 2.1, Corollaries 1.1 and 1.2, and by the 
theorem in Kallenberg (1982), we immediately have 

COROLLARY 2.1. Under the conditions and notations o f  Theorem 
2.1, the relation 

(2.4) QN[Su> E~SN + XbN] : ~(x)(1 + o(1)) 

is true uniformly in C < x <_ o ( N  1/6) (C  <_ O) for each o f  the following three 
cases: bN = (Varl SN) 1/2, bN = I1~ - ~112 or bN-- (Vat0 SN) ~/2. 

Application 2. (Signed linear rank statistics with regression constants) 
Let R + Ni denote  the rank of FXNil among  IXNII,..., IXNNI. Define sgn (x) = 1 
or - 1 according as x ___ 0 or < 0. Let dN1,..., duN be constants satisfying 

N 
(2.5) E 1, 

i= l  
max IdNi] <-A6N -1/3 
l<_i<_N 

THEOREM 2.2. Assume (1.3) and (1.4) with ON= 0 for all N> 1, 
(1.5), (2.2), (2.3), (2.5), 9~(0 + ) = 0, and F is symmetric about zero. Then 

for" [ SN= ~ duiaN(R~i)sgn (XNi)I the conclusion of  Theorem 2.1holds. 
t i=1 1 
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N 
PROOF. Put  Tu = i~l di~o(F*(IXi])) sgn (Xi), where F*(x) = 2F(x) - l 

or 0 according as x _> 0 or < 0. Put "CN ~" ]1~9112 ( > 0 ) .  Using Lemma 4.2 of 
Seoh et al. (1985) and arguing as in the proof  of Theorem 2.1, we know 
(1.7) with ~ =  6 J and (i) of  Theorem 1.1 are satisfied. Now, TN+a-- 

N 
TN = Y~ di Yi with Yi = 9~(F*(IXi + 0il)) sgn (X~ + 0~) - 9~(F*(IXd)) sgn (X~). 

i=I  

It is easy to see that I Yi] <-210il 119~']l~[Ifll~ for X~_> max ( 0 , -  0i) or 
< min (0, - 03. F rom the fact that lim 9~(F*(e)) = 0, it can be seen that 

C~0+ 

J Yd -< 4t0~t II~v'lloollj'ft= for rain (0, - 0~) ~ X~ < max (0, - &). The proof  
follows by arguments analogous to those in Theorem 2.1. 

By (the proof  of) Theorem 2.2, Corollaries 1.1 and 1.2, and by 
Theorem 4.1 of Seoh et al. (1985), we have 

C O R O L L A R Y  2.2. Under the conditions and notations of  Theorem 
2.2, (2.4) is true uniformly in C<_x<_o(N 1/6) (C<_O) for  each o f  the 
following three cases: bu = (Varl SN) 1/2, bN = [[fl]2 or bu = (Var0 SN) 1/2. 

Remark 2.1. Under contiguous alternatives specified by (1.3)-(1.5), 
the results in Corollaries 2.1 and 2.2 indicate that for (simple or signed) 
linear rank statistics the assumptions on score functions in Seoh et al. 
(1985) can be relaxed (they assumed H99"]1~ < oo, whereas we only assume 
(2.3)). 

Application 3. (U-statistics) Throughout this application, we assume 
that ON = 0 for all N >  1 in (1.3) and (1.4). Consider the statistics 

IN) `. = Y~ h (XNi , , . . .  XNi.), N ~  m 
m l ~ i ~  , . ,<~i~.~_]~ , ~ "1 

where m _> l is a fixed integer and the kernel function h(x~,..., Xm) is sym- 
metric in its m arguments. We denote g(x )= E o [ h ( X N I , . . . , X N m ) ] X N I  = X] 

for all real x. We assume that 

(2.7) 

(2.8) 

Eoh(YNl,..., XNm) = O, Eog2(XN1) = 0 -2 > 0 ,  

Eo]h(XN1,..., XNm)l p <-- A~p rp , 

and there exists some constant to > 0 such that 

(2.9) E o [ h ( X N l  + t, XN2 . . . . .  XNm) -- h ( X N I ,  XN2 . . . .  , XNm)[ p 

_<_(ItltAspr) p 
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for a l lp  = 1,2,... and Itl <- to, where r _> 0 is a constant not depending o n p  
(A8 may depend on to), and l = (2 + 2r)(3 + 2r)-i. 

