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Abstract. A continuous review (s,S) inventory system with renewal 
demand in which one item is put into operation as an exhibiting piece is 
analyzed. The lifetime of any operating unit has Erlangian distribution, 
and on failure is replaced by another one from the stock and the failed 
item is disposed of. Replenishment of stock is instantaneous. The transient 
and stationary values of inventory level distribution and the mean reorder 
rate are obtained using the techniques of semi-regenerative processes. 
Decision rules for optimum s and S that minimize the long-run expected 
cost rate are derived. The solution for a dual model with the distribution 
of lifetimes and inter-demand times interchanged is also given. 

Key words and phrases: Exhibiting inventory system, (s,S) policy, 
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1. Introduction 

Continuous review (s, S)  inventory systems have been studied by many 
authors in the past, and details of the work done in the last two decades 
can be found in the works of Aggarwal (1974), Wagner (1980), Silver 
(1981) and Girlich (1984). Most of these models assume that items are 
removed from the stock only at demand points. However, there are 
situations wherein items are removed at times other than demand epochs; 
one such case is concerned with exhibiting one of the stocked items to 
boost sales. This is common in the sale of electrical goods. These items 
have random lifetimes while in operation, and when an exhibited item fails 
it is removed and replaced by another one from the stock. 

This aspect has been introduced in our earlier papers (refer to 
Kalpakam and Arivarignan (1985a, 1985b)) where the operating items were 
assumed to have exponential lifetimes and an item on exhibition could also 
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be used to meet the demand.  The present article deals with the case in 
which the items in operation have Erlangian lifetimes, and also where the 
exhibited item will not be used to meet the demand. This occurs in 
situations where the manufacturers  do not wish to sell used items as these 
are not preferred by the customers. The demand epochs form a renewal 
process, and the supply of items is instantaneous. As the instants at which 
the items are removed from the stock do not form a renewal process, the 
usual analysis of inventory level process through renewal theoretic method 
fails. However, by identifying a suitable embedded Markov renewal process 
in the stochastic process of the inventory level process, expressions for the 
transient and limiting values of the inventory level distribution, as well as 
mean reorder rates, are obtained. Optimal values of s and S that minimize 
the steady state expected cost rate are also given. A dual model which is 
obtained by interchanging the distributions of inter-demand points and 
lifetimes of exhibiting units is considered, and it is shown that finding a 
solution for one of the models readily yields a solution for the other. It is 
interesting to note that the limiting inventory distribution for these models 
is also uniform, as in the case of a non-exhibiting inventory system. 

2. Problem formulation and analysis 

Consider an inventory stock with a max imum capacity of S units, in 
which one of the items is put into operation as an exhibited piece. The 
lifetime of an item when put into operation has an Erlangian distribution 
of order k and parameter  ~ ( >  0). On failure, it will be immediately 
replaced by another item from the stock. The items not in operation do not 
fail. Demands occur one at a time and the time intervals between successive 
demands are independently and identically distributed with common distri- 
bution function F( .  ). L e t f ( t )  denote the derivative of F ( t ) .  An item being 
exhibited will not be used to meet any demand. When the stock level drops 
to s ( > 0), an order is placed for Q = S - s ( > 0) units to bring the stock 
level back to S. Supply of items is assumed to be instantaneous. We use the 
following notation: 

F ( t )  = 1 - F ( t ) ,  

g ( i ,  t) = (lut) i exp ( - l t t ) / i !  

q( i ,  t) = I t ( l i t )  ~-~ exp ( - p t ) / ( i  - 1)! 
o o  

G(r ,  t) : , ~ o g ( r  + n Q k ,  t) 

r if r_>0 ,  

( r )=  Q + r  if r < 0 ,  

i =  0, 1,2,... , 

i =  1,2,... , 

r = O ,  1 , 2 , . . . , k Q -  1 , 

r is an integer,  
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r if r _ 0 ,  

((r)) = kQ + r if r < 0 ,  r is an integer, 

[x] + = Largest integer less than or equal to x .  

a~=/ 1 if i= j ,  

0 otherwise, 

H ( n ) = {  I n_>0,  

0 n < 0 ,  

N :  {1,2,... }, 

N O = {0,1,2,... }, 

I: 

a(0 © b(t): 

bt"~(t): 

b*: 

A*: 

n is an integer, 

Identity matrix,  

fo' a(z)b(t - r)dr 

(convolution of any two functions a(t) and b(t)),  

n-fold convolution of b(t) with itself, 

fo°b(t)e-~'dt, Re a > 0 

(Laplace transform of any function b(t)), 

e -  o~t fo A (t)dr, Re a > 0 for any matrix A (t). 

