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Abstract. Let Py and Qn, N = 1, be two possible probability distribu-
tions of a random vector Xy = (Xm,..., Xan), whose components are

independent. S;lppose Py and Qv have respectixe densities py = fl} Slxni—
fy) and gy = I f(xwi = B), where Oyv=N"" El Oxi, such that max |6 —
On| = O(N™'), f(x) > 0 for almost every real x, f is absolutely continu-
ous, and osu”gg f:: [f'(x — 0)F/f(x)dx < o for some 6> 0. The conti-

guity of {gn} to {pn} is well known. In this paper it is proven that under
these conditions {Qn} preserves C.-T.L.D. (Cramér-type large deviation)
from {Px} for a general class of statistics & which includes R-, U- and
L-statistics as members. That means, for any {Sy = Sv(Xw)} from &, a
C.-T.L.D. theorem with range C < x < o(N°%) (any C<0), 0<5<4",
holds for {S~} under { Px}, implying that the same theorem holds for {Sn}
under {Qv}. It also provides a quick and simple way to establish
C.-T.L.D. results for statistics under {Qn}.

Key words and phrases: Contiguous alternatives, Cramér-type large
deviations, linear rank statistics, U-statistics, linear combinations of order
statistics.

1. The definition and the main theorem

Let Py and Qn, N= 1, be two possible probability distributions of a
random vector Xy = (Xni,..., Xnn), Whose components are independent.
Let Sy = Sv(Xw) be a statistic. We use £y and E) to denote the expectation
under Py and Qu, respectively (similarly, Varg, Var,, etc.). In what follows,
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0<d<4"', 4,>0, i=1 are absolute constants, and ®=1— @ with @
denoting the standard normal d.f.

DEFINITION 1.1. We say that for {Sw} the sequence {Qn} 6preserves
C.-T.L.D. (Cramér-type large deviation) with range C < x < o(N°) (C<0)
from { Py} if as N — o0

(1.1 Py[Sn> EoSx + x(Vare Sv)"*] = @(x)(1 + o(1))
uniformly in C < x < o(N°) (C < 0) implies that

(1.2) On[Sv > EiSn + x(Var; Sx)"*] = &(x)(1 + o(1))
uniformly in € < x < o(N°) (C < 0).

Remark 1.1. We can extend Definition 1.1 to a family & of (se-
quences of) statistics in the following way: We say that for . the sequence
{Qn} preserves C.-T.L.D. with range C < x < o(N°%) (C < 0) from { P} if for
every {Sn} from & the sequence {Qn} preserves C.-T.L.D. with range
C<x<o0(N°) (C<0) from {Px}. Furthermore, if Py and Qy have the
respective densities py and gn, we shall speak of “{gn} preserves ... from
{p~}”. Note that if {gs} is contiguous to {pn}, they by the well-known
LeCam’s lemmas we know that under suitable conditions {gn} will preserve
asymptotic normality for {S~} from {pn}. It is natural to ask the following
question: Can {gn} preserve some properties which are related to but
beyond the asymptotic normality for {Sx} from {px}? The purpose of this
paper is to give one answer to this question.

For the rest of this paper, we assume that Py and v, N=1, have
respective densities

N _ N
(1.3) po=T0f0oi= B0 and  qyv=T1f(ou— Ox)

_ N
Oy= N"" X Ox | such that
i=1

(14 max |0y — sl = O(N ") ,
(1.5) f(x) >0 for almost every real x, f is absolutely
continuous, and sup f [f(x— 0T /f(x)dx < o
—bGo=f<0;

for some 6, >0 .
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Note that (1.5) is fulfilled by, for example, normal, double exponential,
logistic and extreme value (minimum) densities, and {g~} is contiguous to
{pn}. We also note that (1.5) is a location version of Assumption (V) of
Huskova (1977). For simplicity we confine ourselves here to contiguous
location alternatives, but extensions of the results to more general conti-
guous alternatives are possible.

In Theorem 1.1, we shall give general conditions on {Sx} such that
{gn} will preserve C.-T.L.D. for {Sy} from {pn}. In Section 2, four
applications of Theorem 1.1 are considered. It is proven that for (simple or
signed) linear rank-, U- and L-statistics: (i) {gn} preserves C.-T.L.D. from
{p~} (see Theorems 2.1-2.4) and, consequently, (ii) C.-T.L.D. results hold
under {gn} (see Corollaries 2.1-2.4). The validity of C.-T.L.D. results for
(simple or signed) linear rank- and L-statistics are already known under
general alternatives by the work of Seoh er al. (1985). The results in
Corollaries 2.1, 2.2 and 2.4 of the present paper indicate that under
contiguous alternatives {gn} (here each Xu; is continuous with a density
function f(Xn: — O) satisfying (1.4) and (1.5)), some conditions of Seoh ez
al. (1985) can be relaxed (see Remarks 2.1 and 2.3 for details). C.-T.L.D.
results for U-statistics under the null hypothesis were studied by Malevich
and Abdalimov (1979). The results in Corollary 2.3 extend their results to
contiguous alternatives {gn}.

