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Abstract, A sequential procedure is proposed for constructing a fixed- 
size confidence region for the parameters of a linear regression model. 
The procedure is based on certain regression analogues of trimmed 
means, as formulated by Welsh (1987, Ann. Statist., 15, 20-36), rather 
than least squares estimates. For error distributions with continuous, 
symmetric density and some moment higher than fourth finite, if the 
design points of the model are bounded, then the procedure is both 
asymptotically consistent and asymptotically efficient as the size of the 
region approaches zero. 
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1. In t roduct ion  and  s u m m a r y  

Consider  the general linear model  

(1.1) yi = X ~  "~- ~ i ,  

i =  1,2,. . . ,  where each x i=  (Xil,...,Xip)' is a known p-vector  of design 
points, p = (fit,..., tip)' is an unknown  p-vector  of parameters,  yl, y2,.., are 
the observed responses, and el, e2,.., are i.i.d, with distr ibution funct ion F 
and cont inuous  d e n s i t y f t h a t  is positive on the support  of F and symmetric  
about  zero. Assume further that  Xil = 1 for all i, so that  fll is an intercept. 

Estimates of fl that  are designed to be regression analogues of t r immed 
means in location models  have been proposed  and analyzed by Koenker  
and Bassett (1978), Rupper t  and Carroll  (1980) and Welsh (1987). The 
formula t ions  due to Koenker  and Bassett and to Welsh have been shown 
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(by Rupper t  and Carroll  and by Welsh, respectively) to have limiting 
distr ibutional  properties that  are similar to those of t r immed means. This 
paper considers the problem of constructing fixed-size confidence ellipsoids 
for / I  using such estimates, specifically the version proposed by Welsh. 

Let ~, be a preliminary estimate of p based on the first n observations,  
and let 

e;(/J,) = y i -  x ~ , ,  

i = 1,..., n, be the residuals from/]n. Define 

en~(~) -< en2(l~n) < " "  -< e.n(fJ,,) 

to be the ordered residuals. Welsh's estimate, with t r imming propor t ion  a, 
0 < a < 1 / 2, is defined essentially as follows. Put  

~,,,,(~0,,) = e, ,t ,~, , l(~) , 

~,,,,-,~)(~) = e,,.,,-[,~,,i(10,,) , 

and 

(1.2) 

Ji = I{e;(~0,,) < ¢,,,~(~)}. 

K, = I{¢,,,,(~0,,) < e , (~)  < ¢,,~,-,~,(i0,,)1. 

Ci = l{e,(~O.) > ~.¢, ~,(~0.)}. 

i -- 1 .... , n, where I denotes the indicator function. The estimate is then 

(1.3) 
i=1 

+ yiK~ + ~.,, ~(~O.)(Li - a) ] .  

where A;, is any generalized inverse of 

An = ~ x i x ~ K i  . 
i=I 

Welsh's proposal  differs slightly f rom this, in that  the endpoints  of the 
ordered residuals at which Winsorizing takes place are defined somewhat  
differently. However,  the estimate defined in (1.3) has the same asymptot ic  
properties as Welsh's estimate and is a little easier to work with in the 
present setting. 

Welsh (1987) shows that  under  the assumptions above, if 
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(1.4) n~:2(~ - ~) 

is bounded in probability and 

n 
(1.5) n-1(X'X.) = n -~ Z x;x~-~ F ,  

i=l 

as n ~ ~ ,  where X.  is the n × p  matrix with ( i , j )  entry xij and F i s  positive 
definite, then 

(1.6) nm(~.(a) - ~) 7 N(O, a2(a)F-1) , 

as n ~ o~, where 

(1.7) fv-'{,-,~l x2 f(x)dx + 2a(F_l(a))2 ] o2(a) = (1 - 2a)  -2 [JF-'(a) 

Note that the condition 

n 
E x; j=O 
i:1 

j = 2 , . . . ,p  is not needed here, becausef i s  symmetric about zero. In the rest 
of the paper ~ will be the least squares estimate, assumed to be unique. 

