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Abstract. Fisher information generally decreases by summarizing ob- 
served data into encoded messages. The present paper studies the amount 
of Fisher information included in independently summarized messages 
from correlated information sources; that is, the amount of Fisher 
information when sequences x N and yN of N independent observations of 
random variables x and y are encoded (summarized) independently of 
each other into messages mx and mr. The problem is to obtain the 
maximal amount of Fisher information when the size of the summarized 
data or Shannon message information is limited. The problem is solved 
in the case of completely compressed symmetric data summarization. An 
achievable bound is given in the general case. Information geometry, 
which is a powerful new differential geometrical method applicable to 
statistics and systems theory, is applied to this problem, proving its 
usefulness in information theory as well. 
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1. Introduction 

Let X and Y be two mutually correlated information sources subject 
to a joint  probabili ty distribution p ( x , y ) .  Let us consider a situation where 
N independent observations x N -- X l ' " X N  are obtained at one location and 
y N =  yl ""yN are obtained at another location, where (xi, yi), i-- 1, 2,..., N, 
are independent pairs of correlated random variables. A usual statistical 
problem is to make a statistical inference concerning the unknown proba-  
bility d i s t r ibu t ion  p ( x , y )  f rom N independent  pairs of  observa t ions  
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(x~,yO ..... (xN, yN). When the possible candidates for probability distribu- 
tions are parameterized by a parameter t, we have a statistical model 
M =  {p (x ,  y; t)}. Statistical estimation is the problem of obtaining the 
estimated value ~ of t based on x N and ),N. The statistical test is the problem 
of deciding whether a hypothesis H0: t = to is acceptable or not, where the 
alternative is H~: t • to. It is known that, when N is large, the performance 
of the asymptotically best estimator or best test is uniquely characterized 
by the amount of Fisher information g(t)  at the true t or t = to. Fisher 
information indeed represents the expected amount of statistical informa- 
tion which is included in observed data ( S ,  yX). 

We are forced, in a multi-terminal situation, to encode or summarize 
N FN x a n d  into messages m x ( x  N) and my( v N) independently and send them 

separately to a common location. When the transmission rates are restrict- 
ed, the amounts of Shannon information included in m x  and m r  are 
compressed. This reduction of Shannon information gives rise to a reduc- 
tion of the amount of Fisher information which is utilized for statistical 
inference. In the present paper we study the amount of Fisher information 
included in the encoded messages m x  and my under the restriction of the 
amounts of Shannon information. This is a typical problem of multi- 
terminal information theory, because the loss of Fisher information is 
caused by encoding x u and y~ separately, instead of encoding the pairs 

N 'V (x ,y' ). 
This problem was proposed by T. Berger, and has recently been 

studied intensively by many researchers. Amari (1986) studied the maxi- 
mum Fisher information in the case of complete data compression. 
Achievable bounds are given by Zhang and Berger (1988) and by Ahlswede 
and Burnashev (1989) in the general case. 

The problem can be studied from another point of view, where we 
evaluate, instead of Fisher information, the asymptotic power exponent of 
a test H0: t = to against an alternative Hi: t = tl. Ahlswede and Csiszfir 
(1986) gave an achievable bound. Han (1987) gave an improved bound and 
obtained the optimal power exponent in the case of complete data compres- 
sion. Amari and Han (1989) applied a new differential geometrical method 
called information geometry (Amari (1985, 1987a, 1987b)). They not only 
elucidated the geometrical structure of the present problem but also gave 
an explicit solution in the symmetric complete data compression case. 

The present paper explains how the differential geometrical notions 
are connected with Fisher information. By using the geometrical method, 
we give the maximum amount of Fisher information included in sym- 
metrically encoded, completely compressed data. A good achievable bound 
in the general case is also given by this approach. 

This paper elucidates the intrinsic structure of the present problem 
from the geometrical point of view. It also demonstrates that the new 
geometrical method, which has already been proven to be important in 
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statistics (Amari  (1982a, 1982b, 1985, 1987a, 1987b), Nagaoka  and Amari  
(1982), Amari  and K u m o n  (1983), K u m o n  and Amari  (1983), etc.) is useful 
in informat ion theory, too (see also Campbell  (1985)). 

2. Statement of the problem 

2.1 Statistical model 
Let X and Y be two mutually correlated informat ion sources with 

finite alphabets  Ax = {0, 1,. . . ,n} and A r  = {0, l , . . . ,  m}, respectively. Let x 
and y be r andom variables taking values on Ax and At ,  respectively. Then, 
the joint  probability distr ibution of (x, y) is specified by a matrix P = (Pu), 

p o = P r o b { x = i , y = j } ,  i = O, 1, . . . ,n;  j =  O, l , . . . ,m  . 

A pair of the correlated informat ion sources (X, Y) is characterized by this 
matrix. 

Let Sxr be the set of all the pairs of informat ion  sources, or their joint  
probability distributions which characterize the pairs, 

Sxv= {PII  >p,~ > O, Y~p~j = 1}. 

The set Sxr is an open simplex in an {(n + l)(m + 1 ) -1}-d imens iona l  
Euclidean space, because ~ p ¢  = I holds. We exclude distributions P whose 
entries po include 0. Let (x~,y~),(x2,y2),...,(xu, yN) be N pairs of letters, 
which are independently emitted f rom a pair of fixed correlated informa- 
t ion sources. The sequences of letters are abbreviated as 

N N 
X ~--- X l X 2 " " X N ,  y = y l y 2 " ' ' y N .  