The results of this paper depend heavily on Lemma 3.6 of Huskova
(1977). An adapted version of that lemma is given by the following

LEMMA 1.1. Let {Yn= Yn(Xn)} be any sequence of statistics. Assume
(1.3)-(1.5). Then for all N= Ny and real k>0 (No is some integer not
depending on k),

(1.6) E| Yn™ < AdEs | Yol ¥}

N _
PROOF. Put By= .1:11 S(Xwni—0x)>0|. Then (1.5) implies that

E\[(Bx)=0, N=1, where I(+) denotes the indicator function. Thus
Ei| Ynl™ = Ei{| Yu|* I(Bw)}. The rest follows from (3.7)-(3.11) of Huskova
(1977).

Let Ay = (Omi — Bu,..., Onv — By). For any statistic Wy (= Wa(Xn)), we
denote
Wyia( = Wrnea(Xn) = Wn(Xn + Ax),
Wn-a= Wxn(X N — An), N = Wn— EWy,
Wila= Wysa— EWnia  and  Willa= Wy-s— EiWn-a, i=0,1.



652 TIEE-JIAN WU

THEOREM 1.1.  Assume (1.3)-(1.5). Furthermore, assume:
1) li}rvrligf Var, Sy > ©* for some ©> 0.

(i1) There exist statistics {Tn( = Tnv(Xn))} such that
(1.7 Pu[ISY — T\ > N 1= O(en), EolSv— Tul* < AIN7¥ |
eventually, and
(1.8)  Pu[|TWs— TH| > N °1=O(en), Varo (Tn+a— Tw)= O(N¥),
where exn = exp (— aN 2‘5) and a > 0 is a constant not depending on N. Then
for {Sx} the sequence {qn} preserves C.-T.L.D. with range C < x < o(N°)
(C<0) from {pn}.

PROOF. Suppose (1.1) is true. It follows from Lemma 1.1, (1.7), and
from Holder’s inequality that for all sufficiently large N,

Ei|Sy— Tn| < Ai{Eo|Sn— Tn|*}* < A1 AN °

and
(1.9) Dni < On[ISy — Tw > (A2 + DN
< Af{PN[|Sy — Twl > (A2 + DN}
< APAISY — TV > N = O(eN?) |
where Dy = On[|SY — TAV| > (42 + A1, + DN °]. Now, put
oho = Varo Sy, D= On[| TV — TAa| > N1,
Dws = On[| THa — S&a) > N %]
and

Hu(x) = On[SM s> (x £ A3t 'N %) om],
where A; = 4; + A1A2 + 3. Note that

D= Pa[| T s — T > N7,
Dwy = PALI TV ~ S¥'| > N™°]

and
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Hi(x)= PSP > (x + As7 'N ) om) .

By Slutsky’s argument and (i) of Theorem 1.1,
3
(1.10) -~ Z Dyi + Hu(x) < On[ S > xom] < Hu(x) + ,«§\ Dni

for all N> N; (N: is an integer not depending on x). By (1.1) and by
Lemma Al of Vandemaele and Veraverbeke (1982), we get Hy(x) =
(D(x))(1 + o(1)) uniformly in C< x < o(N°) (C < 0), which, together with
(1.7)-(1.10) and the fact that ey < en” = (@(x))o(1) uniformly in C < x <
o(N’) (C < 0), leads to

(1.11) On[ Sy > EiSn + x(Varo Sn)'*] = @(x)(1 + o(1))

uniformly in C<x<o(N’) (C<0). By (L.11) and by Lemma Al of
Vandemaele and Veraverbeke (1982), the proof will be concluded if we
show that

[(Var, Sx)™' Var; Sx]2 =1 + O(N %)
By the fact that Var; Sy’ = Varo Sw, we have

[Varl SN - Varo SNl
= |Var, (SY — Si2a) + 2 covi (SI = Sa, SIPa)|
< Dna + 2(Dns Varg SN)1/2 s

where Dys = Ei(SY — SA”4)’. Now, (1.6) implies that for all N = No,

Dns < 3{E1( (1) T1£1”)2 + E( (1) (I)A) + E( (l]A _ S(I_) ) }
< 3{4A\[Eo(Sv— Tw)'T + Eo(Tas — T + 4Eo(Sw— Tw)) .