Based on (1.6), if a2(a) is known, for large n and 0 <  y <  1, the 
ellipsoid 

(1.8) {~: (/].(a) - ~P)'F(/].(a) - '/I) _< a2(a)x~(p)n -~ } 

will be an approximate 100(1 - ~)% confidence region for p, where Z2(p) is 
the upper ? point of a chi-square distribution with p degrees of freedom. 
When o-2(a) is unknown,  as is typically the case, the results of Welsh (1987) 
show that it can be estimated consistently by 

(1.9) R~(a) = (1 - 2a) -2 [ (n - p)-~ ;~ (e~(~.) - -~zc)ZK~ 

+ a(4°.(/}.) - e~)~ + a(~.,-o}(/}.) - ~ )~  ] ,  

where 

~g : (n - 2[an]) -1 ~ ei(pn)Ki. 
i :1  

Hence approximate confidence ellipsoids for p may be obtained from (1.8) 



524 ADAM T. MARTINSEK 

by plugging in R~(a) for a2(a). 

Suppose now that one wishes to construct a confidence ellipsoid for/~ 
that is of form (1.8), i.e., its shape is specified by F, but of fixed size. In 
other words, one would like to use an ellipsoid of the form 

(1.10) ( K ( a )  - - <_ d } ,  

where d > O  is given. If (1.10) is to be an approximate 100(1- ),)% 
confidence region for fl, the smallest fixed sample size n that will work 
(asymptotically, as d--- O) is 

(1.11) no = no(d) ~ d-~ ~fi(a)x~(p) . 

If a2(a) is unknown, then the sample size no cannot be used. In this case, 
(1.11) suggests using the stopping rule 

(1.12) T = Ta = inf {n > 2: n > d-lx~(p)(t~.(a) + n-l)} 

to determine the sample size, and forming the confidence ellipsoid 

(1.13) {~: (~r(a) - ~) 'F(~r(a) - ~ )  _< d}, 

once sampling is terminated. Previous work on fixed-size confidence 
regions in regression models, under the assumption of normally distributed 
errors and using least squares estimates, has been done by Gleser (1965), 
Albert (1966), Srivastava (1967, 1971) and Finster (1985). For pioneering 
work on fixed-size confidence intervals, see Chow and Robbins (1965). 

The asymptotic performance of the sequential procedure with stopping 
rule T is summarized in the following theorem. 

THEOREM 1.1. In addition to the assumptions in the f irst  paragraph, 
assume that f has a density f '  that is continuous a.e. on 

(1.14) [F-l(a - Co), F-~(I - a + Co)] f o r  some eo > O, 

that 

(1.15) Ixqt -< M ,  

for  some M < oo and all i and j, and that 

(1.16) E[IelI4*P] < ~¢ f o r s o m e  p > 0 .  

Then as d ~ 0, 
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(1.17) 

(1.18) 

T a / n o ( d ) -  1 a.s. ,  

E(Td)/no(d) -" 1 (asymptotic efficiency), 

and 

(1.19) - -<  d }  - -  1 - y 

(asymptotic consistency). 

The proof of the theorem requires several lemmas. Two of these are 
given in Section 2, where it is shown among other things that under mild 
conditions R~(a) is in fact a strongly consistent estimate of 0-:(a). These two 
lemmas together suffice to prove (1.17) and (1.18). The proof of (1.19) 
requires uniform continuity in probability of the coordinates of the 
sequence 

- . 

The analysis is rather delicate and appears in Section 3, along with the 
proof of Theorem 1. I. 

The assumption that IxiA -< M for some M <  ~ and all i a n d j  is not 
very restrictive, as this will be satisfied in almost all practical settings. The 
assumption that some moment of the error distribution higher than the 
fourth is finite is more bothersome, as one of the reasons for trimming in 
both location and regression models is the possibility of heavy-tailed error 
distributions. However, even when all the moments of the error distribu- 
tion are finite, 0-2(a) for  some choices of a ~ 0 may be much smaller than 
the variance 0 -2 of the ei's. This is true of contaminated normal distribu- 
tions, the double exponential distribution, and various t distributions, for 
example. Since 

nm(~  , - fl) 7" N(O, 0-21"-1) 

as n - -oo  for the least squares estimate /~,, the sequential procedures 
defined above will be more efficient than those based on least squares in 
such cases. 