Statisticians are interested in estimating, or testing, the true joint  distribu- 
t ion P f rom which the da ta  (x N, yN) are produced.  To this end, a statistical 
model  

M = {P(t)}, P ~ Sxr 

is sometimes assumed, which is a parameterized family of probabili ty 
distributions.  When t is a scalar parameter ,  M forms a curve in Sxr. When 
the true distr ibut ion P belongs to M, it is specified by the value of the 
parameter  t. Hence, an est imator ? of t is used for estimating the proba- 
bility distribution, P = P(i).  In the case of a test, a hypothesis of the form 
H0: P = P(to) is tested against the alternative H~: P ~ P(to). 

A statistical model  M may be higher-dimensional,  where the para- 
meter  t is a vector. It can be identical even with Sxr itself, if we 
parameterize Sxr by an (nm + n + m)-dimensional  parameter,  say t = (Po; 
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i ~  0 or j ~ 0), because p00 is calculated f rom the others. However,  we 
mainly treat the scalar parameter  case for the sake of simplicity of 
presentation. The vector parameter  case is studied in a quite similar 
manner,  so that  we state only results. 

2.2 Fisher information 
Let us denote a probability distribution P by 

(2.1) p(x ,  y) = Z p~i~i(X)C~j(y) , 

where a , (x)= 1 when x = i and cS~(x)= 0 when x # i. Given a statistical 
model  M = {P(t)}, let us put 

(2.2) l(x, y; t) = log p(x ,  y; t ) .  

Then, the Fisher information g(t) at point  P(t) is given by 

(2.3) g(t) -- E[{i(x,y;  t)}2], 

where . . . . .  implies d /d t  and E denotes the expectat ion with respect to 
p(x ,y ;  t), i.e., 

E[a(x,y)] =]~p(x,y;t)a(x,y). 
x , y  

The Fisher information,  when N independent  repeated observations 
(x N, yN) are available, is given by using the probability distribution 

N 
p (x N, yN; t) = i~1 p (x,, y~; t ) .  

The result is just N times the Fisher informat ion g(t) in one observation, 
showing additivity of Fisher information.  

L e t f a n d  h be mappings,  or encoders, f :  X N --" Mx,  h: yN ~ Mr.  That 
is, mx = f ( x  N) and mr  = h(yN), mx  ~ Mx,  mr  ~ Mr,  are encoded messages 
of x N and yN, respectively. One may say that  data  x N and yN are compres-  
sed and encoded into the messages mx and mr, respectively. The joint  
probability distr ibution p(mx ,  mr;t)  of mx and mr, when the original 
distr ibution is given by p(x ,  y; t), is easily calculated by using the funct ions 
)c and h. The amount  of Fisher informat ion per letter which the encoded 
data  (rex, mr) carry, is then defined by 

(2.4) gM(t)= l°gp(mx'mr;t) ] 
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It is easy to prove 

(2.5) g(t) >_ gM(0. 

Fisher information g(t) in the vector parameter case, is a matrix whose 
(i,j) entry is given by 

(2.6) /] g~(t) = E Ot------ i- ~ l(x, y; t) , 

where t = (t~,..., t r) is the parameter. 
Fisher information represents the amount  of statistical information 

which observed data are expected to carry. It plays a fundamental  role in 
the asymptotic theory of statistical inference (Amari  (1985)), as is shown in 
the following theorems, which hold under some mild regularity conditions. 
Let f = ~(mx, mr) be an unbiased estimator based on messages mx and mr. 
Here, an estimator is said to be unbiased, when Elf ]  -- t holds for any t. 

THEOREM 2.1. The mean square error o f  an unbiased estimator is 
bounded by 

(2.7) N-1E[( t  - t) 2] > g~(t)-1 . 

The equality holds asymptotically (i.e., for  large N ) f o r  the maximum 
likelihood estimator ?m.Le. (which is asymptotically unbiased). 

Let us consider the problem of testing hypothesis H0: t = to against 
Hi: t # to. The power function usually approaches 1 as N tends to infinity. 
To evaluate the power of the test more accurately, we put 

U 
(2.8) tu = to + ~ , 

and study the power at tu, which is very close to to when N is large. The 
power function in a neighborhood of to is then defined by 

Ps(u) = Prob {H0 is rejected, when the true distribution is P(t~)}, 

where N denotes the number of observations. The function 

( 2 . 9 )  P(u) = lira PN(U) 
N - ~  

is said to be the (first-order) asymptotic power function. 
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The significance level a of a test is the probability that Ho is erroneous- 
ly rejected when the true probability is to. A level a test satisfies 

P(0) ~ a .  

Among all the level a tests, a test is said to be asymptotically uniformly 
most powerful, or efficient, when its asymptotic power function satisfies 

P(u)  > P(u)  

at all u compared with the power function fi(u) of any level a test. We 
search for the efficient test based on the encoded messages. The following 
theorem shows that Fisher information gM represents the characteristic of 
the efficient test. 

THEOREM 2.2. The asymptotic power function o f  the efficient test is 
given by 

(2.1o) t ' (u)  =  (uj -- x#g  u) 

in the one-sided case and 

(2.11) P ( u )  = (/)(/,/2 - V~MU) ~- ~)(U2 -}- ~ M U )  

in the two-sided case, where gM = gM(to) is Fisher information at to, ul is 
the one-sided 100a% point  (u2 is the two-sided 100a% point) o f  the unit 
normal distribution, and q~(t) is 

s: I ' l l  ~(t)  = (2re) -1/2 exp - - ~ u  du .  