Remark 2.2. Many commonly  used kernel functions (examples: 
h ( x ) = x  q, q =  1,2, . . . ;  h(xl ,x2)=x~x2; h(x l ,x2)= I x l - x 2 [ ;  h(xi,x2) = 
2 - l ( x t -  x2) 2) satisfy (2.8) and (2.9) if E01XN~! ~, p--1,2, . . . ,  satisfies a 
condition similar to (2.8). 

THEOREM 2.3. Assume (1.3) and (1.4) with 0N=0  for all N>_ 1, 
(1.5), and (2.7)-(2.9). Then for {SN = m-IN1/2UN} the sequence {qN} pre- 
serves C.-T.L.D. with range C < _ x < o ( N  ~) (C<O) from {pN}, where 
a = [ 2 ( 3  + 2r)] 1. 

N 
PROOF. Put  TN = N-1/2 ,Y~1= g(Xi), N>_ m. From the proof  of the 

theorem in Vandemaele (1983) (see also, Malevich and Abdalimov (1979)), 
we know (1.7) with c5 = a and (i) of Theorem 1.1 is fulfilled (in fact, it was 
established that Eo[SN- TNI 2p= O(N -p) for any p >_ 1 and, consequently, 
cr~l(Var0 SN) 1/2 = 1 + 0(N-1/2)). Now, by (1.4), (2.9) and by Marcinkiewicz- 
Zygmund inequality (cf. Chow and Teicher (1978), p. 356), we get for all 
real k _> 1 and N _> N2 (N2 is an integer not depending on k), 

N 
(2.10) = ,-rio) l~or IN+a -- T~N°II2k ~ N-tAgkk ~ Z Eolg(Si + Oi) - g ( S i ) l  2k 

i=1 

-< (A 10k Il+ 2rlN-t)k. 

Put k(N)  = N2a(Alole- l)  1/~l +2rJ. Applying Markov's inequality, we get 

(2.11) PN[I .rio) T~N°)I > N -a] < e ktu) I N+A -- -- 

eventually. Hence (1.8) is satisfied with ~ = a. The proof follows. 

From Lemmas 1.(b) and A1 of Vandemaele and Veraverbeke (1982), 
and from (the proof of) Theorem 2.3 and Corollaries 1.1 and 1.2, we 
immediately obtain the following 

COROLLARY 2.3. Under the conditions and notations o f  Theorem 
2.3, (2.4) is true uniformly in C<_ x<<_ o(N a) (C< O)for  each of  the 
following three cases: bN = (VarI S u )  1/2, bN = Gg or bN = (Var0 aN) 1/2. 

Application 4. (L-statistics) Let X~ ) denote the i-th order statistic 
among {XNj: 1 < j  < N }. Consider the statistic 
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LN ~ - i -I 
N 

Z zNiX~I ) , 
i = I  

where ZNi'S are real numbers  satisfying 

(2.12) Z Z N i -  N i=I )/X J ( u ) d u  = O ( N - 1 )  

with J(u), 0 < u < 1, being a non-constant  funct ion satisfying [IJ"ll~ < ~ .  
Assume that  

(2.13) (7: = f ~ f ~  J (F(x) )J (FO,) )[F(min  (x ,y))  - F ( x ) F ( y ) ] d x d y  

(2.14) 

> 0 ,  

sup 10ul < oo 
N> I 

and Eo[XN1 ON] p <-- Af ip  rp , 

all p = l, 2 , . . . ,  where r _> 0 is a constant not depending on p.  

THEOREM 2.4. Assume (1.3)-(1.5) and (2.12)-(2.14). Then f o r  {SN ~- 

x//N LN} the conclusion o f  Theorem 2.3 holds. 