The proof follows.

Remark 1.2. Note that in Theorem 1.1 we may pick Ty = Sy for all
N = 1. However, if Sy is a sum of dependent r.v.’s, then generally we will
pick 7w such that: (i) It is a sum of independent r.v.’s. (ii) (1.7) is either
already known to be true or can be established. Moreover, in such
situations, (1.8) involves the tail probabilities of sums of independent r.v.’s
with vanishing expectations and, therefore, some standard theorems can be
applied.
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It is easy to see that (1.9)-(1.11) remain true if condition (i) of
Theorem 1.1 is replaced by the following weaker condition:
(i1)  There exist statistics { Ta( = Tn(Xn))} such that

Pu[|SY — T > N1 = Oen),  EolSv—Tnl* = O(N ).
and
Pu[I TR — T >N~ ]_ O(en) ,

where ey is defined in Theorem 1.1.
We therefore immediately have the following

COROLLARY 1.1. Assume (1.3)(1.5) and condition (i1). Further-
more, assume that there exists some {on} such that liAr}ligf on>0 and
Pa[Sn > FoSn + xon] = @(x)(1 + o(1)) uniformly in C < x < o(N*) (C<0).
Then (1.11) remains true if in it (Varo Sx)"* is replaced by on.

COROLLARY 1.2. Assume (1.1), (1.3)-(1.5), condition (1) of Theorem
1.1, and condition (ii)’. Then (1.11) holds true.

2. Applications: Contiguous alternatives which preserve Cramer-type
large deviations for R-, U- and L-statistics

In this section, we give four applications of Theorem 1.1. Let F denote
the c.d.f. associated with /. In the sequel we suppress the index N whenever
it causes no confusion.

Application 1. (Simple linear rank statistics) Let Ry be the rank of
Xni among Xwi,..., Xan. Let ¢ni,..., cvw be constants satisfying

1/3

™M=

(cN,—cN) =1, max leni — x| < AsN~

2.hH N

‘§l (cnvi — (_‘N)3 ‘ = A4N71/2, N=1,

N
where cy= N Zl cni. Let an(1),...,an(N) be scores generated by a non-

constant function @(u), 0 < u < 1, according to either
2.2)  an(i)=@@(/(N+1)) or ay(i)=Ep(UY), 1<isN,

where U\ denotes the i-th order statistic in a sample of size N from the
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uniform (0, 1} distribution, and ¢ satisfies

(2.3) lp(u) — ()] < Asju—v] forall wuve(0,1).

THEOREM 2.1. Assume (1.3)-(1.5) and (2.1)«(2.3). Then for Sy =
N
21 (eni — EN)aN(RN,-)} the sequence {qn} preserves C.-T.L.D. with range
C=<x<o(N")(C<0) from{pn}.

PROOF. Put Ty= Z (ci— C)p(F(X:— 8)), tv=|l¢ — @l]2 (> 0) with
p= f @(u)du. From the proof of the theorem in Kallenberg (1982), we
know (1.7) with =6 ' and (i) of Theorem 1.1 are satisfied. Now, Ty+a —
Ty = ﬁl (ci—¢)Y; with Y;=@(F(X; + 0; - 20)) — p(F(X: — 8)). Note that

(1.5) implies that fis bounded on ( — o0, %) (cf. Lemma [.2.4a of Hajek and
Siddk (1967)). It follows that |Yi] < [|¢'|l«|| fll=|6: — 8], all N=1, i=
1,..., N. Hence, (1.8) is satisfied with §=6"", as a consequence of (1.4),
(2.1) and an application of Theorem 2 of Hoeffding (1963). The proof
follows.

By (the proof of) Theorem 2.1, Corollaries 1.1 and 1.2, and by the
theorem in Kallenberg (1982), we immediately have

COROLLARY 2.1.  Under the conditions and notations of Theorem
2.1, the relation

(2.4) ON[Sn > EiSy + xbx] = B(x)(1 + o(1))

is true uniformly in C <x<o(N" (C = 0) for each of the following three
cases: by = (Var1 Sy)", bv = ||¢ — @ |2 or by = (Varo Sy)'™

Application 2. (Signed linear rank statistics with regression constants)
Let Ry: denote the rank of | Xx| among | Xwi,..., | Xww|. Define sgn (x) = 1
or — I according as x = 0 or < 0. Let d,..., dvv be constants satisfying

N
(2.5) L du=1, max |dw<AN".