The above two theorems show that Fisher information g~a represents 
the amount  of statistical information involved in the encoded messages mx 
and mr. The characteristics of the best statistical inference is determined by 
Fisher information gM, at least locally (a geometrical theory of the global 
testing problem is studied in Amari and Han (1989)). 

2.3 Restriction o f  Shannon inJormation 
Let us consider the following situation where X N and yN are encoded 

into messages mx=f(xX), mr=h(yN), and the cardinalities ]Mxj and 
I MYI of the message signals are bounded above by 2 xR" and 2 NR', respec- 
tively. In other words, data  x u and yN are compressed into mx and my, 
whose transmission rates are Ra- bits and Ry bits per letter, respectively. 
This can be rewritten as 



FISHER INFORMATION AND SHANNON INFORMATION 629 

1 I(xN: Mx) <- Rx, 1 (2.12) -~ -~ I( yN: My) <_ Ry , 

where I is the Shannon  mutual  information.  

Problem. To find the (asymptotic) m a x i m u m  amoun t  of Fisher 
informat ion 

(2.13) gM(t; Rx, Ry) = lim sup gM(t) 
N ~ o o  

where the sup remum is taken over all the encoders satisfying the rate 
constraint  (2.12) of Shannon  information.  

When the cardinalities satisfy 

(2.14) log q Mx] = O(log N), log [M~,I -- O(log N ) ,  

we have lim Rx = lim Rr = 0. This special case is called the complete  data  
N - o o  N ~ o o  

compression.  We mainly treat this case in this paper. 

3. Geometrical preliminaries 

3.1 Tangent space and dual bases 
We present here differential geometry of the set of all the probabil i ty 

distributions on a fixed (finite) number  of atoms. Its global characteristics 
are shown in Amari  and Han  (1989). This is a special example  of 
" in format ion  geometry",  which is constructed upon  differential geometry 
of a general family of probabil i ty distr ibutions (Amari  (1985, 1987a)). It 
gives a powerful  new method  for s tudying statistics, systems theory, 
informat ion theory, etc. 

Let x be a r andom variable taking on a finite number  of values 
{0, 1,..., n}. A probability distr ibution is written as 

tl 

(3.1) p(x) = i~_o pifi(x), pi > O, 

where pi = Prob  {x -- i} = p(i). The set S, of all these probabili ty distribu- 
tions forms an open n-simplex. We introduce two special coordinate 
systems 0 =  ~ 2 (0 , 0 ,..., 0 ) and q = (r/l, t/2,..., t/,) to specify points in S,. The 
coordinate system r/is simply given by 

(3.2) tli= pi, i = 1,2,.. . ,  n ,  
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i.e., we use the last n elements of (po,...,p,), where po is determined from 

(3.3) p0(q )  : 1 - ~ p z :  1 - x q i .  
i=1 

Here, p0 is regarded as a function of ~/. 
The other coordinate system 0 is defined by 

(3.4) 0 i = log ( p i / p o ) ,  i = 1 , . . . ,  n . 

Conversely, the probabilities are given by 

pi(O) = p o  e x p  (o i )  , 

po(O) : { l  + ]~ e x p  ( 0 / ) }  -~ . 

The probability distribution specified by 0 is written as 

n 

p ( x ,  O) ---- i~=o pi(O)(~i(X) . 

It is known that S,, is an exponential family, and 0 is called the 
canonical parameter (coordinate system) of S,,, and r/is called the expecta- 
tion parameter (coordinate system) of S , .  

Let Te be the tangent space at point P of Sn. It is an n-dimensional 
vector space spanned by n vectors {el, e2,..., en}, where ei is the tangent 
vector along the coordinate curve 0;; i.e., it represents the direction in 
which 0 ~ increases but all the other 0 j are fixed. Mathematicians traditional- 
ly denote this tangent vector e~ by 

Oi = 0 / 0 0  i . 

Any vector A ~ Te is written by its linear combination, 

A = ~, A i e i .  

Let us consider the following random variable (a function of x) 

(3.5)  
0 

Od(x ,  0) -- -~ -  log p(x, 0) ,  

defined at point P =  ( p ( x , O ) ) .  This represents how the log probability 
changes as 0 changes in the direction of the coordinate curve 0 i. Since Oil's 
(i = 1,..., n) are linearly independent, we can identify the tangent space Te 
with the vector space spanned by the n random variables Oil. Then Oil is 



FISHER INFORMATION AND SHANNON INFORMATION 631 

regarded as the r andom variable representat ion of the tangent  vector ei. 
Any tangent vector A = Y, Aiei can be represented by a r andom variable 

A ( x )  -- E AiOi l (x ,  O) 

and vice versa. The basis vector Oil is explicitly given by 

(3.6) ei = Od(x, O) = 6i(x) - pi . 

