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Abstract. The likelihood method is developed for the analysis of so-
called regular point patterns. Approximating the normalizing factor of
Gibbs canonical distribution, we simultaneously estimate two parameters,
one for the scale and the other which measures the softness (or hardness),
of repulsive interactions between points. The approximations are useful
up to a considerably high density. Some real data are analyzed to
illustrate the utility of the parameters for characterizing the regular point
pattern.
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1. Introduction

Suppose we are given a mapped spatial pattern of points in a finite
planar region. The points may be individuals of animals or plants, and the
region may be their habitat. When a mass of territorial animals are settled
in a certain habitat, they usually show a pattern where individuals are
rather equally spaced from one another. Such a pattern of points is called
“regular”. It is easily surmised that this regular pattern is due to territorial
aggression. It will be interesting to know how strong and hard this
aggression, or repulsive interaction, is in this species of animals.

We suppose that these patterns are realized after some adjustment of
positions. Thus, these may be in a sort of equilibrium system under a
certain mechanism. The simplest examples of self-organized mechanisms
include mutual interaction, which is described by a function of distances
between points or individuals. It is customary to assume that an equi-
librium system is statistically characterized by a Gibbs distribution of a
total potential energy. Then, what sort of interaction potential is working
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among the points? And how can we estimate such an interaction from the
mapped data of points? If the likelihood function of the parameters which
characterize the potential can be written by the use of the Gibbs distribu-
tion, then maximum likelihood methods may well provide a sensible
estimation of parameters and sensitive testing of the models. However, this
has so far hardly been implemented, because of the very high multiplicity
of the integral for the normalizing factor of the distribution.

Ogata and Tanemura (1984) discussed a class of repulsive potential
functions including so-called Soft-Core potentials, and provided an approx-
imation method of the log normalizing factor of the Gibbs distribution by
the use of Monte Carlo experiments. The principal aim of the present
paper is to extend the method of approximation for a two-parameter
family of potential models representing the softness of repulsion, including
the Hard-Core potential, and also to show the utility of such parameters
and related important measures which characterize the regular point
patterns.

2. Likelihood of equilibrium point patterns

Suppose that we are given a mapped spatial pattern of N points in a
finite planar region V. Let the coordinates of the points of a pattern in
equilibrium be X = {x; = (xi, ) € V,i=1,2,..., N}. The simplest physically
justified supposition consists of reducing the total potential energy to a
sum of pairwise interaction potential energy. Let us represent- such a
mutual interaction between two points i and j by a potential energy
function @(ry) of the distance ry = |x; — x;|. We suppose that the points in
the region are realized after adjusting themselves to make the total potential
energy

(2.1) Un(X) = él_ D(ry)

being stationary. Thus the points X can be regarded as being distributed
according to the Gibbs canonical distribution

(2.2) J(X)=exp{- Un(X)}/ Z(®; N, V),

where the normalizing factor is given by the 2/N-fold integral
2.3) Z(®;N, V) =] .exp{~ Un(X)}dx: - dxn.

We have been interested in estimating the form of @(r) from a single
instantaneous spatial realization of points X in equilibrium (Ogata and



LIKELIHOOD ESTIMATION FOR POINT PATTERNS 585

Tanemura (1981a, 1984, 1985 and 1986)). Thus, consider a family of
parametrized pairwise potential functions {®o(r); 6 € @} defined in some
parameter space @. If the data X is substituted in (2.2), then the likelihood
of the potential ®o(r) is obtained as a function of §. The difficulty,
however, is to obtain the explicit form of the normalizing factor (2.3) as a
function of 0, except for the case of the Poisson model. By the Poisson
model we mean that the N points are uniformly and independently
distributed in the region V. In this case there is no interaction, i.e.,
®o(r) =0, and we have | V|" for (2.3). Considering the Poisson case as the
standard, we hereafter use the log likelihood (ratio) function

N _
(2.4) L(®0; X) = — Z Bolry) — log Z(®o; N, V) ,

where Z= Z/ |V |".

We may consider another type of Gibbs distribution which assumes
the number of points in a region to be a random variable, called the grand
canonical distribution in statistical mechanics, which is related to the so-
called full likelihood. On the other hand, the above likelihood may be
strictly called the conditional likelihood on the fixed number N of points in
a particular region. Nevertheless, it is known that these do not make much
practical difference for a not small mean number of points in a region.