Let L(t) denote the inventory level at time t. It assumes values in the 
set {s+ 1 , s+  2 , . . . , s+  Q}. As lifetimes are Erlangian of order k with 
parameter/t ,  it can be assumed that the item being exhibited is passing 
through k-phases where each one is distributed as a negative exponential 
with parameter/~ and at the end of the k-th phase the exhibited item fails. 
Hence it is convenient to introduce a "failure-phase" process {X(t), t _> 0} 
with state space {0, 1, 2,..., k - 1 }, where X(t) denotes the number of phases 
elapsed since the latest failure epoch prior to time t. In other words, if Y(t) 
is a Poisson counting process with Y(0) -- 0 and parameter/1, then X(t) is 
uniquely given by 

x ( t )  = r ( O  - [ r ( t ) / k ] * k ,  t >_ O.  

We also have the relation 

Y(t) =- X(t) mod (k),  
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in which y = x mod  (k) implies that  there exists some non-negative integer 
n such that  y -- nk  + x for real x, y ~ [0, ~).  

Let 0 < / '1  < T2 < ... be the successive times of demand  occurrences. In 
order to compute  the probabili ty distr ibution of L( t )  at any one of these 
points,  one has to know not  only the level but  also the "failure-phase" at 
the immediately preceding point. Let L . =  L ( T ~ + )  and Xn= X ( T ~ + ) .  
Then we have 

P[L.+~ = s + j , X . + ~ = r ,  T .+~-  T.<_tlLk,  Xk, k = O , l , 2 , . . . , n ]  

= P[L.+~ = s + j ,  X.+I = r, T.+~ - T, <_ t l L , , X . ] ,  

which implies that  the process (L, X, T) = {L., X., T.; n ~ N °} is a Markov  
renewal  process  ( M R P )  with the state space {s+ 1 , s +  2 , . . . , s +  Q} × 
{0, 1,2,.. . ,  k - 1 } × [0, oo). The semi-Markov kernel of this process is defined 
a s  

"O(i, u , j ,  o, t) = P[Ln+~ = s + j ,  Xn+~ = o, Tn+~ - T. < t[L~ = s + i, X .  = u] 

i , j = l , 2 , . . . , Q ;  u , o = O , l , 2 , . . . , k -  1, n e N  °, t>_O. 

The derivative of 0(i, u, j ,  o, t) with respect to t, denoted by O(i, u, j ,  o, t) is 
given in the following lemma in a compact  form which is useful in the 
analysis. 

LEMMA 2.1. The f u n c t i o n s  O(i, u, j ,  o, t) are given by  

f ( t ) G ( ( i - j -  1)k + o -  u , t )  

O(i, u , j ,  o, t) = f ( t )G( ( (o  - u)), t) 

i f  ( i - j -  1 ) ~ 0 ,  

/f ( i - j - l ) = 0 .  

PROOF. The events that  lead to the occurrence of a demand  at t ime t 
(synchronizing the origin with the time of occurrence of the previous 
demand)  can be classified into the following mutual ly  exclusive and 
exhaustive set of events: (i) the stock level does not  drop  to s, (ii) it drops 
to s at least once in (0, t) only due to failures of the operat ing units. Hence 
we have 

(2.1) O(i, u , j ,o ,  t) = f ( t ) [ H ( i  - j  - 2)g((i - j  - l )k  - u + o, t) 

+ 61i-j-~loH(o - u)g(o - u, t) 

+ q( ik  - u, t) (~  g ( ( Q  - j  - 1)k + o, t) 