Let e *i be the tangent  vector along the coordinate  curve r/i of the r/- 
system. Then,  {e*l,..., e *n} forms another  basis of Te. Its r a n d o m  variable 
representat ion is given by Oil(x, r/), where O i=  0/0r/i. Therefore,  

~i(x) &(x) 
(3.7) e *i = (O/Orli) log p(x ,  rl) 

rli po 

Let us introduce an inner product  in Te by the usual way, 

(3.8) (A, B) = E [ A  (x )B(x)] ,  

where A ( x )  and B(x)  are the r andom variable representations of A e Tp 
and B e Te, respectively. Then,  the matrix g -- (go) defined by 

(3.9) gu = (e;, ej) = E[&lOfl] 

is called the metric tensor. Since this is the Fisher in format ion  matr ix,  it is 
called the Fisher metric. The inner product  of two vectors is writ ten by the 
bilinear form 

(A,  B) = Y, goAiB j, A = Z, i A ei, B = E Biei 

by using their components  A i and B j. The metric tensor g,2 is calculated as 

(3.10) go(O) = pi(O)(~O -- pi(O)pj(O) , 

where ~u is the Kronecker delta (i.e., the unit  matrix). 
The metric tensor g~ in the basis {e *i} is defined by 

1 (3.11) gij(q) = ( e . i , e , j ) =  E[OilOJl]_ 1 2 _  - g o + -  
pdrl) po(q) " 

Let M =  {p(x ,  t)} be a statistical model. Since p (x)  e Sn is parameteriz- 
ed by 0 or r / in the whole Sn, the model  is represented by the curve 
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O=O(t) or q=q( t )  

in the respective coordinate systems. The tangent vector et of the model  
curve M is given by 

d 
e, = -~t l(x, t) , 

where l(x, t) = logp(x ,  O(t)) = logp (x ,  r/(t)). It is rewritten as 

e, = E Oi(t) ei = E Oi(t) e*' ,  

where . . . . .  denotes d/dt .  The Fisher informat ion g(t) of the model  is the 
magni tude of the tangent vector. 

(3.12) g(t) = E [ { / ( x ,  t)} 2] -- (e, ,  e , )  -- Zg~OiO; = Eg°OiOj. 

We now study the dualistic properties of the manifold &, which can 
be unders tood  f rom the general theory of informat ion geometry (Amari  
(1985)). The following is a consequence of the e- and m-flatness of Sn. 

THEOREM 3.1. 
reciprocal systems: 

The two bases {el} and {e *i } are mutually dual or 

(3.13) (ei, e *j) - c~/ . 

The Fisher matrix  (gO) is the inverse o f  (g~), and the two bases are related 
by 

(3.14) ei = ]~gile *j, e *~= Y.g°ei.  

PROOF. We give here a direct proof. For  i ~ j ,  calculations give 

@6 e *j) = E[OilOJl] 

= E[  {(~i(x)-pi}  { l ( ~ j ( x ) - l ( ~ o ( X )  } ] = O ,  

and (ei, e *i) = 1, proving (3.13). By multiplying gjk with both sides of (3.13) 
and summing up with respect to j, we have 
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which together with (3.9) proves (3.14). It is easy to prove that (gjk) is the 
inverse of (gj~). 

We give some results from the general theory given by Nagaoka and 
Amari (1982) (see also Amari (1985)). This theory guarantees that there 
exist two potential functions tu(0) and 9@/) such that the metric tensors are 
given by their second derivatives. We have indeed 

(3.15) ~,(0) = - log p0(O), 

which is the logarithm of the cumutant generating function, and 

(3.16) ~o(r/) = - H(q)= ~ pi(tl)logp~(~/) 
i = 0  

which is the negentropy. The metric tensors are given by 

g o  = gO = , (3.17) 

where 

Oi = 0 / 0 0  i, 0 i =  O / O~]i . 

The coordinate transformation between 0 and q is given by 

(3.18) 0 ~ = O'9~(q), qi = Oi~u(O). 

This is a Legendre transformation, and 

(3.19) ~11(0) + ~O(?]) -- ~ oi?]i = 0 

holds. 
We can introduce two mutually dual affine connections, the e- and 

m-connections. The manifold S, is flat with respect to these connections, 
although it is curved with respect to the Riemannian connection. There 
exists an invariant divergence function in such a dually flat manifold; the 
divergence function reduces in the present case to the Kullback-Leibler 
divergence 

(3.20) D(P1, P2) = Y~p~, log pli P~ = (p,,), P2 = (p2i) 
p2i 

and the generalized Pythagorian theorem holds in S, (see Nagaoka and 
Amari (1982), Amari (1985), Amari and Han (1989)). This plays a funda- 
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mental role in the global theory of hypothesis testing in the multi-terminal 
information-restricted situation. It suffices to note that the divergence 
reduces to the square of the Riemannian metric in the present local case, 

1 1 , 
(3.21) D( P, P + dP )  = -~  X godOidO ~= T [[dO 11-, 

where the coordinates of P and P + d P  are 0 and 0 + dO, respectively. 

3.2 Projection 
It is useful to divide the base {ei} = 

{el,..., ek; ek+ 1,..., e,}. We use indices a, b, c 
{ei,...,e~} into two parts, say 
to denote the former part, {e~}, 

a = 1,2,. . . ,k; and we use indices K, 2, /~ to denote the latter part {eK}, 
x = k + 1,..., n. The dual base {e*i}, i = 1,..., n; is also divided into two 
parts, {e *i} = {e*~; e *K }. The Fisher metric go is accordingly partitioned as 

(3.22) 

where 

gab ga~ ] 
go" = 

gab g;~ 

gab = (e~, eb), g~  = (ea, e~) , 

gab = (e~, eb), g~ = (e~, eK) 

are partitioned minor matrices. Similarly, we have 

(3.23) g,S= gab ga~ " 

It is useful to adopt the mixed base {e~; e *~ } or 

{el, e2,..., ek; e'k+1,..., e*"} . 