3. Monte Carlo method for simulating the Gibbsian patterns

To give some feeling of the relation between a pairwise potential and
its equilibrium point patterns, let us review a simulation method which uses
a particular type of random walk known as a Markov chain. The simula-
tion was originally devised by Metropolis et al. (1953) and developed by
Wood (1968) and others for the study of atomic systems.

Consider a set of particles, interacting according to a certain potential
function, on a square ¥ with a periodic boundary (i.e., ¥ is identical to a
torus). The most commonly used algorithm is described in the following
manner: Assume that at time ¢, the state of the N particle system is
X@) ={(xn(t), (D)) € Vi n=1,..., N}. A trial state X'(¢) = {(xn(2), yr(£))} is
then chosen in such a way that the coordinates (x/(¢), y/(¢)) of a randomly
chosen particle r lie in some square with vertices at the points (x(¢) £+ 9,
yr(t) + 0) while all other N — | particles have the same position as in state
X(¢), where 6 > 0 is a parameter to be discussed below. The corresponding
total potential energy Un(X'(#)) in (2.1) is then calculated and compared
with Un(X(?)) as follows.

1. If Un(X'(2)) < Un(X(2)), then without further ado the next state
X(t+ 1) of the realization is taken as the trial state X’(¢).

2. If Un(X'(1)) > Un(X(1)), then we obtain a uniform random number



586 YOSIHIKO OGATA AND MASAHARU TANEMURA

¢ and (a) if £ <exp {Un(X(1)) — Un(X (7))}, state X(¢ + 1) is taken to be the
trial state X'(r); (b) otherwise, state X(z + 1) is taken to be the previous
state X (7).

It should be noticed that the normalizing factor Z in (2.3) has not been
used in the simulation. In essence, the Monte Carlo procedure here is
nothing but selecting the transition probabilities

3.1) g(X,Y)dY=Prob {X(t+ 1) edY|X(1)= X},

which satisfy ff(X)g(X, Y)dX = f(Y) for all the state Y of the N-particle

system in V", and further satisfy the condition that the n-step transition
probability density g” (X, Y) converges to the given equilibrium probability
f(Y)in (2.2).

The parameter J, the maximum single step displacement allowed in
passing from one state to the next, ought in principle to be adjusted for an
optimum rate of convergence of the Markov chain. Wood (1968), according
to his experiments, suggests that a reasonable choice for the adjusting
parameter J has been found to be a value leading to rejection of the trial
configuration on about half of the time-steps. This is a trade-off, especially
in the case of high density, between effective transition of the state and
avoiding unnecessary repetition of the same state. In connection to this
issue, an alternative simulation method provided by Ripley (1979) on the
mathematical basis of the spatio-temporal birth and death process should
be modified in choosing the trial points in order to be useful for high
density cases.

In addition to the selection of ¢, in order to attain the equilibrium
state within fewer time-steps in Monte Carlo simulation, the initial configu-
ration should be suitably chosen. We devised a method of generating
points sequentially using the rejection method, for the construction of such
an initial state (Ogata and Tanemura (19815b)).

4. Potential function with scaling property and the normalizing factor

We here review the basic idea which is the clue to the use of the Monte
Carlo method for the estimation of the normalizing constant (see Ogata
and Tanemura (1981c¢, 1982 and 1984)). Consider the case where the
pairwise potential function is characterized by a scale parameter ¢ such
that

@.1) ®o(r) = B1(r]0) .

The standardized function @, exhibits the shape of the potential function
and may be characterized by some other parameters. Because of the scaling
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property of @, in (2.4), we can only consider the situation in the standard
scale; introducing the parameter = (N/V)d?, called the reduced density,
we have the following log likelihood ratio

. N B
4.2) log L(1; X)= — Ej@l(r,-}“/\/t_) —log Z(zr,®1;N),

where the distances r;f = r;/\/V/N. Under very broad regularity conditions
we can expect E[dL(t; X)/dt] = 0, which implies the following equality

[ - A
4.3) ——E[i%(rf/\/;)qu(r';}‘/\/_r_)]': - 57 log Z(. 2 N)