+ q( ik  - u, t) (~  ha(t) (~  g ( ( Q  - j  - 1)k + o, t )] ,  

j ~ Q ,  
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(2.2) Off, u , j ,  o, t) = f ( t ) [ H ( i  - 2)g((i - 1)k - u + o, t) 

+ ~l i - l loH(o - u)g(o  - u, t) 

+ q ( i k  - u, t) (~  g ( ( Q  - 1)k + o, t) 

+ q ( i k  - u, t) (~  ha(t) (~  g ( ( Q  - 1)k + o, t)],  

j = O ,  

where ha(t) is the renewal density of events corresponding to dropping to s, 
only due to consecutive failures of the exhibited item without any interrup- 
tions of demands in (0, t) and satisfies the integral equation 

(2.3) ha(t) = q ( Q k ,  t) + q ( Q k ,  t) (~  ha( t ) .  

It can be shown that 

(2.4) q(i ,  t) (~  g ( j ,  t) = g( i  + j ,  t) , 

(2.5) q(i ,  t) (~  q ( j ,  t) = q( i  + j ,  t) , 

hence 

(2.6) q(nl(Q, t) = q ( n a ,  t) . 

Also from (2.3), we obtain 

oo oo 

(2.7) ha(t) = n~= l qlnl( Ok,  t) = ,~=1 q ( n Q k ,  t) . 

Making use of the results (2.4) to (2.7), we obtain from (2.1) f o r j  ~ Q 

u , j ,  v, t) = f ( t )  [ H ( i  - j  - 2)g((i - j  - 1)k + o - u, t) O(i, 

+ ~ l i - j - t loH(o  - u)g(o  - u, t) 

g ( ( n Q  + i - j - 1 ) k  + v -  u , t )  ] + 
n=l J 

= f ( t )  H ( i  - j  - 2) ~=og((n Q + i - j  - 1)k + v - u, t) 

+ ~ . - j - l l o H ( v  - u) n~og(nQk  + o - u, t) 

+ , f ( ; - j - l ) o ( 1  - H(o - u)) 

• ~ g ( ( n a + i - j - 1 ) k + Q k + o - u , t )  
n = 0  
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+ (1 - H ( i - j -  1)) 

• ~ g ( n Q k + ( Q + i - j -  1 ) k + v - u , t ) ]  
n=O J 

= f ( t ) [ H ( i  - j  - 2)G((i - j  - 1)k + o - u, t) 

+ t ~ ( i - j - 1 ) o H ( o  - u)G(o  - u, t) 

+ 31/-j-l10(1 - H(o  - u ) ) G ( Q k  + o - u, t) 

+ (1 - n ( i  - j  - 1))G((Q + i - j  - 1)k + o - u, t)] 

= f ( t ) [ ( l  - 3 , - j - l t o ) G ( ( i - j -  1)k + o - u, t) 

+ 3(i-j-,)o G(((o - u)), t)].  

Also, it may be noted that  the expression on the right-hand side of (2.2) 
can be obtained f rom that  of (2.1) by substi tuting j = 0. Hence arguments  
similar to the above for j = Q yield the desired result. 

3. Inventory level distribution and reorder rate 

Define 

o b ( i , u , j , o , t )  = p [ L ( t )  = s + j ,  X ( t )  = olLo = s + i, Xo = u] . 

We note that  once the level and failure phase at T, = sup {7],< t} are 
known,  the past history of L ( t )  and X ( t )  prior to T, loses its predictive 
value. Hence the stochastic process {L(t), X ( t ) ,  t >_ 0} is a semi-regenerative 
process with the embedded  Markov  renewal process (L, X, T). As such the 
functions ck(i , j ,  u, o, t) satisfy the Markov renewal equations 

Q k - l  f t  

c b ( i , u , j , o , t )  = ~ ( i , u , j , o , t )  + r:l ~ ~--0Jo- O ( i , u , r , w , r ) ~ b ( r , w , j , o , t -  r )dr  

i , j =  1,2, . . . ,Q;  u , o = O ,  1 , . . . , k -  1,  

where 

~( i ,  u , j ,  o, t) = P [ L ( t )  = s + j ,  X ( t )  = o, Tl > tl Lo = s + i, Xo = u] 

i , j =  l , 2 , . . . , Q ;  u , o = O ,  1 , . . . , k -  1 .  