Let T1 be the subspace spanned by {ca} = {el, . . . ,ek}, and let T2 be the 
subspace spanned by {e*~}={e*k+l,...,e*n}. Then, 7"i and T2 are the 
orthogonal complements of each other at every point of S,, and the tangent 
space Tp is decomposed into the orthogonal direct sum, 

Tp= T 1 G  T2. 

Let us decompose the tangent vector et = ](x, t) of the statistical model 
into the sum of its /'i- and T2-parts. To this end, we define two matrices 
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@ab) and ( ~ )  which are the inverses of the minor matrices (gab) and (g~), 
respectively. It should be noted that @ab) is different from the (gab) which is 
the minor matrix of the entire inverse (gO) of (go), and (~z) is different 
from (g~). 

LEMMA 3.1. Let 

X = y~Xaea + ~ X X e ~  = ~ ,Xae  *a + ~ , X x e  *K 

be the representations o f  a vector X in the basis {ei} = {ea; e~} and {e *i} = 
{e'a; e'K}. Then, its mixed representation in the basis {ea; e *~} is given by 

(3.24) X =  Y~(Y~X~,Qb)eb + E ( Y ~ X ~ x ~ ) e  *~ . 

The square o f  the magnitude o f  X is decomposed as 

IlXll 2 -- Z XaXbg  ab -[- Z XhX2gK2 . (3.25) 

PROOF. We put 

X = Z ybeb + Z Yae *a . 

By taking the inner product of X and ea, we have 

(ea, X )  = Y~ yb(ea, eb) = Y, ybg~b , 

because of (ea, e *a) = O. On the other hand, because of (ea, e *b) = fib, we 
have 

Therefore, we have 

Similarly, we have 

(ea, X}  = X , .  

yb = Z Xag ab . 

y~ -_ £ x ~ £ ~ .  

The orthogonality of T1 and T2 yields 

flXll 2 = Z Yaybgab + Y~ Y~Y~g~, 

proving (3.25). 
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In the case of the tangent vector 

et = ~ 0aea + Y~ 0~e~ - = X 0ae *a + ~ 0~.e *~ ' 

the decomposition yields 

z 0 / .  - -  ,, ~ t t  (3.26) e, Z ( Z O ~ , ~ ° ) e b  + Z ( Z  gxK)e . 

Hence, the Fisher information is decomposed into the sum 

(3.27) g(t)  = 20~Obff, ~b + 2 (t ~O'x-g~,~. 

3.3 Mul t i - t e rmina l  source 
We now return to the multi-terminal situation. The manifold S x r  of all 

the probability distributions is identical with Sm,+m+,, if we renumber the 
pairs ( x , y )  from 0 to m n  + m + n. However, taking the multi-terminal 
situation into account, it is better to use the following 1//- and 0-coordinate 
systems. The 1/coordinates are defined in this case by 

~ xr 
rl= (tl ,qf; t lo ), i =  1 ... .  ,n; j =  1 , . . . , m ,  

where 

m 
x r/i =pi. =j= p~ = Prob {x = i}, 

r ~] = Prob { y = j }  ~lJ = P4 = i=oPiJ 

~l x r  = p~ • 

Obviously, the first part (qi ~, q f )  represents the marginal distributions of P, 
while I/xr is partly responsibl e for their correlations. 

The 0-coordinates 0 = (Ox, ur, uxrj  are defined by 

0~ = log (p,o/poo),  

0) = log (poj/poo) , 

O~r = log (pijpoo/piopoj) . 

Then, we can prove that the basis 

* i  * j  * ~  
e x ,  e r  ; e x y J  

which are the tangent vectors of the coordinate curves of ~/, and the basis 
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{eX, ef; ezjXr } 

which are the tangent vectors of the coordinate curves of 0, are mutually 
dual or reciprocal. 

The mixed coordinate system 

{r/Y, r/7; 

is adequate for the analysis of the multi-terminal situation. The first two, 
i.e., r/x, r/f, represent the marginal distributions, while the last, 0~r, 
represents the purely correlational properties. When 0~y= 0, the two 
random variables x and y are independent. The mixed coordinate system 
has nice global properties given in Amari and Han (1989). 

Let us consider a small change of probability distribution from P to 
P + dP. It is represented by a vector 

" ~ .  X Y  •ij d log P = Y. dr/Xe *i + ~, drlfe *J + z, ar/ij exr 

in terms of the r/-coordinate system. The directions in which the marginal 
distributions do not change (i.e., dr/x = d r / f=  0) but the correlations 

_,0 Dually to this, the change are hence represented by the vectors ext. 
directions in which the correlations do not change (i.e., dO~r = 0) but the 
marginal distributions do change are represented by the vectors e x and el. 
The subspace ..Tl spanned by {eX, ef} is orthogonal to the subspace T2 
spanned by {e*~-}. The subspace T, represents the directions in which only 
the marginal distributions change, and the subspace T2 represents the 
directions in which only the correlations change. In this sense, it is very 
convenient for investigating the intrinsic structure of correlations to use the 
mixed basis 

{eft e Y" , i j  , .i , e x y J  . 