*
2N N’
where @{(+) indicates the derivative function of &(-). Now both sides of
this equality are known to be distinctive definitions of P|V|/N—1 in
kinematics (the left-hand side) and in statistical mechanics (the right-hand
side), where P is the pressure. This is a function of the reduced density and
we here define w(t) = P|V|/N — 1, which measures a degree of deviation
from the ideal gas (Poisson patterns). A great advantage to using this
function for the approximation of the normalizing factor is that w(7) is
almost constant with respect to the number of points N if N is not very
small. Indeed, once the function y(z) is known for any 7, we get

1 - o [T
(4.4) ~ log Z(z, 1 N) = -/, EEa,

from the right-hand side of (4.2). Note here that any information of log Z,
such as the first or second derivatives of log Z with respect to 7 or any
other parameter if included in @), is completely included in the w-function.
Therefore, we concentrate our attention on getting the explicit form of the
function w(7) for each standardized potential model @;.

The same idea for the derivation of the equation (4.3) was used and
extended by Penttinen (1984) to estimate the Hessian matrix (the second
derivative of the log likelihood), as well as the efficient score, for the use of
a Newton-Raphson type algorithm in solving the likelihood equation. The
equation for one parameter is solved for the example of his estimation
procedure, but the Newton-Raphson equation with some random effects
seems to have practical numerical difficulty, especially in determining the
convergence criterion. Our procedure, as is seen later, eventually avoided
this kind of difficulty by the use of a certain smoothing technique.
Furthermore, it should be stressed that the value of the maximum log
likelihood is available in our procedure for the model comparison, or
goodness-of-fit of models.



588 YOSIHIKO OGATA AND MASAHARU TANEMURA

5. -values through computer experiments

According to the other definition of y-function given in the left-hand
side of (4.3), we consider a consistent and unbiased estimator of w(1);
replacing the Gibbs ensemble average E{-} by the time average

L ¥ 8 i) "f}k(t))

1 ’
_5—]\7.M1=1i<j \/—? ~§D1( \/;

Here rf (1) = |x{(1) — x*(¢)| and the patterns [X *(¢) = {x*(1);i=1,...,N};

(5.1) () =

Table 1. Results of the Monte Carlo experiments for Soft-Core potentials @(r) = (a/r)" for patterns
of 500 points in 2-dimensional space: sample mean (5.3) of w(t;) for each 7; and standard deviation of
the corresponding time series. Af in (5.1) and (5.3) is obtained by multiplying M, by 500.

Soft-Core: n =4 Soft-Core: n=6

T I/; s.d. Mo T l/; s.d. M,
0.05 0.14732 0.03433 1900 0.05 0.11160 0.03465 1900
0.10 0.31426 0.04022 1900 0.10 0.24241 0.04257 1900
0.15 0.50447 0.04460 1900 0.15 0.39641 0.05092 1900
0.20 0.71244 0.03848 1900 0.20 0.56114 0.05251 1900
0.25 0.94399 0.03510 1900 0.25 0.76378 0.05344 1900
0.30 1.20016 0.03980 1900 0.30 0.97851 0.05486 1900
0.35 1.47182 0.06585 1900 0.35 1.23053 0.06097 1900
0.40 1.77189 0.08588 1900 0.40 1.51912 0.08610 1900
0.45 2.10233 0.10426 1900 0.45 1.84457 0.10523 1900
0.50 2.45329 0.12014 1900 0.50 2.21532 0.12409 1900
0.55 2.82461 0.13728 1900 0.55 2.62742 0.14441 1900
0.60 3.22863 0.13189 1900 0.60 3.08346 0.14469 1900
0.65 3.66457 0.15078 1900 0.65 3.60767 0.16457 1900
0.70 4.11131 0.16969 1900 0.70 4.18188 0.18587 1900
0.75 4.59497 0.18301 1900 0.75 4.80052 0.20387 1900
Soft-Core: n =8 Soft-Core: n = 12