In order to obtain the expressions for $(i ,  u, j ,  o, t), we note that  the 
required events, along with the condit ion that  the next demand  should 
occur after t units of time, can be classified into the following mutually 
exclusive and exhaustive cases: the stock level does not  drop to s or drops 
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to s at least once in (0, t) due to consecutive failures of exhibited items. As 
demand occurrences and failures of exhibited items are independent, we 
have 

(3.1) ~ ( i , u , j , o , t )  = f f ( t ) [ H ( i - j -  l ) g ( ( i - j ) k  - u + o,t) 

+ Jti-jloH(o - u)g((v - u), t) 

+ q( ik  - u, t) (~ g((Q - j ) k  + o, t) 

+ q( ik  - u, t) (~ h~(t) (~ g( (Q - j ) k  + o, t)] 

j O, 
(3.2) ~(i,  u , j ,  o, t) = f f ( t )[H(i  - 2)g(ik  - u + v, t) 

+ Jil H(o - u )g (k  - u + o, t) 

+ q( ik  - u, t) (~ g ( O k  + o, t) 

+ q( ik  - u, t) (~ ha(t) (~ g ( ( a  - j ) k  + o, t)] 

j = Q .  

As expressions (3.1) and (3.2) are similar to expressions (2.1) and (2.2), 
respectively, except that ( j -  1) is replaced by j, simplification along similar 
lines to that given in Lemma 2.1 yields 

I F ( t ) G ( ( i - j ) k  + o -  u,t) ,  ( i - j ) ~  O, 
u , j ,  o, t) 

F( t ) G ( &  - u)), t), (i - j )  = O . 

Let the collection D = {1,2,..., Q} × {0, 1 , 2 , . . . , k -  1} be arranged 
lexicographically as follows: 

{(1,0),0, 1) , . . . , (1 ,k-  1),(2,0),(2, 1),...,(2,k - 1),..., 

(Q,O),(Q,  1),...,(Q,k - 1)}. 

Denote by ~(t), O(t) and ~(t) the square matrices of order k Q  whose 
elements are qb( i, j ,  q, r, t), O( i, j ,  q, r, t) and ~b( i, j ,  q, r, t), respectively, arrang- 
ed according to the above ordering of states {(i, q)[(i, q) ~ D}. Then the 
Laplace transform of ~(t) is given by 

• * = ( I -  O * ) - ' ~ *  = R*q~*, 

where R* is the Laplace transform of the Markov renewal kernel of the 
process (L, X, T) and exists for Re a > 0 (Cinlar (1975)). 
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4. Steady state analysis 

Consider the finite Markov chain (L, X)  = {L,, X,, n ~ N °} whose tran- 
sition probability functions are given by 

p(i,u,j ,o) = O(i,u,j,o,t)dt , 

and are positive for all i ,j  = 1, 2,..., Q; u, o -  0, 1 , 2 , . . . , k -  1. Hence the 
chain is irreducible and this implies the existence of a unique stationary 
distribution ~r. 

LEMMA 4.1. The stationary distribution 

7r = (r{u), is given by niu = 1 V (i, u) e D .  
Qk 

PROOF. We first show that the transition probability matrix (tpm) P 
(with entries p(i, u,j, o) arranged according to the lexicographic ordering) is 
doubly Markov. Consider 

Q k-1 
(4.t) ~, ~, p(i ,u,j ,o) 

i=1 u=0 

oo Q k -1  

= fo f(t)  i~=l u~=O[(~(i-j-l)oG(((o- u)) , t )  

+ (1 - O(i-j-~)o)G((i-j- l)k + u - u, t)]dt 

= fof(t) [ d=o-k+l ~ G(((d)),t) 

Q-1 ] 
+ ]~ ~ G(rk+d, t )  dt 

r= l  d = v - k +  1 

where d = o - u and for fixed j, as i varies from 1 to Q, (i - j  - I) takes 
values in {0, 1,2,..., Q - 1 }. Hence 

