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Abstract. A procedure for selecting the t largest of k multivariate 
normal populations on the basis of distance is reviewed. Computation of 
integrals of products of non-central Beta distribution and density func- 
tions, required for implementing the procedure, is described. A table of 
minimum sample sizes needed to guarantee a specified probability of 
correct selection is given (Table 1). 
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1. Introduct ion 

A new statistical methodology began in the mid-1950's with the early 
definitive formulations by Robert Bechhofer, Shanti Gupta and Milton 
Sobel for problems requiring selection and ordering (or ranking) of popula- 
tions. 

An experimenter is often required to compare k (_> 2) populations. 
For example, these populations may represent different drugs for treatment 
of a certain disease, or different fertilizers for increasing the yield of a 
certain crop. A parameter 0 characterizes each population, e.g., 0 may be 
the success rate in treatment with a drug or the crop yield associated with a 
fertilizer. While a classical approach has been to test the "homogeneity" 
hypothesis that 0~ . . . . .  Ok, where 01,...,0k are  the unknown values of the 
parameter 0 for the k populations, this is often inadequate if the real goal 
of the experimenter is to identify the best population (i.e., the best drug or 
the best fertilizer). 

The extensive development of methods and applications in selection 
and ranking procedures has generally followed either the "indifference- 
zone" approach of Bechhofer (1954) or the "subset-selection" approach due 
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to Gupta (1956). In its simplest form, the indifference-zone procedure is to 
take a single sample of fixed size n from each of the k populations and to 
select the population yielding the largest value of an appropriately chosen 
statistic 0 as the best population, i.e., as the population with the largest 
(true but unknown) parameter 0. The minimum value of n is determined so 
that the probability of selecting the best populat ion-- the probability of 
correct selection--is guaranteed to be at least a specified value P* (1/k < 
P * <  1) whenever the difference between the largest and second largest 
parameters is at least a specified value fi*, or 0[k] - Otk-~I >-- fi*. If the two 
largest (but unknown) population parameters differ by less than fi*, we are 
"indifferent" to which population is selected as largest. In contrast, for 
fixed sample size n and P*, a simple subset-selection procedure selects a 
subset of the k populations so that the best population is included in the 
subset (whose size may be determined by the data) with probability >_ P*, 
whatever the configuration of the unknown parameters. 

The literature on selection and ranking methods now includes many 
variations and generalizations of these approaches. Recent overviews are 
provided by Bechhofer (1985) and Gupta and Panchapakesan (1985). Other 
useful references with broad coverage are the books by Gibbons et al. 
(1977) and Gupta and Panchapakesan (1979), and the categorized biblio- 
graphy by Dudewicz and Koo (1982). 

2. Selection from multivariate normal populations 

Alam and Rizvi (1966) considered two problems of selection from k 
multivariate normal populations. In Problem I it is required to select the t 
best of the k populations, 1 <_ t _< k. (In Problem II it is required to select a 
subset of the k populations which contains the t best populations. We 
restrict our attention to Problem I and its more difficult computational 
aspects for preparing tables required for its solution and application.) The 
probability of a correct selection is required to be at least a pre-assigned 

quantity 

Let zri represent a p-variate normal population with (p x 1) mean 
column vector/zi and (p × p) positive definite covariance matrix Z'i, i-- 
1 ..... k. We rank the k popula t ions  according to the values of the 
Mahalanobis (1930) distance function O; =/t~Ze-1/z~. Then rot is called larger 
than rcj if 0; > 0> A sample of size n (n x p) is taken from each population, 
yielding sample mean vectors ~i and covariance matrices S~. Sample 
distance functions are Ui = ~ r i - l ~ i  and V~ = ( ~ ' S ~ - l ~ ) ( n - p ) / ( n p ) ,  and we 
use 0~ = U, or 0i = V~ according to whether the covariances are supposed to 
be known or unknown. Note that n U~ is distributed as non-central Z 2 with 
p degrees of freedom and non-centrality parameter n/t~L'i-~/t~, and n V, has 
the non-central F distribution with p and ( n -  p) degrees of freedom and 
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the same non-centrali ty parameter .  
Denot ing  the i-th largest sample parameter  by 0[0, we select as largest 

the t popula t ions  cor responding  to the t largest sample values 0Ekb..., 
0tk-, + t]. We further  preassign values 3~ > 0 and 32 > 1 and then determine 
n to guarantee  that  the probabil i ty of a correct selection is at least P* 
whenever 

Otk - t + 1] - -  O[k - t] ~ 3 1  a n d  

O[k- t + l l /  O[k-  t] ~ 32 , 

that  is, whenever the t largest popula t ions  are sufficiently larger than the 
next largest populat ion.  