PROOF. Put  (RNi was defined in Application 1) 

(2.15) 

(2.16) 

~ f(i/N 
TN = v / N  i_u /uJ (U)duX~  ~) 

i=1 

N N 

WN = N ,/2 E J ( i / ( N  + I))X~ )= N -1/2 X J (RNi / (N + 1))Xm. 
i=1 i=1 

Under  (2.12)-(2.14), by L e m m a  2 and the result  lim Var0 SN = 0 -2 of 
N~oo 

Vandemaele and Veraverbeke ((1982), p. 424) and by arguments  similar to 
those in deriving (2.11), we know (1.7) with O = a and (i) of Theorem 1.1 
are fulfilled, and moreover,  for all N _>_ N3 (an integer not depending on k) 
and real k > I, 

( 2 . 1 7 )  EoIT(o) _ ,~ ,o)  ,2k TIN t) "N+A VP'N+A = Ell - W~N~II 2k 

<-- 22kA1{Eol TN - WNI4k} 1/2 <-- (A~2k2rN-1) k 

which can be seen by simple computat ions  and by (1.6). Introduce 

pNi = RNi( N + 1) - I  , 

pNii = Eo[puil Xui] 
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- - ( N +  1)-t(1 + ( N -  1 )F(Xui -0N) ) ,  

N 

VN = N -1/2 Y~ [ J(pNii) + (pNi-- pui,)J'(pNii)]XNi, 
i=1 

N 

Eo[VNIXN,]- (N- 1)EoVN. 
i : I  

By (1.6), (2.14), and by arguments analogous to those in deriving (2.17) and 
in deriving Lemmas 3.3-3.5 of Seoh et al. (1985) (with slight modifications), 
we get for all N _> No and real k _> l, 

(2.18) E0i  l;r/(°) r~ 0) 12k V~'N+A --  VN+A 

--< 2=kAl[Eo[ W N  -- ~'ZNl4k]l/2 ~ (A13k2(l+r) N-1)  k , 

N 
where 12N = N-1/2 ]~ VN, j and 

j = l  

(2.19) IT'U.j = J(p~)Xj + (N + l)  -1 ~ j E o [ ( u ( X k -  Xj) 

- F ( X k  - -0)) J ' ( p k k )  Xk I X~] 

= J(p~)Xj + ( N +  1 ) - ' ( N -  1)f tu(x- xj) - r ( x  - 0)1 

• J ' (ON(X))xdF(x-  O) 

with u(x) = (1 + sgn (x))/2 and ON(X) ~--" ( N +  1)-1(1 + ( N -  1)F(x - 0)). Using 
the fact that [If[l= < ~,  it is not hard to see that I PN+a.i - IT"Nj[ -< AI4IOj - O I 
• (IXjl + 1 0 j - 0 1  + 1). Hence,  by (1.4), (2.14) and by Marcinkiewicz-  
Zygmund inequality, we get E0[ ITqN0+)a -- IT'(N0Jl 2k _< (A~skl+2rN-1) k for all N>_ 
N4 (an integer not depending on k) and real k _> I, which, together with 
(2.17), (2.18) and arguments similar to those in deriving (2.11), implies (1.8) 
is satisfied with c~ = a. The proof follows. 

By Theorem 2 of Vandemaele and Veraverbeke (1982), and by (the 
proof of) Theorem 2.4 and Corollaries 1.1 and 1.2, we quickly get 

COROLLARY 2.4. Under the conditions and notations o f  Theorem 
2.4, (2.4) is true uniformly in C < x < o ( N  ~) (C<O) f o r  each o f  the 
fo l lowing three cases: bN = (Varl SN) 1/=, bN = a or bN = (Varo SN) m. 

Remark  2.3. Corollary 2.4 can be viewed as an extension of Theorem 
2.1 (for L-statistics under contiguous alternatives) of Seoh et al. (1985) 
because they only dealt with the case r = 0 (due to their condition (2.1)). In 
fact, it is not possible to deal with the case r > 0 by their method (i.e., 
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applying Theorem i of Feller (1943) directly to I?N). 
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