It would be of interest to extend these results to cover a wider class of 
preliminary estimators. It would also be nice to have similar results for 
estimators other than the Welsh estimates. Use of a more robust preliminary 
estimator might eliminate the need for the moment assumption (1.16), 
while use of an alternative to the Welsh estimate could achieve, for 
example, a high breakdown point in addition to asymptotic consistency 
and efficiency. The main obstacle to such extensions is verification of 
uniform continuity in probability, which is typically much more delicate 
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than proving convergence in distribution. The least squares estimate and 
Welsh's estimate can both  be represented exactly as weighted sums of 
r andom variables to which Kolmogorov 's  inequality can be applied, either 
condit ionally or uncondit ionally.  Other robust  estimators, especially those 
with high breakdown point  such as the repeated median and least median 
of squares, do not  admit  such a representat ion or even (in some cases) any 
closed-form representation at all. The technical difficulties associated with 
proving uniform continuity in probability for such estimators are formi- 
dable and appear at present to be intractable. 

Finster (1985) discusses fixed-size confidence regions of general shape, 
not necessarily ellipsoidal, for the case of normal ly  distributed errors and 
least squares estimates. The approach  in the present paper can be used in 
this more  general setting. Specifically, a suitable sequential procedure  
based on ~ ( a )  can be defined and shown to be asymptotically efficient and 
asymptotically consistent as the "precision" (as defined by Finster) goes to 
infinity. The details are similar to those below and are omitted. 

2. Preliminary lemmas 

Throughou t  this section and the rest of the paper, for any p-vector  o, 
II o LI will denote 

Io 1 + . .  + Iopl. 

The first l emma addresses the question of almost  sure convergence of R~(a) 
to O'2(a). 

LEMMA 2.1. A s s u m e  (1.14) and(1 .15)  hold. A s s u m e  also that 

E[lellzq] < ~ f o r  some  q >  1. 

Then f o r  any 3 > O, as n ~ ~ ,  

(2.1) 171 /2 -6 (R2n(a )  - -  0"2({~)) ~ 0 a . s .  

PROOF. Let e,t denote the l-th order statistic among e~ .... , e,. Because 
there are exactly 1 &'s less than  or equal to e,~, and each tx~j[ < M, there 
must  be at least l ei(O,)'s less than or equal to e,l + nll~.-  #11. Hence 
e , , (~)  < e,~ + Mll/]~ - #11. Similarly, e,~ _< e,t(~,) + Mtt~, - / I l l ,  so that  

(2.2) le,t(O,) - ~nll ~ MIIO, - Oil for l -< 1<_ n .  

By Theorem 1 of Lai and Wei (1982), in view of (1.5), 
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(2.3) N). - ,611 = O((n/ log (n)) -'n) a.s. 

Because ~t¢ is the average of the n -  2[an] inner ordered residuals, from 
(2.2) and (2.3), 

(2.4) I~r - m , ( a ) l  = O((n/ log  (n)) -1/2) a . s . ,  

where mn(a) is the a-trimmed mean of the ei's, 

n-[an] 
mn(a) = (n - 2[an]) -1 Y. 

l=[an]+ 1 
~nl  • 

By similar reasoning, using the facts that 

e.[~.l--" F-'(a) a.s. ,  

e...-[~.] "--" F-l(1 - a) a.s. ,  

and 

m.( a) -" 0 a.s. 

(see (2.8) of Martinsek (1984)), 

(2.5) R2.(a) = (1 - 2a) -2 [ (n - p)-' i=l~ (e,(fl~) - ~K)ZK~ 

+ a(&o() . )  - + a(&(,-o)(l}.) - ] 

n-Jan] 
= ( 1 - - 2 a )  -2 ( n - p ) - '  E ( e , l - m , ( a ) )  2 

/=[an]+ I 

+ a(ent.,,]- m.(a)) 2 + a(en, n-t~.l- ran(a)) 2 ] 

+ O((n/ log (n)) -~/2) a.s. 

By Lemma 2 of Martinsek (1984), for any g > 0, the difference between the 
right-hand side of (2.5) and a2(a) is O(n -re+a) a.s., which finishes the proof. 

The next lemma deals with q-th moment  convergence of R~(a) to 

LEMMA 2.2. Assume that (1.14) and (1.15) hold. Assume also that 

E[Je, J 2 q ] < ~ ,  
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where q >_ 1. Then as n --. oo, 

(2.6) E{IR2(a) - cr2(a) l q} - O(n-q/2). 

PROOF. By a result of Brown (1971) (see also Chow and Teicher 
(1978), p. 398), since all Ixijl <- M and (1.5) holds with F positive definite, 

(2.7) E{[I~, -//112q} = O(n-q). 

