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Abstract. In this paper we investigate the limiting behaviour of the 
measures of information due to Csisz~ir, R6nyi and Fisher. Conditions for 
convergence of measures of information and for convergence of Radon- 
Nikodym derivatives are obtained. Our results extend the results of 
Kullback (1959, Information Theory and Statistics, Wiley, New York) 
and Kirmani (1971, Ann. Inst. Statist. Math., 23, 157-162). 
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1. Introduction 

The study of limiting properties of sequences of distributions is of 
fundamental importance in probability and mathematical statistics. In 
statistical information theory, the limiting behaviour of measures of infor- 
mation has been investigated by Kullback (1959) and Kirmani (1971). 
These authors have studied only the measures of information due to 
Kullback-Leibler and Matusita, respectively. Related are the papers by 
Linnik (1959), R6nyi (1961), Brown (1982) and Barron (1986) and Chapter 
8 of a recent book by Liese and Vajda (1987). No results are available 
concerning Fisher's fundamental measure of statistical information or the 
other measures of information proposed by R6nyi (1961) and Csisz/tr 
(1963). 

The aim of the present paper is to investigate the limiting properties of 
the latter measures of information. The main result states that if a sequence 
of generalized probability density functions (gpdf's) converges uniformly to 
a gpdf, then the corresponding measures due to Csisz~ir (~b-divergence) and 
R6nyi (information gain of order a) converge to their minimum value; 
conversely, if the measures converge to their minimum value, then the 
gpdf's converge in distribution. Thus we obtain a new criterion of conver- 
gence in distribution based on the Csisz~r and Rbnyi measures of infor- 
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mation which can be used to prove limit theorems in probability and 
statistics. 

2. Main results 

Consider the measurable transformations TN(X), N = 1, 2,..., of the 
probability spaces (,~, , ~ ,  gO onto the probability spaces (~¢, ,~r, o~N)), 
where OI'N)(G) = pi(T;4~(G)), T~(G) = {x ~ ~'.  TN(X) ~ G}, G ¢ ._~r and i = 1, 
2. Let also T(x) be another  measurable transformation of (,~, ,_~, p;) onto 
( ~ ,  .g2", o~). TN(x) and T(x) are statistics and N may be the sample size. 
Suppose that the probability measures ol .NI, o,-, i =  1, 2 are dominated by a 
a-finite measure 2 and let g~)V)= do~.N)/d2, g~= dodd2, i =  1, 2 be the 
corresponding Radon-Nikodym derivatives (or gpdf's). 

The Csisz~ir and R6nyi (of order a) measures of information in v2 
about Ol are defined, respectively, as 

IC(ol, 02) = fs/g24~(gl/ g2)d,~ , 

IR(o1, 02) -- 1 f ~  = 1-= a 1 log . glg2 d2, a>O ( a ~ l )  

where 4~ is a real valued convex function on [0, oo) (cf. R6nyi (1961) and 
Csisz~ir (1963)). The measures IC(pl,g2), f ( g l , g 2 ) ,  IC(ol NI, v~ NI) and f ( o l  NI, 
vt m ) are defined analogously. 

2.1 Csiszdr's measure 

THEOREM 2.1. I f  the TN(X), N = 1, 2,... are such that 

gl 'N) --~ gi, i = 1, 2 

in the mean, then 

IC(pl,lt2) > limsup IC(o[ NI, v ~z NI) >- liminf IC(o[ NI, ot NI) >_ IC(Ol, 02). 

PROOF. (a) Let e = {G1, G2 . . . . .  Gk} be a finite partition of ~,e into 
pairwise disjoint sets such that G~ ~ ~ r  and UGi = ~¢, i = 1, 2,..., k, then 
(Perez (1968) and Vajda (1972)) 

~Ct. (N) . (N).~ (N) 
. ~t,, ,o2 , SUPe. H t~l'= o~N)(Gi) 

where H is the class of all finite partitions of ~ as indicated above. 
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Therefore 

Accordingly, 

k ( o [ N ) ( G i )  ) 
IC(o[ N), o~ N)) > ~., o~tl( Gi)$ 

- -  i= 1 O (2NI( Gi)  

k 

(2.1) l i m i n f ,  wl , 02 ) > liminf Z o~N)(Gi)dp . 
N-- ~ -- N-- ~ i= 1 o~N)( Gi) 