3. The solution 

The ranking of k multivariate normal  populat ions,  as presented here 
in the fo rmula t ion  of Alam and Rizvi (1966), is shown by them to reduce 
to ranking (with respect to the non-central i ty parameters)  the non-central  
Z z or non-central  F populat ions .  In order  to apply the procedure,  one must  
fix P*, 31 and 32 and solve (3.1) for n: 

(3.1) P* = t f ;  Hk-t(x, 21){ 1 - H(x, 22)}'-lh(x, 22)dx, 

where H and h are non-central  distr ibution and density functions with non-  
centrality parameters 

n& 
2 1  - -  - -  2 2  = 3 2 2 1  . 

( 6 2 -  1) ' 

For  the case where covariance matrices are known,  H is the non-  
central Z 2 dis tr ibut ion funct ion with p degrees of freedom. The non-central  
X 2 distr ibution was computed  using the modified Bessel funct ion repre- 
sentat ion and recurrence relations given by Seber (1963), and the density 
function was computed  using recurrence relations and definitions given by 
Alam and Rizvi (1966). Numerical  methods  similar to, but  somewhat  
simpler than,  those described below were used to solve (3.1) for n61 for 
t --- 1; P* = 0.90, 0.95, 0.99; k -- 2(1)10; p = 1, 5, 9, 29; 32 = 1.01, 1.05(0.05) 
1.25(0.25)2.00(0.5)3.00 and reported as Table S.1 in Gibbons et al. (1977). 
Solutions for t = 2 were computed  but  not  reported. 

For  the more  realistic case of u n k n o w n  covariance matrices, H is 
p/(n - p )  t imes a non-central  F distr ibution,  i.e., the distr ibution funct ion 
of the ratio of a non-central  Z 2 variable with p degrees of f reedom and 
non-central i ty parameter  2 and an independent  central Z 2 variable with 
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n - p  degrees of freedom. Specifically, Alam and Rizvi (1966) write (3.1) as 

fo  G 2 (3.2) P* = t Gp.q(X,2,){1 -- p,q(X, 2)}t-'gp, q(X,J.2)dx, k-t 

where q -- n - p ,  h is 

e -~/2 ~ xtp/21+r-lF(p/2 + q/2 + r) itr 
gp, q(X, 2)  -- F(q/2) ~=o (1 + x)(P/2)+tq/2)+rI'(p/2 + r) 2 r! x > 0 

and 

Gp, qC x,  it) = f o gP,q( Y , 't )dY ' 

Solution of (3.2) for n involves the following features. 
First, transformation of variables from non-central F to non-central 

Beta yields 

(3.3) f l B k - ' (  P q ,it1) P* -'- t o Y; 2 ' 2 

2 '  
- -  q , i t 2 ) } t - l b ( y ;  p q , 2 2 ) d y  

2 2 ' 2  ' 

the complete Beta function. 
Second, evaluation of B(x; c, d, 2) is done using the representation by 

recurrence relations among generalized Laguerre polynomials given by 

x we+J-l(1 - w)d-ldw 
l(x; c + j, d) = f~ B(c + j, d) ' 

with 

where the region of integration is now finite. The non-central Beta density 
function is 

b(y;c, d, 2) = ~ e-;~/2"]'r yC+r-l(1 __ y )d - I  

r=O 2rr! "~C+ r,-~ dy ,  

with B(c + r, d) = F(c + r)F(d)/F(c + r + d), and the non-central Beta dis- 
tribution function is 

B(x; c, d, it) = ~ e-a/2(it/2)J I(x; c +j,  d) , 
s--o j !  
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Seber (1963). Following a suggestion by Donald E. Amos (personal 
communication), evaluation of b(x; c, d, 2) is done by differentiating the 
recurrence relation representation for B(x; c, d, 2). 

Third, numerical integration is done using a subroutine from the 
University of Wisconsin Computer Center for adaptive Romberg integration 
of single integrals, with requested accuracy of 5.10 -5 . 

Fourth, efficiency in computing and avoidance of underflow and 

f, f L f u  overflow is achieved by rewriting the integral in (3.3) as t = t + t + 
0 0 L 

f; t , applying inequalities to the outer integrals, choosing (L, U) so that the 

value of each outer integral is less than 5-10-6/t, and then ignoring the 
outer integrals. 