By Jensen's inequality, (2.2) and (2.7), 

(2.8) E{l~r - m,(a)l  2q} <- E {  (n - 2[an]) -1 

= O ( n - q ) .  

n-Jan]  } 

~-~ ] e n l ( ~ n )  - -  ~nl[ 2q 
l=[an]+ 1 

Similarly, by (2.2), (2.7), (2.8) and (3.14), (3.24) of Martinsek (1984), for 
any 1 = [an] + I, . . . ,  n - [an], 

(2.9) E{l(ent(~n) - -  e K )  2 - -  (en l  - -  mn(a))2l q} 

< E1/Z{le.z(~) - e.t + m.(a)  - -eKI 2q} 

× El/Z{le.t(~.) + e . t -  m.(a)  - eKI :q} 

-_ O(n-q/2) . 

Combining (2.9) with another application of Jensen's inequality and (3.29) 
of Martinsek (1984) yields the desired result. 

COROLLARY 2.1. A s s u m e  that  (1.14) and  (1.15) hoM. I f  E[lel l  4÷p] < 
oo f o r  some  p > O, then 

(2.10) {dTd: d <_ 1 } is un i formly  in tegrable .  

PROOF. For K > Z2(p)(2a2(a) + 1) + 1, by Lemma 2.2, 

sup e[dTd  > K] <_ sup P[R2tKd '](a) > [Kd-1]d/z~(p)  - 1] 
d < _ 1 d_ < 1 

< sup e[R2~Ka'l(ct) > 20"2(a)] 
ds l  

-< sup P[IR}Ka-'I(a) - cr2(a) l > cr2(a)] 
d<_l 

_< O(1) sup E{IR2tKa 'l(a) - cr~(a)l t2÷p/21} 
d<_l 

= O(1) s u p  [Kd-l] -(l+p/41 
d~ I 
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= o ( g - l ~ / 4 ) ,  

from which the corollary follows. 

3. Uniform continuity in probability and the proof of the theorem 

A sequence {z,: n_> 1} of random variables is said to be uniformly 
continuous in probability (u.c.i.p.) if for every e > 0, if J > 0 is sufficiently 
small and n is sufficiently large, 

(3.1) P{ 0_<k_<~,max , z~+k-z~,  > e  }<~ 

(see Woodroofe (1982), p. 10). The following proposition deals with 
uniform continuity in probability of the coordinates of nl/2(~,(a) - p). 

PROPOSITION 3.1. A s s u m e  that (1.14) a n d  (1.15) hold.  A s s u m e  in 
addi t ion that 

E[l~llZq]<~ f o r  some  q >  1.  

Then f o r  each j = 1, .... p ,  

(3.2) {nl/Z((~,(a))j - ~j): n _> 1} is u.c.i.p. 

The proof of Proposition 3.1 depends on a series of lemmas, the first 
of which is in effect an almost sure version of part of Lemma A.3 of 
Ruppert and Carroll (1980). For any p-vector A, define 

n 

(3.3) M~(A) = n -U2 ~, [a  -- l{ei < x ; A n  -1/2 + F-~(u)}] 
i=1 

and 

(3.4) M~-~(A) = n -1/2 Z [(1 - a) - I{e, <_ x ; a n  -1/2 + F-'(1 - a)}]. 
i=1 

Also, let F~ be the first row of F. 

LEMMA 3.1. A s s u m e  that (1.14) a n d  (1.15) hold. For  any  L > 0 ,  as 

(3.5) sup IMP(A) - M~,(0) +f(F-1(a) )F~A[  ~ 0 a.s. 
O<_[fAtI<_L 
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and 

(3.6) sup 
O<_IIAII<_L 

PROOF. 

(3.7) 
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I M~-°(a) - M~-~(O) + f ( F - l ( l  - a))F, a l  --- 0 a.s. 

Let 

S = {A: A = (k,(L + 1)/n, . . . ,kp(L + 1)/n), 

k~ . . . . .  kp = 0,___ 1 , . . . ,  ___n}. 