Q k-1 
u~=o P( i, u, j, o) 

i=1 

=f£f(t)[ £ G(Qk+d,t)+aZ__oG(d,t) d=o-k+l = 

+ Z G(rk+d,t)+ ZG(rk+d,t) dt 
d=o-k+  1 d=O 

=f]f(t) 2 :C G(rk+d,t)+ :C ~ a(rk+d,t) dt 
r=l  d=o-k+l r=O d=O 
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--So:.,[ 

(by combining the first term with the third 
and the second with the fourth term) 

Q -1 

~, ~, G((r - 1)k + k + d, t) 
r=l  d=o-k+l  

Q-1 ] 
+ Y~ ~ G(rk+d,t)  dt 

r=0 d=0 

Q-1 -1 a - I  ] 
Y. a(rk + k + d,t) + 2 ~ G(rk + d,t) dt J r=0 d=o-k+l  r=0 d=0 

1 k - I  Q-1 ] 

r=O d-- G ( r k + d , t ) +  r=O y~ a--O ~ G(rk+d , t ) ]d t  

oo Q-1 k - I  

=fo f( t)  ~, ]~ G(rk + d, t)dt 
r=0 d=0 

= f : f ( t )  ka-1 ,~=o G(r,t)dt 

= f : f ( t )  kQ- 1 ® ,E--o ~og(r + nQk, t)dt 

o o  

= f : f ( t )  Eog(n,t)dt 

s:: = (t)dt, as = g(n, t) = 1 

= 1 .  

Hence the tpm P is doubly Markov. This implies that the stationary 
distribution is uniform over the Qk states. Hence 

(4.2) rc iu=l/Qk,  i=  l,2,..., Q; u=O, 1 , . . . , k -  1. 

We now prove the following theorem. 

THEOREM 4.1. The limiting inventory level distribution is indepen- 
dent of  the initial state and is given by 

1 
B ~bj Q ,  j =  1,2,..., Q. 

PROOF. As the chain (L ,X)  is irreducible and recurrent, the 
MRP (L, X, T) is also irreducible and recurrent. Moreover the derivative 
of the SMK of the MRP (L, X, T) exists. This implies that the MRP is 
aperiodic. As ~(i,j ,u,o,t)  is non-negative and Riemann integrable, we 
obtain (Cinlar (1975), p. 347) 
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(4.3) ~b(j, o) = lim oh(i, u , j ,  o, t) 
l ~ o o  

= ~ u~=o~ziUfo ~ ( i , u , j , o , t ) d t  ~ 7riUm(i,u) 
i = I  = i u = 0  

where m(i,  u) is the mean sojourn time in state (i, u) which in the present 
case is equal to m, the mean interval time between demands. Substituting 
for n i" from (4.2), we obtain 

(4.4) 
k oo Q k -1  

qb(j,o) = ( 1 / Q  ) fo i~:l u~:o ~ ( i ' j ' u ' ° ' t ) d t / m  

o o  Q k - I  

= ( 1 / Q k ) f  ° if(t)i~=1 u~o[6,i-j)oG(((o- u)),t) 

+ (1 - cSli-j)o)G((i - j ) k  + o - u, t ) ] d t / m .  

The integrand in (4.4) is similar to the one given in (4.1) except t h a t j  - 1 is 
replaced by j. Hence following the derivations given before, we obtain 

qb(j,o) = (1 /Qk)  f f ( t ) d t /m  

(s: ) = 1 / Qk as if(t) dt = m 

j =  1,2,..., Q and o=O,  1 , . . . , k -  1. 

The limiting distribution of inventory level 4)j is given by 

k - 1  

~j= oE__ocb(j,v) = 1/ Q .  

Hence the theorem. 

Thus the result regarding the limiting inventory level distribution 
being uniform for an (s, S)  system with renewal demands and instantane- 
ous supply (Sivazlin (1974)) would remain true even if we include failure of 
exhibited items with Erlangian lifetimes in the model. 