Since g!N) ~ gi in the mean is equivalent to 

(2.2) off ' (G)  --. o,( G)  , 

uniformly in G ¢ ~", i = 1, 2 (cf. Lo6ve (1963), p. 140, Problem 16 and 
Burrill (1972), p. 176, Theorem 9-4A) and since ~b is continuous on [0, oo), 
relation (2.1) gives 

[ o,(a,) / 
(2.3) lim_inf IC(o[ m, o~ NI) > ,~, o2( G,)ck \ ~ I" 

Hence 

(2.4) liminf IC(o} m, o~ N~) >_ IC(ol, 02), 

because the right-hand side of (2.4) is the supremum of the right-hand 
expressions of (2.3) over all such partitions of ~ .  But Csisz~ir's measure of 
information satisfies the maximal information property (cf. Csisz~tr (1963)), 
that is, 

Thus we have 

(2.5) 

IC(lll, ~2) -> IC(o[ m, O~NI) . 

TCi, (N) . (N)-~ IC(ltl,fl2) >_ limsup ~ tt,1 , u2 ) .  
N ~ o o  

Inequalities (2.4) and (2.5) establish the theorem. 

The proof of the theorem did not require the "uniform" part in the 
condition u!•l(G)-, vi(G) uniformly in G e .~r, i = 1, 2. The theorem was 
stated with the stronger and equivalent condition gl .NI-. g;, i-- 1, 2 in the 
mean since this condition is easier to verify than the absolutely essential 
o n e .  



454 K. ZOGRAFOS ET AL. 

If the limit of the sequence of information measures IC(o[ re,o(2 u)) 
exists, then by Theorem 2.1, lC(/zl,B:) and IC(ol, O2) are upper and lower 
bounds of this sequence. 

COROLLARY 2.1. I f  in addition to the conditions o f  Theorem 2.1 
T(x) is sufficient w.r.t. {/xl,/z2}, then 

lim IC(o~ N), O~ N)) = IC(ol, 0 2 ) .  

THEOREM 2.2. Let 

lim g~U)(y) _ 1 [2] 
N-~ gdY) 

uniformly, i= 1, 2. I f  

l im ( glU)(Y) ) : cb ( g'(Y)g-~ ) g~U)(y) [2], 

uniformly and f~¢ g2ldp(gl/ g2) ld2 is finite, then 

lim IC(o} N), o(2 N)) = IC(o~, 0 2 ) .  
N ~  

PROOF. We have 

I IC(ol, 02) - IC(o[ N), o2tN)) I 

-- fo~g2O(g,/g2)d2 - f~,g(N)qb(g[S)/g~N))d2 

<- f ~u )g2O(gl/ g2) - g~2N)4~(gl/ g2)ld 2 

+ fj~, l g2W)~b(g~/g2) - g~N)tk(g~N)/g>tN))l d)t 

-< f ~ l l  - (g~S)/gz)llek(g~/g2)lg2d2 

+ f:j~, I .~(g~/g2) - dP(g~U)/g~N))l(gt2N)/g2)g2d2. 

By the conditions of the theorem, for sufficiently large N and e > 0, we also 
have 

gtU____~ g l  -- 4) ~ < ~ a n d  
1 - g2 < ~' ~b g :  g~m g2 

- - < l + e .  
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Therefore 

r c z .  (N) . IN)x _ f ~ /  I" I U1 ,02 ] lC(ol, v2)l <_e g z l ¢ ( g l / g 2 ) l d 2  + e(1 + e) , 

which establishes the theorem. 

The results of Theorems 2.1 and 2.2 translate into simple inequalities 
and limiting forms when the second argument (distribution) of the measure 
of information remains fixed while the first argument g~m_. gl in the 
mean. 

Next we consider the case where the sequence {g~N)}, N = 1, 2,... of 
gpdf's in the first argument of the measure of information converges 
uniformly to the gpdf of the second argument. The result almost holds 
both ways, i.e., if the sequence of gpdf's converges uniformly to a gpdf, 
then the corresponding measures of information converge to their minimum 
value; conversely, if the measures converge to their minimum value, then 
the gpdf's converge in distribution. Thus we obtain a new criterion of 
convergence in distribution which avoids the Fourier transforms and is 
based on the Csiszfir measure of information. 