(3.8) 

For  any A with 0 <_ IIAII ~< L, if n _  L + 1, there exists z~¢ S with IAj- 
~Jl <- (L + 1) /n , j  = 1,..., p. Because each Ix,'~t -< M and all x~l = 1, we have 

n 

M'~(A) >_ n -1/2 ,~1 [a - I{ei <- x ~ n  -1/2 + (L + 1)Mpn -3/2 + F-t(a)}] 

-- M~,(~ + e M p ( L  + 1)/n) ,  

where e = (1, 0,..., 0)'. Similarly, 

(3.9) 

It follows that  

(3.10) 

(3.11) 

M~,(A) <_ M~,(~ - eMp(L + l ) / n ) .  

M~(A + eMp(L  + 1)/n) - M~.(O) + f ( F - ' ( a ) ) F , A  

<_ M~(A) - M~,(O) + f(F-~(a))F~ A + O(n -~) 

<_ M ~ ( ~ -  eMp(L  + 1 ) / n ) -  M.~(O) + f (F-~(a))F,~  

+ O(n-~). 

Hence, to prove (3.5) it suffices to show 

sup IIM~(A + eMp(L  + 1)/n) 
3~S 

- M~,(O) + f(F-~(a))rxAll --- 0 

sup 11 M,~(A - e M p ( L  + 1 ) / n )  
A~S 

and 

(3.12) 

- M~(O) +f(F-~(a))r~AII ~ 0 

Fix A ~ S. In view of (1.5), as n ~ ~ ,  

a . s .  

a . s .  
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I M~,(A + eMp(L + 1)/n) - M'~(O) + f(F-I(a))F1A[ 

<_ n - m  ]E r#i(A) +o(1) 
i=1 

uniformly in A, where 

(3 .14)  q , (A) -- I {&  <_ F-l(~t)} 

- I{~, _< x T a n  -1/2 + Mp(L + 1)n -3/2 + F-X(a)} 

- [ct - F ( x T a n  -1/2 + Mp(L + 1)n -3/2 + F-l(a))] .  

From (3.13), for n sufficiently large and e > 0, 

(3.15) P[IM~(A + eMp(L + 1)/n) - M~(0) + f(F-~(a))F~AI > e] 

<_ P[ p > en /212 ] . 

Simple computations show that 

(3.16) 

and 

(3.17) 

EOli(A)) = 0 

531 

E(,7~(a)) = O ( n  -'/2) 

as n -- 0% uniformly in A, so for some K > 0 and all A e S, n __- l, 

(3.18) ~ E(~I~(A)) <_ Kn 1/2 . 
i=I 

Using the Kolmogorov exponential bounds (see, e.g., Chow and Teicher 
(1978), Lemma 1, p. 338), we obtain from (3.16) and (3.18) that for some 
K ' >  0 and all A ~ S,  n > 1, 

(3.19) P[[~i--, rli(A) >enl/2/2 ]<- K'exp[-en' /a/(2Kl/2)]" 

It follows from (3.19) that 

(3.20) ~, P [ sup I g.~(a + e g p ( L  + 1)/n) - M~(0) 
n=l L A¢S 

+ f(F-l(a))F1A[ > e ] 
.I 
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<-nZ=l ~ P ~ rli(A) >enm/2 
= A~S n=l 

_< K'  ~ #(S) exp [ - enl/4/(2K1/2)] 
rt=l 

= K' ~2 (2n + 1) v exp [ - 8 n l / 4 / ( 2 K 1 / 2 ) ]  
n=l 

< O O .  

Because (3.20) holds for every e > 0, by the Borel-Cantelli Lemma, (3.11) is 
established. Similar reasoning proves (3.12) and completes the proof of 
(3.5). 

The argument for (3.6) is exactly analogous. 

LEMMA 3.2. Assume that (1.14) and(1.15) hold. Assume also that 

E[l~ltzq]<oo forsome q> 1 . 

T h e n  

(3.21) 

and 

(3.22) 

PROOF. 

(3.23) 

{nl/~(~,~(~,) - F-l(a)): n_> 1} is u.c.i.p. 

{nl/Z(~,o-~(i~ ) -  F-l(1 - a)): n>_ 1} is u.c.i.p. 