The mean inventory level E ( L )  in the stationary case is given by 

Q Q + I  
(4.5) E(L)  = s + ]E n4~, = s + - -  

n = l  2 
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5. Reorders 

In order  to obtain the mean reorder rate, we consider the count ing 
process associated with the point  event b: stock level reaching s f rom 
above. Let Nb(t) denote the number  of b-events in (0, t]. Then the condition- 
al first order product  density of b-events (Srinivasan (1974)) denoted by 
h (i, u, o, t) is defined as 

h ( i , u , v , t )  = lira P[Nb(t  + A)  - Nb(t) = 1, X ( t  + ,4) = vl 
, ~ 0  

Lo = s + i, Xo = u]/ ,4 

i = l , 2 , . . . , Q ;  u , v = O ,  1 , 2 , . . . , k - 1 .  

To obtain h(i,  u, o, t), we observe that  the stock level drops to s either 
due to a demand  or a failure. Further ,  we have the following mutual ly  
exclusive and exhaustive eases: 

(i) no demand  in (0, t] and a reorder in (t, t + zJ) due to a failure, 
(ii) a reorder occurs in (t, t + A) due to the first demand,  

(iii) a demand  occurs at w ( < t) with L ( w  + ) = s + yt and X ( u )  = y2, 
and a reorder in (t, t + ,4). 

The above cases yield 

(5.1) h(i,  u, o, t) = c~ooff(t)(q(ik - u, t) + q( ik  - u, t) (~  ha(t)) 

+ O(i, Q , u , o , t )  

Q k-1  r t  

+ Y~ ~ Jo o(i, yl ,  u, y2, w )h (y l , y2 ,  o, t - w ) d w  
y~= 1 y2=0 

i = 1,2,. . . ,  Q; u , o = O ,  1 , 2 , . . . , k - 1 .  

Let 

(5.2) /~(i, u, o, t) = 6ooff(t){q(ik - u, t) + q( ik  - u, t) (~  ha(t)} 

+ O(i,u, Q , o , t ) .  

Define matrices H( t )  a n d / t ( t )  of order k Q  × k as follows: 

H(t )  = ((h(i, u, o, t)))(i.,)~ o, o=o.,,2,..,k , ,  

/ t ( t )  = ((/~(i, u, o, t)))(,.,), o, o=0,1,2,.. ,k , . 

Then f rom the system of equations (5.1) the Laplace t ransform H *  of H( t )  
is obtained as 
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H* = R* /~* .  

The mean reorder rate E ( R )  in the stationary case is 

-if+ 

PROOF. The steady state mean reorder rate y(v) when the exhibited 
item is in phase o is given by 

(5.3) y(o) = lim h(i, u, o, t) . 
t - - o o  

Applying arguments similar to those given in deriving (4.3) to equation 
(5.3), we obtain 

Q k - 1  ro¢  

Y. Y~ rciUJo k t ( i ,u ,o , t )d t /m (5.4) y(o) = i=  1 u=O 

k - 1  oo 

_ 1 ~ ]~ fo h ( i , u , o , t ) d t .  
m Q k  i = I  u=O 

Substituting from equations (2.5) to (2.6), in (5.2), we have 

O0 

h(i, u, o, t) = &off(t) .~oq(ik - u + nkQ, t) 

+ O(i, Q, u, o, t) .  

Also, we have 

Q k-I  oo  

]~ Jo0ff(t) ~,=oq(ik - u + nkQ, t) 
i=1  u = 0  

Q k - I  oo 

= &off(t)lZ ~:l y" y" g( ik  - u + nk Q  - 1 t) 
i=  u=0  n = 0  ~ 

(since q(i, t) = l~g(i - 1, t)) 
k 

=&off(t).:o ~ i=l ~ d~--l g ( ( i - =  1)k + d + n k Q -  1,t) 

(where d = k - u) 
Qk 

= ,~.oP(t)/, Y, Z_~ g(u + n k Q -  l. t) 
n=O = 

oo 

= a ~ o P ( t ) u  ,Xog(i, t) 
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Q k - 1  

,=Z= .=oZ O(i, Q,u,o , t )  

k - 1  

= f ( t )  i__~l u=~O[(1 -- ~( i -1 )0)G(( i -  1)k + o - u, t) 

+ Oil-llo G(((o - u)), t)] 

= f ( t ) ,  

as shown in the simplification of equation (4.1). Hence from (5.3), we have 

7(0) = (1 /Qk) f  ° (P(t)It&o + f ( t ) ) d t /m  

= (lt6oo/Qk + 1 / Okm) .  