We denote the {eX, ef} part by {ea}, and the {e*~} part by {e'K}. Then, the 
decomposition (3.26) of the tangent vector of the model M, as well as the 
decomposition (3.27) of the Fisher information, holds without any change. 

4. Statistical preliminaries 

4.1 Loss o f i n  formation 
Given a statistical model M = {p(x, t)} in Sn, the Fisher information 

g(t) is the squared norm of the tangent vector e, or l(x,t). When x is 
encoded in m by a function 

m = f ( x )  , 



638 SHUN-ICHI AMARI 

the Fisher information gM(t) carried by the statistic or message m is, in 
general, smaller than g(t) because of the data compression. Its amount  is 
calculated f rom the probability distribution pM(m, t) for m: 

or its logari thm 

pM(m,t) = Z p(x,t)  , 
~:m(x)=m 

lM(m, t) = log pM(m, t) . 

Let de" be the a-algebra generated by the r andom variable m(x), i.e., 
the set of all the random variables which are functions of m. Then, the 
condit ional  expectation of a r andom variable r(x) condit ioned on m is a 
function of m defined by 

(4.1) E[r(x) lm] = ~ r(x)p(x[m), 

where p(xJm) is the condit ional  probabili ty of x given m. This is the 
projection of r(x) to ~¢'.. A simple calculation verifies 

(4.2) lM(m, t) -- E[l(x, t ) lm] .  

Its squared norm I[iMII 2 is the expectation of ]~. 

Fisher inJormation g(t)= 1[~112 is decomposed into THEOREM 4.1. 
the sum 

where 

g( t )  : 111112 : II;MII 2 + I l l -  iMII 2 , 

g~t(t)  = II/MII z =  I I E [ i l m ] l l  2 

represents the amount of  Fisher information carried by the encoded 
message, and the latter is the amount of  loss of  information. 

4.2 Repeated observations and asymptotics 
Let X N -  X l ' " X N  be N independent  r andom variables subject to the 

same probabili ty distribution p(x, 0). Then, their joint  probabil i ty is given 
by 

N 
(4.3) pN(xN; O) = N_~p(xs, 0) ,  
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so that its logarithm is 

N 

( 4 . 4 )  IN(xN; O) = s~=l l(Xs, O) 

= Z O % ( x s ) -  = 
s=l i=1 

tl 

N ,~, {O'~i - ~,(0)}, 

where 

1 N 
(4.5) .,~i = ~ - ~ ,  5,(xs) 

is the relative frequency that the letter i is observed (i.e., x - - i )  in N 
observations x u. The vector £ = (Y,,..., £n) is called, in information theory, 
the type of  the observed sequence x u. Equation (4.4) shows that the 
probability distribution of x N depends only on the type vector ~. This 
implies, in terms of statistics, that Y is a sufficient statistic and that all 
Fisher information is included in ~. 

It is known that the geometrical structure of the manifold S, is the 
same as that of  the manifold based on N sequence x N, except that the 
Fisher information or metric is enlarged N times in the latter space. 
However, the probability distribution of the random variable Oilu(£, O) has 
a simple asymptotic form in the latter case, because the central limit 
theorem can be applied. 

We use the normalized tangent vector e N 

1 
(4.6) eY - ~ OdN(x N, O) 

in the case of N sequences X N. Then, its squared norm gives the Fisher 
information go per letter, 

go(O) N N = (ei , ej } = (el, ej} ,  

which is exactly equal to the Fisher information of a single letter. The 
normalized basis vector can be explicitly written from (4.4) as 

(4.7) eY = x / ~  (2i - p i )  doj .2,. 

It is easy to prove that 

E[2,] = 0, E[2,Yj] = go(O) .  
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Because of the central limit theorem, the vector 

(4.8) 2 = (2,,..., Y,) 

is (asymptotically) subject to the multivariate 
mean 0 and covariance matrix g = (g~). 

The dual basis 

normal distribution with 

1 oi (4.9) e~' - X/~ log p ( x  N, 11) 

can be written as 

(4.10) e*' = E g°e7 = E g % .  

The tangent vector of a statistical model M =  { p ( x N ,  t)}  based on N 
observations is given by 

N • Oi2i et 

when the model is specified by 0 = O(t).  

Let us consider the multi-terminal situation S x r  based on N observa- 
tions. The tangent vectors are given by 

ei = 2i = - pi. ) , 

Y x / f f ( 5  ej )~/ = - p.j ) , 

XY 1 N 
eo = g' i ,-  V@- s'-~-I ( a i ( X s ) a j ( y s )  - - p i j )  

= p o ) ,  

where we neglected the suffix N. The term 

1 N 

represents the relative frequency of jointly occurring x = i and y = j .  The 
quantity ~ = (if0) is called the joint type. 

The triplet (2,)7, k )  is jointly asymptotically normally distributed. The 
• *i  *j  *~J dual basis vectors e x ,  e r ,  e x r  are defined similarly, and are also normally 

distributed. 
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5. Fisher information under complete data compression 

We study the case where two sequences X N and yN are summarized or 
encoded separately into the respective type vectors E and f. Since the 
cardinalities of the sets of the type vectors are 

[ R I ~ ( N + I )  ~+', I Y I ~ ( N + I )  m+' , 

when these type vectors are used as messages to be sent, 

I(xN: Mx) = O(log N),  I( yN Mr) = O(log N ) .  