T l/; s.d. Mo T l/; s.d. Mo
0.05 0.10050 0.09194 1900 0.05 0.09449 0.04169 3800
0.10 0.22150 0.10179 1900 N0.10 0.20593 0.23038 1900
0.15 0.35722 0.05870 1900 0.15 0.32557 0.06657 1900
0.20 0.51460 0.06040 1900 0.20 0.47426 0.07625 1900
0.25 0.69386 0.06151 1900 0.25 0.63616 0.07732 1900
0.30 0.90108 0.06862 1900 0.30 0.83994 0.08743 1900
0.35 1.15119 0.07002 1900 0.35 1.06117 0.09485 1900
0.40 1.43336 0.09208 1900 0.40 1.34459 0.11061 1900
0.45 1.75532 0.11273 1900 0.45 1.65606 0.12608 1900
0.50 2.13349 0.13080 1900 0.50 2.04039 0.14937 1900
0.55 2.58963 0.15406 1900 0.55 2.51227 0.17327 1900
0.60 3.08778 0.15785 1900 0.60 3.04830 0.18545 1900
0.65 3.66157 0.17943 1900 0.65 3.70757 0.21162 1900
0.70 4.35107 0.20440 1900 0.70 4.53279 0.23985 1900

0.75 5.15353 0.21721 1900 0.75 5.50700 0.24745 1900
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Table 1. (continued).

Soft-Core: n =16 Soft-Core: n = 24
T W s.d. My T W s.d. M,

0.05 0.09007 0.04527 3800 0.05 0.08655 0.06609 4900
0.10 0.19153 0.05939 1900 0.10 0.18794 0.08311 4900
0.15 0.30946 0.07519 3500 0.15 0.30043 0.10050 4900
0.20 0.45513 0.09179 3500 0.20 0.43486 0.11779 4900
0.25 0.61515 0.10789 3500 0.25 0.58728 0.13439 4900
0.30 0.80768 0.12359 3500 0.30 0.77549 0.15518 4900
0.35 1.02964 0.14158 3500 0.35 0.98483 0.17704 4900
0.40 1.29252 0.16182 3500 0.40 1.23539  0.19313 4900
0.45 1.60127 0.18019 3500 0.45 1.54246 0.21890 4900
0.50 1.96820 0.19766 3500 0.50 1.92613 0.23700 4900
0.55 2.44003 0.22684 3500 0.55 236671 0.26682 4900
0.60 3.00689 0.22334 3500 0.60 291175 0.27558 4900
0.65 3.69256 0.22841 3500 0.65 3.61088 0.25331 4900
0.70 4.54177 0.23143 3500 0.70 4.49158 0.27324 4900
0.75 5.59701 0.24767 3500 0.75 5.58680 0.31645 4900

t=1,..., M], are obtained by the Monte Carlo simulation procedure (see
Section 2) which generates the Gibbs canonical ensemble characterized by
@, (r). Thus, for some reduced densities 7, 13,...,Tp, We get the averages
w (7)) and the variances §°,i = 1,...,p, of the time series.

For example, consider the so-called Soft-Core models (see Fig. 1)

(5.2) @o(r) = (a/r)', n>2,
A
o™
8
(o]
-—H-C
a7
< 3
Pt —1
=
Z 4
o
= 2
o -
A S-C(4.6,8,12,16,24)
(=]
2 /
8_
000 050 100 150 200 250  3.00
DISTANCE
Fig. 1. Curves of potential models for o = I. The model corresponding to each curve is

nearby indicated where H-C and S-C(n) correspond to Hard-Core and Soft-Core with index
n, respectively.
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where the restriction of n in (5.2) is to ensure a stable potential in the sense
of Ruelle (see Gates and Westcott (1986), for example). Then (5.1) is
written as

~ ] M N n
(5.3) WF%‘HE E,( ,-5!‘\/(;:) ) '

After some computer simulations with M = 10° for the number of points
N =500 in the rescaled square region V)= V/(|V|/N) with a periodic
boundary (identical to the torus), we obtained the sample means (i), on
7% =0.05k, k=1,2,...,15 for n=4,6,8,12,16 and 24 together with the
standard deviations 3.» of the time series. These, together with the step size
Mo = M| N used to take the average in (5.3), are listed in Table 1, which we -
use in the next section. This table itself is useful in physics: for the
comparison and further accumulation of such simulation experiments; see
Swol er al. (1980) for the n =12 case of the Soft-Core in 2-dimensional
space and Hoover et al. (1971) for n =4,6,9, 12, and oo of the Soft-Core in
3-dimensional space.

It is crucial to choose a well-tested random number generation scheme
for such large-scale Monte Carlo experiments, in order to avoid the biases
of the present statistics. Throughout this work, we used a physical random
number generator (200Kbytes per second) installed in the Institute of
Statistical Mathematics.