For any L > 0, 

P [  o_~k_<~max [(n + k)~/E(~¢.÷k~,,(~÷~) - F-l(a)) 

- -  n l / 2 ( ~ n a ( ~ n  ) - F-l(a))l > e ] 

-< P [  o_~xz,max (n + k)l/zlf ~,+k - fl 

+ e(~(,+k)~(~,÷k) -- F-l(a))ll > L ] 

+ P [  o~_k<_z,max I(n + k)l/z(~(,÷k)~(~+k) - F-l(a)) 

- nl/2(~na(~n ) - F-l(a))l > E, 

max (n + k)1/211~,÷k - 
O<_k<_,~n 

+ e(~(,+k)~(10,+k) -- F-l(a))ll -< L ] .  
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From (4.1.8) of Shu (1987), the proof of Lemma 2 in Martinsek (1987), and 
convergence in distribution, if L and n are sufficiently large and fi is 
sufficiently small, the first probability on the right-hand side of (3.23) is 
less than e/2. As for the second probability on the right-hand side of (3.23), 
it is smaller than 

(3.24) 

where 

P [  o~_k_<~,max I(n + k)V2(~¢.+~a([J.+k) - F - ' ( a ) )  - ~,+kI > e/3, 

max (n + k)V2ll#,+k - 
O<<k<_Jn 

+ e ( ~ ( n + k ) a ( [ J n + k )  - -  F-l(a))[[ -< L ] 

+ P [  max I(o+k-(,I  >~/3 ] 
O<_k<_~n 

( .  = { - M~,(n'/2([l.  - p )  + enl/2(~.~(#~) - F-l(a)))  

+ M ~ , ( O ) } / f ( F - l ( a ) )  - Fmni/E([J~ - f l ) .  

By Lemma 3.1, if d is sufficiently small and n is sufficiently large, the first 
probability on the right-hand side of (3.24) is less than e/4. Also, by the 
definition of ~n~(/]n), 

(3.25) M~,(nln([J,  - fl) + ena/2(~na(#n) - F - l ( a ) ) )  

= n -'/2 ~ [a - t { ~ , _  x;(tL - ~) + ~.o(~.)l]  i=1 

n - ' / 2 ~  [a  I { Y i -  ' "  
: - x , l J .  <- ~.o(/L)}] i=1 

= 0(n -1 /2 ) .  

Moreover, 

(3.26) {Fln' /2(#, ,  - fl): n _> 1} 

is u.c.i.p., as in the proof of Lemma 2 of Martinsek (1987), and 

(3.27) {M:(0)} = { n-l/2 i=1 ~ [a  -- I{ei  < r- '(a)}] } 

is u.c.i.p., because the a - I { e i  <_ F-I(a)} are i.i.d, and have mean zero. 
Combining (3.25)-(3.27), 
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{~.: n _> 1} 

is u.c.i.p., and hence if 8 is sufficiently small and n is sufficiently large, the 
second probability on the right-hand side of (3.24) is less than e/4. This 
completes the proof of (3.21). The proof of (3.22) is similar. 

PROOF OF PROPOSITION 3.1. We will show first that each coordinate 
of n-~A, is u.c.i.p. By (A.10) of Ruppert and Carroll (1980), 

(3.28) n-lA,, -7 (1 - 2a)F 

as n ~ ~.  Fix e > 0 .  For any j, l =  l , . . . ,p ,  ~ sufficiently small and n 
sufficiently large, 

[ - ' A  ] (3.29) P max In ( , ) j r -  (n + k)-l(A~+k)ilL >~ 
O<_k<<_gn 

= P m a x  n -1 ~ XijXilg~ - (n + k )  - l  xijxilg~ .+k > e 
O<k<gn i= 1 i= 

+ P max xoxi lK ' l -  ~, xqxitKni ÷k > en/2 
O<_k<_~n i= 1 i = [ ' 

where K7 is Ki defined in (1.2) and K ].÷k is Ki with n replaced by n + k. By 
(3.28), if 6 is sufficiently small and n is sufficiently large, the first probability 
on the right-hand side of (3.29) is less than e/2. The second probability on 
the right-hand side of (3.29) is smaller than 

(3.30) 

+ P  max , ~÷~xi~x~tK} *k > en/4 . 
O<_k<~ n "= 

For ~ less than e / 4 M  2, the second probability in (3.30) vanishes. The 
remaining term in (3.30) is smaller than 

(3.31) P [  M0_<k<_~nmax II//. -/~.+kll 

+ max I~.÷k~(~.÷k)- F-l(a)l 
O<k<_~n 

+ 0_~k_<z,max I~t,+k)(t-,)(~+k) -- F-I(I - a)L > n -1/4 ] 

[ ~] " K "+k , + P  max x i j x i t (K i -  i ~ >en /4  
O<k<gn i= 1 
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max Mrl/J,, - ~=+kll + max I~¢.+k),,(/],,+k) -- F-l(a)l  
O<_k<6n O<_k<_gn 

+ o_<k<_~.max I~(.+k)O-~)(//n+k) -- F-l(1 - a)[ _< n -1/4 ]. 