Thus the expected number of reorders per unit time in the steady state, 
E(R) ,  is given by 

k-1 
(5.5) E(R) = ~o7(O ) = (lu/k + l/m)~ Q. 

Hence the result. 

6. Op t ima l  cost  ana lys is  

In this section we determine the optimal decision variables s and Q 
that minimize the long-run expected cost rate. The relevant costs consider- 
ed are the set up cost K per order, the unit cost c per item, the holding cost 
h per item per unit time, the disposal cost o per item and the return r per 
item sold. The total expected cost rate C(s, Q) in the steady state as given 
by 

(6.1) C(s, Q) = (K + cQ)E(R)  + hE(L)  + otu/k - r E ( R ) [ Q -  I~/ E(R)k] 

= (K+-U=-TQ)E(R) + hE(L)  + (o + r ) l l / k .  

Substituting for E(L)  and E(R)  from (4.5) and (5.5), respectively, we 
obtain 
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(6.2) 
K 

C(s, Q) = ---~[lt/k + l/m] + hO/2 + hs + h/2 
~d 

+ (o + c)tz/k + ( c -  r)/m. 

Though C(s, Q) given in (6.1) generally need not be a separable function in 
s and Q, in this particular situation C(s, Q) seen from (6.2) turns out to be 
a separable function of s and Q. Hence each one of the optimal values s* 
and Q* can be obtained independent of the other. As s takes positive 
integral values, it can be seen that s* = 1. The optimum Q* can be obtained 
by minimizing the function 

C(Q)=--~- - ~ - + ~  +hQ/2,  

over the set of positive integral values. 
Consider 

(6.3) D(Q) = C(Q + 1 ) -  6"(Q) 

2"  

As (K/Q(Q + 1))(/~/k + 1 / m) decreases as Q increases, D(Q) changes sign 
at most once. This implies that C(Q) possesses a unique minimum at 
Q = Q*. For this value Q*, the following conditions hold good. 

D(Q*) > 0 and D(Q* - 1) _< O. 

Using (6.3), the above conditions can be written as 

and 

2K( k + l  )/h < Q*(Q* + 

')/ 2K + - -  h >_ Q*(Q* - I) . 
m 

Combining the above two inequalities, we obtain the necessary and suffi- 
cient condition for optimum Q* as 

(6.4) Q * ( Q * - I ) < 2 K ( - ~ + I I / h < Q * ( Q * +  1). 
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7. Adual  model 

Here we consider a model in which the interval time between two 
successive demands is distributed as Erlang with order k and parameter/1 
( > 0) and the lifetime of an exhibited item has an arbitrary p d f f ( .  ) with 
mean equal to m. The operating doctrine is (s, S)  policy with instantaneous 
supply of orders and an item being exhibited will not be used to meet the 
demand. As this model can be obtained from the earlier one by inter- 
changing the distribution of interval time between two successive demands 
and the distribution of lifetime of the exhibited item, the formulation and 
analysis is similar to the one given earlier, except that the regeneration 
points { T,} will now correspond to the epochs at which items are put into 
operation. As such the expression for E(L) and E(R) remain the same. The 
long-run total expected cost rate C(s, Q) for the dual model is given by 

C(s, Q) = (K + cQ)E(R) + hE(L) + o 
m 

- r(  QE(R)---m° ) 

= C ( s , Q ) + ( o + r ) ( 1 - 1 t  ) 
m R ' 

where C(s, Q) is the cost rate given in (6. I). Hence in this case as well the 
opt imum s and Q denoted by s* and Q* will be same as s* and Q*, the 
opt imum values of the earlier model. Thus finding the solution to one of 
the models readily yields the solution to its dual problem. 
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