THEOREM 2.2. Assume (1.3) and (1.4) with Oy=0 for all N=1,
(L.5), (2.2), (2.3), (2.5), (0 +) =0, and F is symmetric about zero. Then
N

for { Sy = E‘] dian(R¥) sgn (Xwi) | the conclusion of Theorem 2.1 holds.
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N
PROOF. Put Ty= z.l dip(F*(] Xi|)) sgn (X)), where F*(x) = 2F(x) — 1

or 0 according as x>0 or <0. Put txy = ||g||2 (> 0). Using Lemma 4.2 of

Seoh er al. (1985) and arguing as in the proof of Theorem 2.1, we know

(1.7) with 6 =6" and (i) of Theorem .1 are satisfied. Now, Tn+s —
N

ITy= igl dY: with Y; = Q(F*(IXI + 6i)) sgn (X; + ;) - w(F*(IXID) sgn (Xi).

It is easy to see that |Yi| <2|6]||¢'||=l|fll~ for Xi=max (0, — ) or
< min (0, — 8;). From the fact that }1{}1 @(F*(€)) =0, it can be seen that

[ Yil <4{6:]{|¢'ll=ll fil~= for min (0, —6) =< X;<max (0, ~ 8). The proof
follows by arguments analogous to those in Theorem 2.1.

By (the proof of) Theorem 2.2, Corollaries 1.1 and 1.2, and by
Theorem 4.1 of Seoh et al. (1985), we have

COROLLARY 2.2. Under the conditions and notations of Theorem
2.2, (2.4) is true uniformly in C<x<o(N") (C<0) for each of the
following three cases: by = (Var, S, by = ll@ll2 or by = (Varo SN)W.

Remark 2.1. Under contiguous alternatives specified by (1.3)—(1.5),
the results in Corollaries 2.1 and 2.2 indicate that for (simple or signed)
linear rank statistics the assumptions on score functions in Seoh et al.
(1985) can be relaxed (they assumed ||¢”||« < oo, whereas we only assume

(2.3)).

Application 3. (U-statistics) Throughout this application, we assume
that 8y = 0 for all N> 1 in (1.3) and (1.4). Consider the statistics

-1
(2.6) Uyv= ( Z) 2 hA(Xwiy..., Xni), N=m,

I <ins N

where m > 1 is a fixed integer and the kernel function A(xi,..., x,) 1s sym-
metric in its m arguments. We denote g(x) = Eo[A(Xn1,..., Xvm)l X1 = x]
for all real x. We assume that

(2.7) Ech(Xntye.os Xum) = 0, Eogz(XNx) = O’é >0,
(2.8) Eolh(Xni,..., Xam)IP < AFDP” |

and there exists some constant #, > 0 such that

(29) Eolh(XNl + 1, Xnageoos Xm) — h(Xm, Xnay.o.o, XNm)|p
< (l1]" 4"y’
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forallp =1,2,... and |¢| < #5, where r = 0 is a constant not depending on p
(Az may depend on #o), and /= (2 + 2r)(3 + 2r) .

Remark 2.2. Many commonly used kernel functions (examples:
h(x)=x7, g=1,2,...; h(x1,x2) = x1x2; h(x1,x2) = |x1 — x2]; h(x1,x2) =
27 (1 — x2)°) satisfy (2.8) and (2.9) if Es|Xml’, p=1,2...., satisfies a
condition similar to (2.8).

THEOREM 2.3. Assume (1.3) and (1.4) with Oy=0 for all N=1,
(1.5), and (2.7)~(2.9). Then for {Sx=m 'N"’Uy} the sequence {gn} pre-
serves C.-T.L.D. with range C<x<o(N") (C<0) from {pn}, where
a=[23+2r] .

N
PROOF. Put Ty=N""? ;g(X,-), N=m. From the proof of the

theorem in Vandemaele (1983) (see also, Malevich and Abdalimov (1979)),
we know (1.7) with 6 = @ and (i) of Theorem 1.1 is fuifilled (in fact, it was
established that Eo|Sx — Tw|” = O(N?) for any p = | and, consequently,
0g'(Varo Sn)"> = 1 + O(N™'%). Now, by (1.4), (2.9) and by Marcinkiewicz-
Zygmund inequality (cf. Chow and Teicher (1978), p. 356), we get for all
real k =1 and N = N, (N is an integer not depending on k),

N
(2.10) Bl T¥a— TV < N 48k X Eolg(Xi + 6) - g(x)|*
< (Awk" "N
Put k(N) = N*(Ai'e )", Applying Markov’s inequality, we get
(2.11) Pa[| TR~ TV > N "] < e ¥
eventually. Hence (1.8) is satisfied with 6 = a. The proof follows.