By L e m m a  3.2 in this paper  and the p roof  of Lemma 2 in Mart insek 
(1987), the first probabil i ty in (3.31) can be made less than e/4 if c~ is 
sufficiently small and n is sufficiently large. Because each Ix~A-< M and 
Ix~tl - M, since K7 ~ K] +k implies 

or else 

l e i -  F-l(a)l  - 2n -1/4 

lei- F-l(1 - a)l -< 2n -1/4 , 

the second probability in (3.31) is smaller than 

P[ i=1 ~ I { l ~ ' i -  F-I([~)I ~ 2n-1/4 

or lei - F-l(1 - a)l -< 2n -1/4} > en/4M 2 ] 

< (4M:/en)E[ ,=1 ~ I{ le i -  F-l(a)l  Z 2 n  -1/4 

or l e i -  F-l(1 - a)l < 2n -1/"} ] 

= O ( n  -1/4) --* 0 ,  

as n - - - ~ .  In particular,  the second probabil i ty in (3.31) can be made 
smaller than ~/4, and u.c.i.p, of each coordinate of n-lAn follows. By (3.28), 

P[n-IA, invertible] ---- 1 

as n ~ ~ ,  and hence by u.c.i.p, of the coordinates of n-tAn, 

(3.32) P[(n + k)-~An+k invertible, for all 0 <- k <_ 6n] -~ I 

also. U.c.i.p. of the coordinates  of nA-, now follows f rom (3.32), stochastic 
boundedness  of the coordinates  of n-lAn (see (3.28)), and L e m m a  1.4 of 
Woodroofe  (1982). Define 

ri, n : e i ( [Jn)  : Y i  - x~[Jn 

and 
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w.,.(x) = < - a) 

+ _< x _< ~n( l~a , (~n) /  

By the proof  of Lemma  2 of Mart insek (1987), f o r j  = 1 .... ,p,  

{nl/2((O.)j - ~j): n > 1} 

is u.c.i.p. It therefore suffices to show 

{nl/Z(()n(ot))j - ().)j): n >_ 1} 

is u.c.i.p. Fur thermore ,  in view of (3.32), it is enough to establish (3.1) with 
z, = nl/2(([J,(a))j-(~,)j) unde r  the a s s u m p t i o n  tha t  A,,...,A,+tzn~ are 
invertible. Then for each k = 0,... ,  [6n], 

n+k 
(3.33) ~,+k(a) ~ , , + ~ = - 1  - ~ A.+k E xiW.÷k,4ri,.÷~). 

i=1 

By (3.33) and L e m m a  1.4 of Woodroofe  (1982), together  with stochastic 
boundedness  of the coordinates of nA~ ~ and the coordinates of 

i=1 

it suffices to show that the sequence 

n -1/2 ~ xij W.,.(ri..) 
i=1 

is u.c.i.p, f o r j  = 1,..., p. Now 

(3.34) I n+k P max (n + k) -1/2 E xo l~n+k,a(ri, n+k) 
O<k<gn i= 1 

-n-'/2~x°W"'a(ri'n)[ >e" 

- to~<k-~. ,~1= xoW.÷k,~(ri,.+k)-- i=1~2 xoW.,~(ri,.) >en'/Z/2 

+ P[ [(l + 6 ) m -  l] l i~ xoW.,.(r,..) >en1/2/2]. 

The second probability on the r ight-hand side of (3.34) can be made less 
than  e/2 if ~ is sufficiently small and n is sufficiently large. It follows f rom 
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Lemma 3.2 that for every el > 0, if & > 0 is sufficiently small, 

nl /2  A P max I (~.+k)~(fl.+k) - ~.~(/).))l 
O<_k<_&n 

1/2 ^ ] 
+ m a x  In (~(n+k)(l-a)(~n+k) --  ~n(1-ct)(~n))l > el < e l ,  

O<_k<Jm 

and hence to make the first probability on the right-hand side of (3.34) less 
than e/2 it will be enough to make 

P[ max ] "+k ] I. o<_k<_,~n ,~I": x U  Wn,a(r i ,  n+k) - i:  ~1 Xi j  W.,.(ri,.) > tnl/2/4 < t / 4 .  