Fifth, fixing ~ ,  &2, k, t and p, the right-hand side of (3.3) is computed 
for an array of judiciously spaced values of n which yield P*-values from 
below 0.90 to just above 0.99. 

Finally, values of n corresponding to P * =  0.90, 0.95, 0.99 are 
computed using IMSL subroutine IQHSCU for quasi-Hermite piecewise 
cubic polynomial interpolation, as described by Akima (1970). 

4. The table 

Table 1 gives the minimum sample size n needed in each of k 
populations to satisfy the specified c~1, 62 and P* requirements in selecting 
the t ( <  k)p-variate normal populations with the largest Mahalanobis 

Table 1. Minimum sample size n needed in each of k populations to satisfy the (61, 62, P*) 
requirement in selecting the t ( < k) p-variate normal populations with the largest Mahalanobis distance 
when covariance matrices are unknown. 

P* = .90 P* = .95 P* = .99 
t k p 6~ 

~2 = 1.5 2.0 3.0 1.5 2.0 3.0 1.5 2.0 3.0 

2 2 1 74.7 35.0 20.0 121.9 56.5 31.7 241.9 111.2 61.5 
2 58.6 25.5 13.8 95.2 40.8 21.6 188.4 79.7 41.2 
3 53.3 22.4 11.9 86.4 35.6 18.2 170.6 69.3 34.5 
4 50.6 20.9 10.9 82.0 33.1 16.6 161.7 64.1 31.2 

10 45.9 18.2 9.2 74.0 28.5 13.7 145.7 54.7 25.3 

2 6 1 79.1 39.8 25.3 126.2 61.3 37.1 246.2 116.0 66.9 
2 62.7 29.9 18.4 99.4 45.1 26.2 192.6 84.1 45.9 
3 57.4 26.6 16.2 90.5 39.8 22.6 174.7 73.4 38.9 
4 54.7 25.0 15.2 86.0 37.2 20.9 165.8 68.2 35.5 

10 49.9 22.2 13.3 78.1 32.5 17.8 149.7 58.7 29.3 

2 10 1 83.4 44.4 30.2 130.6 66.0 42.1 250.6 120.8 72.2 
2 66.9 34.1 22.8 103.5 49.4 30.6 196.7 88.3 50.4 
3 61.4 30.8 20.4 94.5 44.0 26.9 178.8 77.6 43.2 
4 58.7 29.1 19.3 90.1 41.3 25.1 169.8 72.3 39.7 

10 53.9 26.3 17.4 82.1 36.6 21.9 153.7 62.7 33.4 
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Table 1. (continued). 

k p 6~ 
P* - .90 P* = ,95 P* = .99 

3 2 - 1 . 5  2.0 3.0 1.5 2.0 3.0 1.5 2.0 3.0 

3 2 1 
2 
3 
4 

10 

3 6 1 
2 
3 
4 

10 

113.3 52.8 29.7 165.8 76.7 42.7 292.8 134.5 74.2 
88.7 38.3 20.4 129.5 55.3 29.0 228.1 96.4 49.7 
80.6 33.5 17.3 117.4 48.2 24.4 206.6 83.7 41.6 
76,5 31,1 15,8 111,4 44.7 22,2 195.7 77.4 37.6 
69.2 26.9 13.1 100.5 38.3 18.1 176.3 66.0 30,3 

117.7 57.6 35.1 t70.2 8t.5 48.2 297.2 i39.3 79.7 
92.9 42.6 25.0 133.6 59.6 33.6 232.2 100.7 54.3 
84.6 37.7 21.7 121.5 52.4 28.8 210.6 87.9 46.0 
80.5 35.3 20.•  115.4 48.8 26.4 199.7 81.5 41.8 
73.2 30.9 17.2 104.5 42.4 22.2 180.3 70.0 34.4 

3 10 1 122.0 62.2 40.1 174.5 86.2 53.3 301.5 144.1 85.0 
2 97.0 46.9 29.4 137.7 63.9 38.0 236.4 105.0 58.9 
3 88.7 41.9 25.9 125.5 56.5 33.1 214.7 92.1 50.3 
4 84.6 39.4 24.2 119.5 52.9 30.6 203.8 85.6 46.0 