THEOREM 2.3. / f  

lira --glm(Y) - 1 [2], u-= gI(y) 

uniformly, then 

lim IC(o~ N), ol) = ~b(1), 
N ~ o o  

if ok is differentiable and 8'(1) is nonnegative and finite. 

PROOF. A Taylor series expansion of ¢(g~N)(y)/gl(y)) around the 
point 1 yields 

g,(y) g , ( y )  , 

iN) where ulm(y) lies between gl (y)/gl(y) and 1. Then 

IC(o~N),ol)-Ch(1) = f ~ (  g~m(Y)- l )g,(y)dp'(ulU)(y))d2 
gl(y) 



456 K. ZOGRAFOS ET AL. 

By using convergence of glN)(y) to gl(Y) for sufficiently large N and e > O, 
we have 

g[Nl(y) 1 I < e .  
g,(Y) 

Since ¢ is convex, ¢"_> 0 and hence ¢ '  is an increasing function. Thus 
dy(u(N)(y)) is either less than or equal to ~b'(1) or less than or equal to 
4f(g~Nl(y)/g~(y)) <_ ~b'(1 + e) for sufficiently large N, for all y[2]. In addi- 
tion, ¢(1) is the minimum value of IC(vt N), ol), for all N. Thus 

O<__IC(o}N),o1) -q~(1)<a~b'(1 + e), 

for sufficiently large N and therefore lim IC(o~ m, 01) = ¢(1). 

For the next theorem we shall assume that the probability spaces are 
Euclidean. 

THEOREM 2.4. If  

lira [C(o}N), 01) = ¢(1), 
N ~ e ~  

then o~N)( G) ~ off G) for G ~ . ~  or g~m(y) ..., gffy) in distribution. 

PROOF. Consider again a partitioning of ~ into pairwise disjoint 
sets such that Gi ~ ~i" and UGi = ~/, i = 1, 2,..., k. Then 

k (OINI(Gi) )> 4)(1). 
K(o~ N), o,) >_ ~Z o~( G~)¢ o,( G,) - 

By the condition of the theorem we have 

¢(1) > lim E Ol(Gi)qb ~> ¢(1) 
- ~ - ~  i :~  o l ( G , )  

o r  

k (o}N)(Gi)) 
lim i__Z1 t)l(Gi)¢ 
N- ~ ": ol(Gi) 

Our purpose is to prove that 

= 6(1).  
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(2.6) lim o[m(G) = Ol(G) in G e .~r.  
N~oo 

Suppose  (2.6) is not  true. Then there exists a subsequence NI < N2 < ... < 
Ns < ... of  the integers and a probability measure o on (~r , .~-)  such that  

(2.7) lim o[Ns)(G) = o(G) for G ~ ,~ r  and offG) ~ o (G) .  
$~oo 

The continuity of ~b gives 

k k (o,o,,) 
lira Z o1(G,)¢ = ,=Z 1 o i (G)¢ 

_ ,=1 O l ( a / )  = 

But  i~1 o l ( a i ) ~ ) [ v I N s ) ( a i ) / v l ( a i ) ]  i s  a s u b s e q u e n c e  

c~[o[m(Gi)/Ol(Gi)] } which converges to 4)(1). Thus 

2 o,(Gi)ck = ~b(l) 
i=1 ~ " 

k 

of  i~=lOl(Gi). 

This is possible only if Ol(Gi) = o(Gi)  (cf. Csiszfir (1963) or Perez (1968)) 
which contradicts  (2.7). Thus  Theorem 2.4 is proved. Convergence in 
dis t r ibut ion follows f rom Theorem 29.1 of Billingsley ((1979), p. 392) or 
Barron ((1986), p. 339). 

The above theorem presents, under  somewhat  different conditions,  a 
part icular  case of Propos i t ion  8.6 of Liese and Vajda (1987). It is useful in 
establishing limit laws. We have used it to prove the ergodic theorem for 
homogeneous  Markov  chains (cf. Zografos (1987)). 

2.2 ROnyi's measure 
R6nyi's measure of information can be obtained from Csisz~ir's measure 

by taking th(u) = sign (a - l )u ~, u > 0, a > 0 (a # 1). In fact, for this choice 
of 4~ we have I R = (a - 1) -1 log [IC[. Another  choice of ~b is ~b(u) = ( a -  1) -1 
• (u a - au + a - 1) with I R = (a - 1) -1 log [(a - 1)I c + 1]. In both cases, I R is 
a cont inuous  and increasing funct ion of I c. In view of this relationship, the 
following results are immediate  consequences of the corresponding results 
of Subsection 2.1. 