But 

nl/2,, r,..I < MnV211 ,, /}.+kl[ i ti, n+k - -  _ -- , 

and by u.c.i.p, of the coordinates of nl/2(fln -- f l)  (see Lemma 2 of Martinsek 
(1987)) with the fact that 

[ W~,4x)-  W~.(y)l ~ ] x - y l  

for every x and y, it suffices to show 

P max xiy Wn,  a(ri, n) - ~,  x i j  Wn ,  a(ri, n) 
O<_k<_Jn i= i= 1 

= max i=Z÷ixijW.,4ri,.) >enl/2/8 < e / 8 .  
O<_k<_6n 

Given el,...,e., the Wn,a(ri, n), i = n + 1, . . . ,n  + [6n], are independent. By 
Kolmogorov's inequality and a result of Chow and Studden (1969), 

P max xiy[W. ,4r i , . ) -  E(Wn,.(ri, .)leu.. . ,e.)] 
O<_k<_Jn i= 1 

> en'/2/8 re1,..., e. ] 
d 

< 64/(ne2) .~.1 2 - i=.+1 xu  Var [W..4ri..)lel .... ,e.] 

= 64/(ne 2) "~a"J x/2y Var [ W.,4r,.~) + a#.~(/~.) 
i=n+l 

2 <_ 64/(nez) .+~a.l xu  Var [ei + x~(fl-/].)It1,... ,  e.] 
i=n+l 
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= 64/(ne2) .+~.1 x2 ~ Var  (e,) 
i=n+ 1 

<_ 64MZc~naZ / (ne 2) < e~ 16 a . s . ,  

if c~ is sufficiently small. Hence  

P m a x  xq[W~,~(ri, n ) -  E(W,,~(ri, n)[el,.., e~)] 
O<_k<<_,~n i= 1 

> enl/2/8 ] < e/16.  

It remains  to show tha t  if ~ is sufficiently small  and  n is sufficiently large, 

(3.35) P m a x  i~+lXijE(W,,~(ri,~)lel,...,e,) >enl/2/8 
O~k<gn = 

< e / 1 6 .  

We have tha t  for  i = n + 1,..., n + [6n], 

(3.36) E[  W,,~(r~,,)I e~,..., e~] 

= ~.~(~],)[F(x'(/]. - / 1 )  + ~.~(~.)) - a] 

x;( ~o-0)+ ~.. A#.) 
~- Jx',(~.-~6)+~..(~.) [ X  --  X~(On --  [ J ) ] f ( x ) d x  

/- 

+ ~.,,-~)(~)[1 - F(x;([Jn - I$) + ~.,,-~)([J,)) - a]. 

F r o m  (2.2), 

and  

~.~(~.) = F-l(a) + Op(n -m) 

~.(I-~)(O.) = F- l (1  - a )  + O p ( n - ' / 2 )  . 

It fol lows f rom this and  (3.36) tha t  

E [  W n . a ( r i , n ) [ ~ . l , . . . ,  ~.n] = O p ( n - l / 2 )  , 

which proves  (3.35) and hence  P ropos i t i on  3.1. 

P R O O F  OF T H E O R E M  1.I .  First  note  tha t  since 

Td >- (Z~(p)d-l) '/2 , 
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Td -"  o~ a.s. as d - "  0. F r o m  L e m m a  2.1, 

R~(a) --" a2(a) a.s. 

as n ~ ~ ,  so we have 

(3.37) R ~ ( a )  -" aZ(a) a.s. 

and 

(3.38) R2Ta-I(•) ~ a2(a) a.s. 

539 

as d - - - 0 .  (1.17) now fol lows f r o m  (3.37), (3.38) and the def ining re la t ion 
for  Td. (1.18) is immed ia t e  f r o m  (1.17) and Coro l l a ry  2.1. Final ly ,  by  (1.6), 

P ropos i t i on  3.1, (1.17) and Anscombe ' s  (1952) theorem,  as d---  0, 

T~/2([Jr~(a) - ~) -~N(O, a2(a)F-m) , 

and (1.19) fol lows f rom this and (1.17). 
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