6. Approximation of the log likelihood

Reparametrize the set of Soft-Core potential model (5.2) in the form
(6.1) D(r;o,a)=(a/r)'% 0<o<o, 0<a<l.

Note that a = 0 corresponds to the Hard-Core potential such that @(r; g, 0)
=oo for r <o and =0 for r > o, and that ¢ = 0 corresponds to the Poisson
model. Our goal in this section is to give an approximated function for the
logarithm of the normalizing factor in (4.2) by using the relation (4.4) and
Table 1.

In addition to the y-value estimates obtained in Table 1, we used the
w-values for the Hard-Core model by the Padé approximant (Ree and
Hoover (1967)),

~ 1.5707967 — 0.4986127° + 0.0216627°
- 1 — 1.5457977 + 0.5993717*

62 @

This approximant is known to be useful in the range up to about t = 0.88
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(Wood (1968)). Standard errors, for the present y-values, are assumed to
be similar to those for the Soft-Core n =24 for each 7= 0.05k, k=
1,2,...,15.

Before performing the surface fitting for w-values on (a, 7) for carrying
out the integral in (4.4), we should note that the data set of the form
{wn(7i)/ T} is convenient, rather than {y.(7x)} themselves. Thus the estimate
and standard errors obtained in Table | are recalculated for the form
w(7)/7. Note that we can further add the values of w.(r)/7 for =0,
because tlgg} wn(7)/T provides the second order virial coefficient of each

model and is equal to (n/2)I'(1 — 2/n), where I'(-) is the gamma function
(Ogata and Tanemura (1981a, 1984)). Thus we use the value (n/2)I'(1 —
2/n); n=4,6,8,12,16,24 and o (Hard-Core) with similar standard error to
,(0.05)/0.05 for each n.

Unlike the curve fitting implemented in Ogata and Tanemura (19815,
1982 and 1984), low dimension polynomials are not very good for surface
fitting, since these cause bias at the sample points. On the other hand, high
order polynomials which needs lots of parameters usually provide un-
necessarily rapid fluctuations of the surfaces. Therefore, some restriction
for the smoothness of the surface and then trade-off with the goodness-of-
fit to the data are required (see Good and Gaskins (1971), for example).
The situation is the same for the bicubic spline functions which we here
prefer to deal with.

The 2-dimensional cubic spline function is defined as follows. Consider
that the rectangular area 4 = [xo, Xm] X [ yo, yn] for the domain of definition
of the function, and the sequences of points xo < x1 < ++ < xp-1 < x»r and
yo< y1 < .- < yn-1 < yn are all equally spaced. Both of the segments [xo, Xa]
and [yo, yn] are extended to [x-3, xam+3] and [y-3, yn+3] where {xn; m=
-3, -2,....M+3}, and {ys;n= -3, —2,...,N+3} are again equally
spaced in the distance of d: = (xu — x0)/ M and d, = (yv — yo)/ N, respec-
tively. Consider the cubic B-spline basis {Bi(r); i = 1,2,3,4} on [0, 1] such
that

Bi(r)=r’l6,

Ba(r)=(—-3r +3r* +3r+ 1)/6,
By(r)=(3r’ —6r’ +4)/6,
Bi(r)=(—r +3r"=3r+1)/6.

(6.3)

Thus for (x,y) in a subdivided rectangle [Xm, Xm+1] X [V, yn+1], the
spline function is given by

(6.4) h(x,y|C) =X

3
i=0,=0

Cm+in+j Bs- i(rx) By ‘j(r)’) [}
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where C = {c;} are coefficients, rx = (x — xm)/dx and r, = (¥ — y»)/d,. Thus
we consider a linear regression

(6.5) v(ai, 1)/t =h(a,7|C) + &,

where &; ~ N(0, 0’s§) is assumed and o’ is a parameter to be minimized.

Since quite a few parameters C are required to represent the 2-
dimensional spline function, the maximum likelihood estimate usually
produces a rapidly fluctuating surface. Thus we had to resolve two conflict-
ing aims in surface estimation, which are to produce a good fit to the data
but to avoid too much rapid local variation. A measure of the rapid local
variation of a surface can be given by roughness penalties, such as the
integrated squared first or second derivatives,

(6.6) &)=/, {( —glxl)z + ( —‘;’yi) ] dxdy
and
(6.7) & (h) =], [(j—;’—l)z + 2( aigy )2+(%)2 ] dxdy .