10 77.2 35.0 21.3 108.5 46.4 26.3 184.3 74.0 38.4 

4 2 1 137.1 63.7 35.8 192.3 88.8 49.4 # 148.3 81.7 
2 107.3 46.2 24.4 150.2 64.0 33.4 251.5 106.3 54.8 
3 97.4 40,4 20.7 136.1 55.8 28.2 227.7 92.3 45.8 
4 92.5 37.5 18.9 129.I 517 25.5 215.8 85.3 41.3 

10 83.6 32.3 15.6 116.5 44.3 20.8 194.4 72.7 33.3 

4 6 1 141.9 68.5 41.1 196.6 93.7 54.8 # 153.1 87.2 
2 111.5 50.5 29.0 154.3 68.4 38.0 255.7 110.6 59.4 
3 101.5 44.6 25.1 140.2 60.0 32.5 231.8 96.5 50.2 
4 96.5 41.6 23.1 133.2 55.8 29.8 219.8 89.4 45.6 

I0 87.6 36.3 19.7 120.5 48.4 24.9 198.4 76.7 37.3 

4 10 1 145.8 73.2 46.2 201,0 98.4 60.0 # 157.9 92.6 
2 115.6 54.8 33.5 158.4 72.6 42.5 259.8 114.9 63.9 
3 105.6 48.7 29.3 144.3 64.1 36.8 235.9 100.6 54.5 
4 100.6 45.7 27.3 137.2 59.9 34.0 223.9 93.5 49.8 

10 91.6 40.4 23.7 124.5 52.5 29.0 202.4 80.7 41.4 

5 2 1 154.3 71.7 40.1 2 t l .2  97.6 54.2 # 158.1 87.1 
2 120.8 51.9 27.4 165.0 70.3 36.7 268.3 113.3 58.3 
3 109.6 45.4 23.2 149.6 61.3 30.8 242.9 98.4 48.8 
4 104.1 42.1 21.1 141.8 56.7 28.0 230.2 90.9 44.0 

10 94.0 36.2 17.4 128.0 48.6 22.7 207.3 77.5 35.4 

5 6 1 158.7 76.5 45.5 215.6 102.4 59.6 # 162.9 92.6 
2 124.9 56.2 32.0 169.1 74.6 41.3 272.4 117.6 63.0 
3 113.7 49.6 27.5 153.6 65.4 35.2 246.9 102.6 53.2 
4 108.l 46.2 25.3 145.9 60.8 32.2 234.2 95.0 48.3 

10 98.0 40.3 21.5 132.0 52.6 26.8 211.3 81.5 39.5 

5 10 1 163.0 81.2 50.7 220.0 107.1 64.9 # 167.7 98.0 
2 129.1 60.5 36.4 173.2 78.9 45.8 276.5 121.9 67.5 
3 117.8 53.7 31.8 157.7 69_6 39.5 251.0 106.7 57.5 
4 112.1 50.3 29.5 149.9 64.9 36.4 238.3 99.1 52.5 

10 102.0 44.3 25.5 136.0 56.6 30.9 215.4 85.5 43.5 
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t k p ~1 
P* = .90 P* = .95 P* = .99 

6 2 -  1.5 2.0 3.0 1.5 2.0 3.0 1.5 2.0 3.0 

2 3 2 

2 3 6 

2 3 10 

2 4 2 

10 

4 
10 

2 
3 
4 

10 

4 
10 

2 4 6 
2 
3 
4 

I0 

2 4 10 
2 
3 
4 

10 

2 5 2 
2 
3 
4 

10 

2 5 6 1 
2 
3 
4 

10 

2 5 10 1 
2 
3 
4 

10 

110.9 51.3 28.7 163.6 75.3 41.8 291.0 133.4 73.4 
86.5 36.9 19,4 127,4 54,0 28. t 226.5 95.4 49,0 
78.4 32.2 16.4 115.4 47.0 23.6 205.0 82.7 40.9 
74.4 29.9 14.9 109.4 43.5 21.3 194.2 76.4 36.9 
67.2 25.7 12.4 98.6 37.2 17.4 174.9 65.1 29.7 

115.3 56.1 34.1 167.9 80.1 47,2 295.5 138.2 79.0 
90.7 41.2 24.0 131.5 58.3 32.7 230.6 99.7 53.7 
82.5 36.4 20.8 119.5 51.1 27.9 209.1 86.9 45.3 
78.4 34.0 19.2 113.4 47.6 25.6 198.3 80.5 41.2 
71.2 29.7 16.4 102.6 41.2 21.5 178.9 69.1 33.8 