Therefore, this is a typical example of complete data compression. Let 
gm(t) be the Fisher information included in the compressed data Y and y. 
This is called the marginal Fisher information, because it represents the 
Fisher information included in the marginal data Y and ~. 

It is easy to show that any symmetric function f ( x  N) of Xl,..., XN can 
be expressed as a function of 2. Therefore, 

gm(t) >-- g (t) 

holds for any symmetric encoding with complete data compression. 
The marginal Fisher information gm(t) is given by 

(5.1) gm(0 = E[ / IX,  y]II 2 • 

When the number N of observations is large, the random variables ], 2i, 
and ~ are all asymptotically jointly normally distributed. The following 
lemma gives us a good means of calculating gin(t) in the asymptotic 
situation. 

LEMMA 5.1. Let s, tl,. . . ,  tk be joint ly  normal random variables with 
zero means. Then, the conditional expectation o f  s condit ioned on ti is 
given by a linear combination o f  h, 

(5.2) E[s l  t l , . . . ,  = I ;  citi .  

The conditional expectation in this normally distributed case is given 
by the projection of s to the linear subspace spanned by tl,..., tk. We note 
that ], Yi, 3~ and wu are asymptotically jointly normally distributed and are 
tangent vectors of Te. Let Tm be the subspace spanned by e x=)?i and 
e l =  yj, which we call the marginal subspace. Let Tc be the subspace 

*~ ~~ 
spanned by exr = w , which we call the correlational subspace. Then, the 
tangent space Tp is decomposed into the orthogonal sum, 
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(5.3) Te-- Tm G T,.. 

The score function ](x N, yU; t) ~ Tp is decomposed as 

(5.4) l =  E[ilTm] + E[]I To], 

where ],~= E[]ITm] is the projection of ] to Tm and is given by the 
condit ional  expectation. We have f rom (3.24) 

lm= E['l[ Tm] : ]~(]~il,g, ab)eb , 

],. = E[/] T,] = Z(ZO~g,;.~)e *~ , 

where R o m a n  indices a, b, etc. stand for the indices of the basis vectors 
{eft, el}  of the marginal  subspace Tin, and the Greek indices K,/l, etc. stand 
for the indices of the basis vectors {e*~} of the correlational subspace. The 
relations (3.27) or Theorem 4.1 give the main theorem. 

THEOREM 5.1. The maximal Fisher information under symmetric 
complete data compression is given by 

(5.5) gin(t) = y~ i~aObg ab 

and the loss o f  Fisher information is given by 

(5.6) gc(t) = ~ O~O~g,~. 

The asymptotically best est imator ~ based on Y and f is obtained by 
solving the projected likelihood equat ion 

(5.7) im(X,y; t) = E[I ITm] - O. 

In order to study the characteristic of ~, we put 

(5.8) O~ = 2~,"~'0~, 
(5.9) ~= t + ~, 

where t is the true parameter.  Then, the likelihood equat ion is rewritten as 

im : E Oa(l ~- ~)[-~a  - -  ~a(t ~- ~ ) ]  , 

where Y~ represents (Z-,~). By expanding this and neglecting the higher 
order terms, the error e is obtained with Y. = (Yi, ~-) as 
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= ( l / , ~ ) g ; . ~  T_,(~°~a). 
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They are given by 

6. Composition of the best estimator f from partial data 

Let us consider the best est imator ~'x based only on E. It is obtained 
f rom the marginal model, and so is the best estimator iy based only on f .  
Let gx and gy be Fisher information of the marginal models {px(x; t)} and 
{pr(y;  t)}, respectively, 

px(x; t) = Z p ( x , y ;  t ) ,  
Y 

pr (y ;  t) -- ~ p ( x , y ;  t).  

gx(t) = Ilixll z, gr(t) = 112YII 2 , 

where /x  = logpx  and lr = logpr .  The Fisher information included in E ( ? )  
only is given by gx (gr). It is easy to show 

(6.1) ix-- E[ i l~] ,  iy-- E [ i lY] .  

The estimators tx and Fy are the maximum likelihood estimators of the 
marginal models, and their errors ex and er 

(6.2) 

are written as 

(6.3) 

where 

~x = t + ex, tr = t + er 

~ ° 

v/Nex = g~" ]~ Oxxi, V~e~" = g{l ~ O~yj, 

gm = £ Oa oa = Z 0o0~ ~, °~ . 

The mean square error of the estimator f is easily calculated as 

Ilell 2 = U lgml, 

proving that ~' is indeed the best estimator satisfying the Cram6r-Rao 
bound. 
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are the 0-coordinates of the marginal models. The matrix g~ (gJ~) is the 
inverse of the minor matrix 

, \  Y 

Although ix and iv are the best estimators based on 2 only and ~- only, 
respectively, their combination does not give the best one, i, based on both 
2 and Y- This implies some information is lost by separately summarizing 2 
and y into the best estimators ix and it, respectively. 

It should be noted that 2 and ix have the same amount of Fisher 
information. Hence, the lost information is included in some asymptotical- 
ly ancillary statistic. 

We first show the best estimator {obtained from ix and it. Let c(t) be 
the correlation of ~y and/r ,  

(6.4) c(t) E[)x(X;t),lr(.V;t)]. 

Let G be a 2 × 2 matrix 

(6.5) 

(6.6) 

We define ax and ar by 

THEOREM 6.1. 
weighted sum, 

(6.7) 

where 

[ gx c ] 
G = 

c gr 

[ax]z. 
ar gr 

The best estimator obtained from ix and ir is their 

i = (axgxix + argrir)/(axgx + argr) , 

(6.8) gs=axgx+argr=[gx 'gr]G 1[ gx ]gr 

is the amount of Fisher injormation included in (Fx, Fr). 

