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Abstract. This paper derives the asymptotic distribution of the weighted
least squares estimator (WLSE) in a heteroscedastic linear regression
model. A consistent estimator of the asymptotic covariance matrix of the
WLSE is also obtained. The results are obtained under weak conditions
on the design matrix and some moment conditions on the error distribu-
tions. It is shown that most of the error distributions encountered in
practice satisfy these moment conditions. Some examples of the asymp-
totic covariance matrices are aiso given.
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1. Introduction

The following linear regression model is widely used in practice:
k
(L. vi=xiftes, j=1l,..,m i=1..k, _gln,: n,

where f = (fi,...,B) is the unknown parameter of interest, p is a fixed
integer, y; are the responses, x; = (Xj1,...,Xj) are known design vectors,
and e; are independent random errors. For each i, e, j = 1,..., n;, have the
same distribution with mean zero and variance ¢?. The ¢/ are unknown
and unequal. Model (1.1) is called a heteroscedastic model because of the
presence of unequal scale parameters o;. Let

€= (Cll,eey Clriyere, €klyeen, Chndux1 ,
— ’
y= (yll,...,ylm,...,ykl,...,ykm)nxl .

and
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X = (X110 s Xlmgeney Xklyerny Xknixp -
A matrix form of Model (1.1) is then
y=XB+e,
with the dispersion matrix
(1.2) D = Var (e) = block diag. (61 1n,..., ot ,

where [, is the ¢ X ¢t identity matrix. The design matrix X is assumed to be
of full rank. Note that X and y depend on the sample size n, but the
subscript # is omitted for simplicity. For each i, if x; are the same for all j,
then yj is the j-th replicate at the i-th design point. Model (1.1) is slightly
more general since xy, j = 1,..., n;, are not assumed to be the same.

For a regression problem, it is usually difficult to obtain a large
number of replicates (see Fuller and Rao (1978)). Therefore, throughout
the paper we assume that n; < n«,i = 1,..., k, for a fixed integer ne.

The ordinary least squares estimator (OLSE) of f is

(1.3) B=XX)"'xy.

The OLSE may be improved by the weighted least squares estimator
(WLSE) of §:

(1.4) B =X WXy (X' Wy),
where
W = block diag. (wiln,..., wkln) ,

and w; ' are estimates of ¢/,i = 1,..., k.

If ¢’ is a smooth function of the design or the mean response, a
consistent estimator of o7 (k — o) can be obtained and the asymptotic
distribution of f” is the same as B=(X'D'X)'X'D'y (see Carroll
(1982)). Therefore B is more efficient than §. In the general 51tuat10n
where ¢/ is not related to the design, no consistent estimator of &/ is
available unless n; — 0. If wi' are inconsistent estimators of o7, the
asymptotic distribution of £ is not well known and is different from that
of B. Thus, B* may or may not be more efficient than B. For comparing the
efficiency of §* and f, and making statistical inferences based on f”, it is
crucial to obtain the asymptotic distribution of £”.

Several types of estimators of o are proposed by various authors (e.g.,
Hartley et al. (1969), Rao (1970, 1973), Horn et al. (1975), Fuller and Rao
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(1978), Shao (1987)) for the case where o? is not assumed to be related to
the design. The empirical results in Shao (1987) show that the WLSE is
more efficient when the following estimator of o7 is used:

(1.5) ol =n;! Zl r?j + his®,
J:

k n ni
- N ) i
where ry = yy — xiB, & =(n—p)”' _21 _21 riand hi=n;' -21 xH (X' X)) x.
i=1j= j=

Fuller and Rao (1978) derived the asymptotic distribution of A with
wi | = u;, where

(1.6) vi=n; jg‘ .

However, the assumptions they made are rather restrictive: (1) the errors ey
are normally distributed; (2) several matrices, such as k'X’X and
k' X’DX, converge to positive definite matrices. Since ¢/ are unknown and
unequal, it is usually difficult to check if ¥ 'X’DX has a positive definite
limiting matrix.

Under a weak condition on the design matrix X and some moment
conditions on the error distributions, this paper derives the asymptotic
distribution of B* with the reciprocals of the estimators (1.5) or (1.6) as
weights.

The rest of the paper is organized as follows. In Section 2, we state
some assumptions and prove some technical lemmas. The main results are
established in Section 3. The last section studies some examples and derives
a large class of error distributions satisfying the assumptions for the
asymptotic theory.

2. Preliminaries

The following assumptions are used in deriving the asymptotic distri-
bution of £*:

(A) There are positive constants oo, 0« and c- and positive integers
no and 7. such that 6o < 6; < 0=, no < N < n= and || x;}| < ¢» for all i and j,
where ||x|| = (x’x)/* is the Euclidean norm of x.

(B) There is a positive constant ¢o such that

co < k' (the minimum eigenvalue of X’X) .

(C) The errors e; satisfy the following moment conditions:

2.1 E(eil/jg1 eé)ZO and E[ ene,-z/(ji el.'zi )t]=0 5
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foralliandr=1,2, and
no (1+0)
2.2) Elea|’’<b and E|Z ¢ <b,
J=

for all i, where b and é < 1/2 are positive constants.