119.6 60.8 39.1 172.3 84.8 52.4 299.9 143.0 84.3 
94.8 45.5 28.4 135.7 62.6 37.1 234.7 104,0 58.2 
86.6 40.5 25.0 123.5 55.3 32.2 213.1 91,1 49.6 
82.5 38.1 23.4 117.5 51.7 29.8 202.3 84.6 45.4 
75.2 33.8 20.5 106.6 45.3 25.6 182.9 73.t 37.8 

155.7 71.9 40,0 212.2 97.6 54.0 # 157.9 86.8 
121.5 51.7 27.0 165.3 70.0 36.2 268.2 112,9 57.9 
I10.1 45.0 22.7 149.7 60.8 30.4 242.7 97.9 48.4 
104.4 41.7 20.6 141.9 56.3 27.5 230.0 90.4 43.6 
94.2 35.8 16.8 127.9 48.1 22.3 207.1 77.0 35.0 

160.1 76.7 45.4 216.6 102.4 59.5 # 162.8 92.4 
125.6 56.0 31.6 169.5 74.3 40.9 272.2 117.2 62.6 
114.2 49.2 27.1 153.8 65.0 34.7 246.7 102.1 52.7 
108.5 45,8 24.9 146.0 60.4 31.7 234.2 94.6 47.8 
98.2 39.8 20.9 131.9 52.1 26.3 211.1 81.0 39.0 

164.5 81.4 50.6 220.9 107.2 64.7 # 167.5 97.7 
I29.7 60.3 36.1 173.6 78.6 45.4 276.4 121.5 67.1 
118.2 53.4 31.4 157.9 69.2 39.0 250.8 106.3 57.0 
112,5 49.9 29.1 150.0 64.5 35.9 238.0 98.7 52.0 
102.2 43.8 25.0 135.9 56.1 30.4 215.1 85.0 43.1 

182.7 84.3 46.8 241.1 110.9 61,3 # 172.3 94.7 
142.6 60.6 31.6 187.9 79.5 41.1 292.6 123.2 63.2 
129.2 52.8 26.5 170.1 69.1 34.4 264.9 106.9 52.7 
122.5 48.9 24.0 161.3 63.9 31.1 250.9 98.7 47.5 
110.5 41.8 19.6 145.3 54.5 25.2 225.9 84.0 38.1 

187.1 89.1 52.3 245.5 115.7 66.7 # 177.4 100.2 
146.7 64.9 36.2 192.0 83.8 45.7 296.8 127.5 67.8 
133.3 57.0 30.9 174.2 73.3 38.8 268.9 111.0 57.1 
126.6 53.0 28.3 165.3 68.0 35.4 255.0 102.8 51.8 
114.5 45.9 23.7 149.4 58.6 29.2 229.9 88.0 42.2 

191.4 93.8 57.4 249.8 120.4 72.0 # 181.9 105.6 
150.8 69.2 40.7 196.2 88.1 50.2 300.9 131.8 72.4 
137.3 61.1 35.2 178.3 77.4 43.1 273.0 115.2 61.4 
130.6 57.1 32.5 169.4 72.1 39.6 259.0 106.9 56.0 
118.5 49.9 27.7 153.4 62.6 33.3 233.9 92.0 46.2 

#: n > 300. 
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distance when covariance matrices are u n k n o w n  and est imated f rom the 
samples. The range of  parameters  is P* = 0.90, 0.95, 0.99; t = 1, 2; k = t + 
1(1)5; p = 2 ,  6, 10; 81= 1, 2, 3, 4, 10 and 82 = 1.5, 2.0, 3.0. Linear  
in te rpo la t ion  to get values for  p = 4, 8 will be exact  when the result is 
rounded  up to the next  highest integer, except  for  two values which will be 
one uni t  too large. The smoothness  of  the tabled values fur ther  suggests 
that  in terpola t ion  for odd p and for other  values of  81 will be good also. 

This table expands  considerably  on the early version which appears as 
Table S.3 in Gibbons  et al. (1977) in terms of  coverage of  parameters  and 
flexibility of  use. This was made  possible by improved comput ing  and 
analytic techniques, and by increased computer  resources for a computa t ion-  
intensive problem. Numer ica l  examples  which use these tabled values (for 
t -- 1) are also given by Gibbons et al. (1977). 
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