Thus for the suitable weights w; and ws, the estimates of the parameters
C = (c¢;) are obtained so as to maximize the penalized log likelihood

(6.8) log L(C) — [w1D1(h) + w2D2 ()],
where

(6.9) log L(C)= — (IJ]2) log a® + 2y (o, )/ = h(a, 4|C)Y/(Q20%s))

for total number IJ = 7 x 16 of data set (a;, 7;). Here we have adopted the
case where M =3 and N = 4; that is, xn =m/3, (m= -3, —2,...,6), and
yn=nl4, (n= —3, —2,...,7), from which the number of parameters C is
42,

The crucial point here is the determination of weights wy and w, for
penalties in (6.8). To obtain the optimal weights w; and w,, we are led to a
Bayesian interpretation. That is to say, the weighted sum of penalties in
(6.8) is considered to be proportionate to the logarithm of the prior
distribution n(C|w,, w;) characterized by the hyperparameters w; and wx.
Since the penalties @, and @, are quadratic with respect to the parameters
C = {c¢j} = (ck)k=1.2...1u, the prior 7 is a multivariate Gaussian distribution.
To avoid the difficulty in the case where the prior is improper (this actually
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takes place, since the covariance matrix X such that CXC'/2 = w®,(h) +
w2®,(h) is degenerated and r = rank (X') = IJ — 1 in the present case), the
parameter vector C = (ck)k=1,2... is divided into (¢, crs) so that 7(c’, cir| w1, w2)
is proper with respect to ¢’, where ¢z is the last (scalar) component of C
and ¢ the rest. Then we consider the marginal,

(610) ) L(W[, Wa, C[_[) =fL(C)7L’(Cr, C[J|W1, wz)dc’ ,

of the posterior to obtain w,, w, and ¢y which maximize L. This is called
the method of type II maximum likelihood due to Good (1965). Akaike
(1980) justifies and develops this method based on the entropy maximiza-
tion principle and defined

(6.11) ABIC = ( — 2) max log L(wi, wa, ciy) + 2 X (number of parameters) ,

in relation to the Akaike Information Criterion (AIC), here the number of
parameters for the last term in the present case is 3 which stands for wi, w,
and cy.

By the similar calculation method described in Ogata and Katsura
(1988), we get w; =4.42x 10°® and w, = 5.53 x 107>, Under these values,
the estimated coefficients C = (¢;) in (6.4) are obtained and listed in Table
2. Also the graphs of (e, | C) = y(a, 1)/ are given in Fig. 2 together with
the plots of the experimental results y (i, 7;)/ 7; obtained above.

Table 2. Coefficient matrix C = {c;} of the 2-dimensional spline function in (6.4).

N I 2 3 4 5 6

1 - 6.2628 3.1550 0.41372 3.4324 8.5895 11.245
2 3.3230 0.93849 2.1801 3.0206 9.5866 10.733
3 1.0112 2.2701 2.6552 4.7195 9.1765 13.105
4 2.7570 3.1222 4.4722 5.1175 9.8713 10.652
5 —3.2697 8.1699 5.7940 6.2979 8.7423 11.957
6 —7.8934  21.519 6.1032 7.8280 8.8784 12.984
7 69.293 4.8399 19.569 4.1605 13.848 1.1280

After all we have obtained the log likelihood function for the Soft-
Core models

N o \2/a T .
6.12) log L(a, 0, X) = —Z(r—) +Nf0 h(a,t)|C)dr,

i<j ii

where = No*/ V.
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Fig. 2. Fitted A(a, 1) function to y(a,7)/7 in the integrand in (4.4) for reparametrized Soft-
Core potential (6.1). (a) Sample points (square dots in the figure) for w-values in the
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definition of spline function (6.4). (b) Profiles of the spline surface along sample points for
fixed t's (solid lines) and related experimental values (sign ). (c) Profiles of the spline
surface along sample points for fixed o’s (solid lines) and related experimental values (sign +).
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7. Simulation study and analysis of observed data

In order to check the usefulness of the approximated log likelihood,
we fitted this to some simulated patterns for each (&, 7). We examined
whether the likelihood ratio statistics with respect to the true values
distributed according to chi-square distribution with d.f. = 2. Note here for
the Hard-Core case (o = 0) that the chi-square also has 2 d.f. in spite of the
single parameter 7 (Ogata and Tanemura (1984), p. 507). We also examined
whether the maximum likelihood estimate (4, %) is distributed according to
the normal distribution N(0,J "), where J = (J;), i,j = 1,2, is the negative
of the Hessian matrix which is computed instead of the Fisher information
matrix.