From Lemmas 1.(b) and Al of Vandemaele and Veraverbeke (1982),
and from (the proof of) Theorem 2.3 and Corollaries 1.1 and 1.2, we
immediately obtain the following

COROLLARY 2.3.  Under the conditions and notations of Theorem
2.3, (2.4) is true uniformly in C<x<o(N®) (C<0) for each of the

following three cases: by = (Var, Sn)"*, by = 64 or by = (Varo Sn)"2.

Application 4. (L-statistics) Let X\ denote the i-th order statistic
among {Xn;: 1 <j < N}. Consider the statistic
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-1 > (1)
LN: N _21 ZNiXA; s
iz

where zy;’s are real numbers satisfying

= (i-1)/N

N i/N 2
(2.12) _21 [zN,- - N J(u)du] =O0(N™)

with J(u), 0 <u <1, being a non-constant function satisfying ||J”||~ < .
Assume that

213) & =] [ JF) IR Fmin (x.y)) ~ F(x) F()dxdy

>0,
(2.14) sup |Ox] <o and  Eo|Xwmi — On|F < ADPT
N=1

allp=1,2,..., where r = 0 is a constant not depending on p.

THEOREM 2.4. Assume (1.3)~(1.5) and (2.12)~(2.14). Then for {Sy =
\/ﬁ Ly} the conclusion of Theorem 2.3 holds.

PROOF. Put (Ry; was defined in Application 1)

/N

N e .
15 Tv="N Z[°  Jeduxi,

~1)/N

N ,
(2.16) Wy=N'" ZJG/(N+ MNXY =N )A:]l J(Ryi/ (N + 1) Xn: .

Under (2.12)~(2.14), by Lemma 2 and the result lim Varo Sy=0" of

Vandemaele and Veraverbeke ((1982), p. 424) and by arguments similar to
those in deriving (2.11), we know (1.7) with 6 = a and (i) of Theorem 1.1
are fulfilled, and moreover, for all N> N; (an integer not depending on k)
andreal k> 1,

@17 Bl T - WL = BTV - Wi
< XA B Ty - Wl %)% = (A kN7

which can be seen by simple computations and by (1.6). Introduce

pnvi= Rn(N+ 17",
PnNii = EO[pNilXNi]
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=(N+ D)0+ (N-DF(Xni—0v),

N

Vu=N""" Z [J(pwi) + (pai = pra) I (pni) | Xni
N

Vy= i§1 E[Vn| Xn] — (N - D EVy.

By (1.6), (2.14), and by arguments analogous to those in deriving (2.17) and
in deriving Lemmas 3.3-3.5 of Seoh ez al. (1985) (with slight modifications),
we get for all N> Ny and real k> 1,

(2.18) Eo| Wills— PRa)*
< 22kA1[E()I WN _ I}N|4k]1/2 < (Al3k2(1+r)N—l)k ,

N Py
where Py = N~ Z] V.; and
i

219) Vuj=J(p) X+ N+ 1) 2 Bl (u(Xk ~ X)
= F(Xi = 0))J (pre) Xl X)]
= J(p) X+ (N + 1)V =D [ [u(x = X) — Fix = D))
- J(on(x)) xdF(x — 8)

with u(x) = (1 + sgn (x))/2 and vy(x) = (N + 1)"'(1 + (N — 1) F(x — 8)). Using
the fact that || f |- < oo, it is not hard to see that | Py+a;~ Vnj| < A1|6; — 0|
(| X;| + 16, — 8] + 1). Hence, by (1.4), (2.14) and by Marcinkiewicz-
Zygmund inequality, we get Eo| Vs — PV % < (Aisk" N Y for all N>
N, (an integer not depending on k) and real & = I, which, together with
(2.17), (2.18) and arguments similar to those in deriving (2.11), implies (1.8)
is satisfied with 0 = a. The proof follows.

By Theorem 2 of Vandemaele and Veraverbeke (1982), and by (the
proof of) Theorem 2.4 and Corollaries 1.1 and 1.2, we quickly get

COROLLARY 2.4. Under the conditions and notations of Theorem
2.4, (2.4) is true uniformly in C<x<o(N") (C=<0) for each of the
following three cases: by = (Var, Sx)"*, bx = o or by = (Varo Sw)'.

Remark 2.3. Corollary 2.4 can be viewed as an extension of Theorem
2.1 (for L-statistics under contiguous alternatives) of Seoh ez al. (1985)
because they only dealt with the case r = 0 (due to their condition (2.1)). In
fact, it is not possible to deal with the case r >0 by their method (i.e.,
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applying Theorem | of Feller (1943) directly to Vy).
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