THEOREM 2.5. f i g !N)  --. gi, i = 1, 2 in the mean, then 

1R(/21, f12) --> l imsup IR(o~ m, or2 m) >_ l iminf IR(o~ m, o~ m) > IR(Ol, 02). 
N~oo N~oo 
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COROLLARY 2.2. I f  in addition to the conditions o f  Theorem 2.5 
T(x) is sufficient w.r.t. {p,,p2}, then 

lim IR(o~ N), o~ N)) = IR(o,, Oz), a > 0 (a ¢ 1). 
N ~  

THEOREM 2.6. Under the conditions o f  Theorem 2.2, we have 

lim .R,. (N) . ( N ) ~  IR(OI,O2), a > 0 (a ~ 1) I ~Ol , U2 ] ---- 
N--~  

THEOREM 2.7. Under the conditions o f  Theorem 2.3, we have 

lim f (o}  m,o,)=O, a>O ( a ~  l ) .  
N--~  

THEOREM 2.8. I f  

l i r a  f(o~ NI, 01) ~-- 0 ,  a > 0 (1~ =;k 1 ) ,  
N--u~ 

then o~N)( G) - -  oI(G) in G c ,~; or g~N)(y) ---, gffy) in distribution. 

The discrete version of this theorem has been proved by R6nyi ((1970), 
p. 597). 

2.3 Fisher's measure 
As is natural to expect, the limiting behaviour of Fisher's parametric 

measure of information is analogous. This may be seen on using Theorem 
2.6 and the relationship IR(O)= (a/2)lF(O) between R6nyi's and Fisher's 
measures of information (cf. Ferentinos and Papaioannou (1981), Theorem 
4.1). Certain smoothing conditions must be imposed for the limits to go 
through. 

Let 

2 

and 

2 

be Fisher's measures of information based on the gpdf's gtN)(y, 0), N = 1, 
2,..., and g(y, 0), respectively. Let also 



and 

LIMITING PROPERTIES OF INFORMATION MEASURES 

It(O) = liminf 1 ao-o ~ IR(gtNI(Y' 0), gIN)(y, 0 + AO)) 
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IR(O) = liminf I ~o-o ( - ~  IR(g(y'O)' g(y,O + AO)) 

be R6nyi's corresponding parametric measures. The parameter  space O is 
an open subset of the real line. 

THEOREM 2.9. Suppose that the regularity conditions o f  Fisher's 
information measure are satisfied. Suppose moreover that for  all gpdf's 

involved, f. [(02/O02)g(y, 0)IDA < oo for  all 0 e 0 and the third partial 

derivative o f  g(y, O) with respect to 0 exist for  all 0 ~ 0 and ally[A]. I f  

i) lim g(Nl(y, 0) _ 1 and 
u-oo g(y, O) 

u-= g~N~(y, 0 + AO) g(y, 0 + AO) and a > 0 (a e 1), 

uniformly for y[21 and O, 0 + AO c O. 

ii) IR(glm(y,O), glm(y,O + AO)) is continuous with respect to AO for  
0 e 0 and N = 1, 2,... then 

lim I~r(O) = IF(O) for  0 ~ O . 
N ~  

PROOF. By Theorem 4.1 of Ferentinos and Papaioannou (1981) 

g(O) = 2 It(O)= 2 liminf 1 --a ~o+o ( - ~  IR(g<NI(Y' 0), g<m(y, 0 + AO)) 

and 

IF(O ) = 2 IR(O ) = 2 l i m i n f  1 --a --a ao-o ( - ~  IR(g(Y' 0), g(y, 0 + AO)) . 

By Theorem 2.6, taking the limit as N --+ oo and for AO taking values 
outside a neighborhood of zero, we have 
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i%(o)= 2 1 ( 

N-=lim a- ~o- o ( - ~ l i m i n f  [ l i m  IR(g(y, 0), g(m(y,O+ AO)) I, 

2 l iminf  1 ---a Jo-o ( - -~  IR(g(y'O)'g(y' O+ AO)) 

= Ie(O) for 0 c O. 

The converse of this theorem remains an open question. 
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