After all it is confirmed that the maximum likelihood method by the
approximation works very well for r = 0.05k, (k = 1,2,...,15) and a = 2/n,
(n=6,8,12,16,24,), but does not work very well for n = 4. This might be
due to the lack of data set beyond a = 1/2. Eventually, we can say that the
approximated log likelihood is useful for the area0<a<1/2and 0=t<
0.8 (see Fig. 2).

For the analysis of observed data, we consider 6 point patterns in Fig.
3 (Ogata and Tanemura (1981¢, 1982)). Here, for the convenience of our
analysis, we calculated the total potential with the assumption of the
periodic boundary. The pattern of Fig. 3(a) is a map of natural stands of
seedlings and saplings of the Japanese black pine Pinus Thunbergii
(Numata (1964)). The number of pines is N = 204 and the area observed is
A =10 mx 10 m. We have used this data in some other methods (Ogata
and Tanemura (1981a, 1984, 1985 and 1986)).

A nesting pattern of Gray Gulls, Larus modestus, in a 100 meter
square area (Howell ez al. (1974)) is also analyzed in Ogata and Tanemura
(1981a) under the assumption of low density gas, and self-inhibiting
interaction was indicated. It may nevertheless be interesting to investigate
the same set of data by the present approximated likelihood which should
be feasible in the wider range of density. The distribution of nests (N = 110)
is shown in Fig. 3(b).

Figure 3(c) exhibits geographical data of Iowa county seats investigat-
ed by Dacey (1972). This shows a considerably regular pattern, because the
county seats seem to have been placed with some planning. Dacey demon-
strated his imperfect central place theory from the data.

Next, a map of small steel balls (N =271) in an area 28.1 mm x 27.9
mm in Fig. 3(d) is investigated. The map was obtained in the following
manner. We first put a number of steel balls of diameter 0.5 mm in a
transparent plastic box and shook it violently by hand. Then each ball
became charged with electricity and repelled the others. Therefore, the set
of steel balls showed a stable and regular pattern as is shown in Fig. 3(d).
The interaction between steel balls is not as simple as is expected by the
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Fig. 3. Examples of point patterns. (a) The map of the seedlings and saplings of Japanese
black pine Pinus Thunbergii: N =204 in a V=10 m X 10 m area (Numata (1964)). (b) The
map of the nests of Gray Gull Larus modestus: N=110in a V=100 m x 100 m area (Howell
et al. (1974)). (c) The map of the county seats of the state of lowa, U.S.A.,, N=65 in a
V = 240.0 miles x 205.714 miles area (Dacey (1972)). (d) The map of the charged steel balls:
N=271ina V=281 cm x2.79 cm area. (e) and (f) Plots of the spatial patterns of blue cones
of macaque retina obtained by Shapiro er al. (1985): (e) 398 cones identified P6T13 and (f) 427
cones identified M6T10, respectively, in the same volume ¥ = 125 mm x 85 mm in the scale of

the photomicrographs.
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Coulombic law, because the wall of the plastic box itself also generates
static electricity. Therefore, it will be useful to estimate a repulsive interac-
tion potential by our procedure.

Finally, we fit the spatial patterns of blue cones in a macaque retina
which are discussed in Shapiro et al. (1985), who recommended an elastic-
ball model rather than a hard ball model. We have read the locations of the
data from the photomicrographs in the paper, and Figs. 3(e) and 3(f)
illustrate the identified patterns P6T13 and M6T10, respectively.

Table 3 gives the summarized results of the Soft-Core model fitting.
By assessing the Hessian matrix of the log likelihood, we can also obtain
the estimates of respective standard errors of the maximum likelihood
estimates a and o. It is noted that, in spite of the very different sizes of the
areas and corresponding estimated parameter o, the parameters 7, @ and y
are independent of the size of the areas and therefore compatible with each
other; that is, a (or n) measures the softness or hardness of the potential,
7= No’|V measures the crampedness of a pattern, and w = y(a,1)
measures the strength of repulsive force, or degree of the deviation from
Poisson pattern. It seems that the impression of the regularity of the
patterns are consistently measured by these parameters. It is also interest-
ing that the two patterns P6T13 and M6T10 have similar o and t values.
This is consistent with the results in second-order distance properties (L-
function) and angular structure (A-function) obtained in Shapiro et al.
(1985).