The proof is not difficult and is omitted. It is also not difficult to 
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prove 

g s  <-- grn . 

This is because ]m cannot in general be represented by a linear combination 
of ,tx and it. However,  in the binary case where n = m = 1, i.e., x and y 
takes on {0, 1}, Tm is two-dimensional, and is spanned by ]x and ,tr. Hence, 
gives ~ and g~=gm in this case. This shows that it is inadequate to 
summarize the data 2 and f into ~x and ix. 

We have another method of data summarization, which causes no loss 
of information. Let us rewrite im = ~0"2o by decomposing e~ into the 2 
part and f part explicitly. We then have 

(6.9) ]m= lx + l r ,  

where 

(6.10) l x =  ~ O~-Yi, 7r= Z 0~yj. 

Here, Oj~ can be written as 

y 
= L gxY l ' ] k  , 

etc., where 

- m j  ~,~yk 
g Y x  

is the parti t ioned form of the inverse ffab of gab. We call 7x and 7y the quasi 
marginal likelihoods. 

The quasi marginal likelihood equations 

(6.11) "[x(E, Tx)=O, 7r(.F, ~'r) = 0 

give two estimators ~'x and ?y which are determined from E only and y only, 
respectively. 

THEOREM 6.2. The two estimators "ix and Tr together include the full 
amount g,~ o f  Fisher information. The efficient estimator Z is reconstructed 
from them by 

(6.12) ~ = (gxTx + grTr)/g,,, , 
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where 

(6.13) gx---~ ~[[ ~ t  .X ~ . o,m  , Z o}0] 

PROOF. It is easy to prove that the respective errors, defined by 

(6.14) 

are asymptotically written as 

(6.15) 

and 

(6.16) g~=~x+ ~; 

hold. The result (6.12) is easily obtained from the relations ( 6 . 1 3 ) -  (6.16). 
Since the variance of ~ is asymptotically equal to gm t, they together include 
an amount  gm of Fisher information. 

It should be noted that II~xll 2 ~ II~xll 2, so that i'x and 7r are worse than 
fx and f~., respectively. However, they together include more information 
than ix and h, do. This is included in the statistics fx - 7x and ?r - 7r, which 
are asymptotically ancillary, including no Fisher information by them- 
selves. However, they include conditional Fisher information conditioned 
on fx and iv. 

It is obvious that we can construct many efficient tests, such as the 
likelihood ratio test, the Wald test, the Rao test, etc. by utilizing the full 
amount  gm of Fisher information from £ and ~. In some cases, ? or 7x and 
7r are again sufficient to construct such a test. 

7. The Fisher information based on noisy data 

Let us consider two noisy memoryless channels Cx and Cr, with input 
alphabets X and Y, and output alphabets U and V, respectively. The 
channels are specified by the conditional probability distributions p(ulx) 
and p(vly). When data x and y are transmitted letterwise through these 
channels, respectively, the amounts of Shannon information included in 
the output letters u and v are given by the transmission rates 

Rx = I(X; U), Rr  = I( Y; V),  

where I(X; U) is Shannon's mutual information between X and U, and so 
on. We study the amount  of Fisher information involved in the transmitted 
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noisy data u s =  Ul""UN and o N= ol... ON, This problem is interesting not 
only in its own right, but because its solution gives an achievable bound of 
the Fisher information under the rate restriction within Rx and Rr  of the 
Shannon information. 

The geometrical method is applicable to this problem. A probability 
distribution P = (p(x ,y ) )  naturally induces a joint probability distribution 
Q = (q(x,y ,  u,v)) over four random variables X, Y, U, Vas 

(7.1) q(x, y, u, v) = p(x ,  y )p(ujx)p(v ly)  . 

(The four random variables satisfy the Markovian condition 

U - - X - - Y - - V  

in the above case. It is important to study the case with 

U - - X - - Y ,  X - - Y - - V  

in order to obtain a good achievable bound.) A statistical model p(x ,y ;  t) 
induces an enlarged model q(x ,y ,  u,o; t). 

We can study the geometrical structure of the manifold consisting of 
all the Q's in a similar manner. Refer to Amari and Han (1989) in more 
detail. We define the observable space To at each point of Q, which is a 
subspace of the tangent space TQ. It is spanned by the vectors eu, ev, evv, 

To = {vectors spanned by ev, ev, evv},  

where ev etc. stand for vectors 

ev=  O/O0~, ev= O/O0~, evv= O/O0~v. 

(7.2) go = I IE[ I ITo] I I  2 

THEOREM 7.1. 
by 

The Fisher information based o n  u N and O N is given 

Let T~ be the subspace spanned by To, ex and ey. Since ~ and ~ can be 
sent with asymptotically zero rates when coding is admitted, we have the 
following achievable bound. 

THEOREM 7.2. An achievable bound o f  Fisher information under 

Since we have type vectors u, o, and a joint type vector u-6 from the 
transmitted messages u x and o N, we have the following theorem. 
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the rate restriction is given by 

(7 .3)  g( Rx, Rr) = s u p  IIE[]I T d ] I I  2 , 

where the supremum is' taken over all the channels with given rates Rx and 
Ry. 
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