Table 3. Model fitting to the various point patterns: values in the parentheses are standard errors.

Data o T a n v log L
Pines 0.14 .04 0 oo .07 13.2
10x 10 meters
Gulls 2.26 .06 .29 6.9 12 9.0
100 x 100 0.21) (.22)

meters
[owa 16.8 37 .32 6.2 1.31 37.5
240 x 205.7 (1.0) (.09)
miles
Balls 1.10 42 .35 5.8 1.64 178.3
28.1 x27.9 (0.03) (.04)
millimeters
P6T13 38.8 .56 41 4.9 2.81 338.7
1250 x 850 (1.0) (.03)
millimeters
M6TI10 37.3 .56 .36 5.6 2,73  385.6
1250 x 850 (0.8) (.03)

millimeters
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8. Discussions

It should be stressed that throughout the present paper we have used a
region with a periodic boundary (identical to a torus) in both the simula-
tion of point patterns and estimation of the potential function. That is to
say, the distance ry between points (x;, ;) and (x;, ;) on V' =[0, T3] X [0, T,]
is given by

g =min {|xi— x|, Tx — |x: — x5} + min {{yi = yil, T, — lyi— pl}*.

This periodic boundary condition approximately realizes a state of an
infinite particle system and enables the stable convergence of y-values or
pressure at any reduced densities 7. Now it can occur in analyzing the data
that a pair of points / and j crossing the predetermined periodic boundary
has a very short distance ry which can affect the estimation of potential for
the given equilibrium point configuration. This can be avoided by moving
the boundary slightly to change the region V. Also, a suitable choice of a
rectangular region from an arbitrarily shaped region of the original point
pattern is sometimes useful for carrying out the present estimation pro-
cedure with a periodic boundary.

Thus a problem arises as to how to adjust the suitable boundary of a
rectangular region. Let us specifically formulate the problem and suggest a
solution to it in the following way. Let V' = [0, Tx] x [0, T;] be a tentative
region including points X = {(x;, y;), i = 1,2,..., N}, and consider a perturba-
tion of the region Ve, =[0, Tx + ] x [0, T, + n]. Then a distance r; on the
torus becomes r;(¢, ) whose square is

ri(&, )’ = min {|xi — x|, Tx + &€ — |xi — x|}
+min {lyi—yl, T, +n— lyi -y},

where choices of the minimum above depend on the configuration of the
pair of points. Then the log likelihood is defined, using the formula (6.12),
by

N o 2/ (&) .
log L(a,0,¢,1; X) = —,2‘( ) +Nf h(a,t|C)dt,
i<i\ ry(&,m) 0

where 7(&,%) = No*/ Ve, and h(a,t|C) is the spline function in (6.4) with
coefficient matrix C given in Table 2. Thus the suitable estimates of the o,
o, ¢ and 7 are obtained simultaneously by maximizing the above likelihood
function.

Let us just see the performance of the above mentioned method. We
have a simulated pattern of N = 500 points in a ¥ = 1000.0 x 1000.0 region
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by the Soft-Core potential with a=0.25 and v =0.20 so that 0 = \/TV/N
=20. The maximum likelihood estimates are ¢ =0.191, ¢ =20.0, ¢ =
—0.147 and 74 =0.198. The maximum log likelihood is 161.46 (AIC =
—314.9). On the other hand, by the restriction of £ =0 and # =0, the
maximum log likelihood is 160.66 (AIC = — 317.3) with ¢=0.185 and
6 =19.9. This means that the original boundary for the periodicity is
appropriate for the equilibrium pattern of the considered potential func-
tion. This result is sensible because the data is simulated in area V.

Finally, there may be a question as to why we seek approximations
which are globally applicable, instead of either locally fitting quadratic
surfaces near the maximum likelihood estimates to solve Newton-Raphson’s
equations such as in Penttinen’s method (1984) or using the pseudo-
likelihood method (Besag et al. (1982)). The reason is simply to get value of
the log likelihood itself for comparing the goodness-of-fit with alternative
models other than Soft-Core models; see related papers of the present
authors.
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