Assumption (B) together with the boundedness of ||x;|| imply that
X'X diverges to infinity at the rate O(k); i.e., there are positive constants ¢,
and c; such that

(2.3) alb<k'X'X<cl, foral k.

This is much weaker than k' X’X converging to a positive definite matrix,
a condition assumed in Fuller and Rao (1978). A sufficient condition for
(2.1) is that the distributions of e; are symmetric about zero. It is shown in
Proposition 4.1 that most of the error distributions encountered in practice
satisfy (2.2). Define

2.4) t(n) = ’E (]21 & )_l .

Examples of the functions 7 can be found in Section 4. It is easy to see that
under assumption (A) and (2.2),

0<t(n=)<t(m)<t(Mo) <oe forall i.

The results in Lemma 2.1 can be found in probability theory. The
proofs are omitted.

LEMMA 2.1. (i) Let {&} be a sequence of zndependent random
variables witthf, wi. PutE=k"' Z Gandp=k" Z ti. If for a positive
s<l, k9 §1E|«f |'*% =0, then 5 2 —,0, where —, denotes conver-

gence in probability.
(i) Let {&} be a sequence of random variables with supE 1

forad>0. Thenhmk E[maxlé,l] 0.

|1+6 < o0

LEMMA 2.2. Suppose that assumption (A) and (2.2) hold. Let {z;} be
a nonrandom sequence such that |z;| < z» for all i. Then

k k
- - - -2
k! le,-u,- e b le,-nir(nf)a,- -, 0,
i= i=

where
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-1 ni 2
(2.5) Ui=ni ZI €.
j=

PROOF. From (2.4), E(ziui') = zznit(n)oi >. From assumption (A)
and (2.2),

k k
- - ~(1+6 —(1+6 é 0y 1-8
K 2 E|ziu; IR S .ZlEu,-“+ V< 2 ne bk .
i= 1=

The result follows from Lemma 2.1(1). O

LEMMA 2.3. Suppose that assumption (A) and (2.2) hold. Let
a>[2(1 + )], where ¢ is given in (2.2). Then

k n; ‘2
k3 _Z|e,-l|(2 e%j) -, 0,
i=1 j=1
and forany l < h<n;,
-3 k 2 ni 2 -3
k ¢ ,Zlenle,-hl ( _21 eij) —‘pO .
i= j=

No -1
PROOF. Let( = (jgl e,z,-) . Then

lea| (j;le?j) S(}g.l ei) SC,-M

and

Ni

n; -3 -2
é4 |ea (E] eﬁ-) < |ew| ( 2 e,ﬁ) < {*.

Jj=1

Hence, the result follows from
~-3a k 3/2
k igl Ci ~p 0 )
which is implied by

E[( k—3a ié/l}/Z) < k—2(1(1+5) §E6i1+5< bkl—Za(l+5) - 0
i=1 i=1 -

2(1+5)/3]

since a>[2(1+8)]". O

LEMMA 2.4. Suppose that assumptions (A) and (B) and (2.2) hold.
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H = block diag. (2101 'In,..., zxv ' 1)
and
G = block diag. (zinit(m) 61 In,..., zemt(ne) ai 1)
where v; is defined in (1.6) and z; satisfying 0 < zo < z; < ze < 0. Then
K'XHX - k'X'GX —,0 .
PROOF. The (1, 5)-th element of k¥ ' X'HX is
q k 1 n
k 2 Zii 2 XijtXijs .
i=1 j=1
Let u; be defined in (2.5). Then
PR -1 Sl W O
k 'ZIZi(l)i —ui) AZ[ XijXys| < Ck ’Zl Joi —ui'|,
i= j= i=
where C is a positive constant. From Lemma 2.2,
B -1 -2y
k -21 Zil; -21 XiXgs — k -21 zint(ni)o; JZ} XiXis —p 0 .
i= j= i= =
Hence the result foliows from

k
-1 -1 -1
k i;lui - U l—’pO.

Fix an a such that [2(1 + 6)] ' < @< 2", Let Bx = { max| e;] < k¢ } . Au
,ka“"’ A= { rrgajt,xlcbﬂ > 2 'k } and Ax= A U Aw, where ¢y =
x{(B — B). Let A° be the complement of the set 4. On A,

ni n
-21 |dy] < m2 'n’k ™ < 27 'naf” max |ey| <2 'nad’ Zl les]
J= J j=

and

1Mz

n,
-1 _-17-2 -1 2 -1 2
di < nid 'nek <4 ' max ej <4 Zle,j,
J J J=

1
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which implies
-1y  JPES U < N S B C R SRS R - B S |
Vi = R 'Zl (ei— i) =2 mi jZl ej— n; jEI ;=4 n jEl ei=4 u.
J = = = =

Hence, there is a constant C > 0 such that on Ax,

n;
< Ck “u;? 21 lej] .

LR
Jj=

26) |ui'—uw'l=n'

o j; (2ei — di) by
Thus, from Lemma 2.3,
Al € a1 “me| € @ -2
[ B -t | 1an= o] £ 5 et | 1)
i= i={j=
k i
= CK™ X X lelui® =50,

where I(A) is the indicator function of the set A. It remains to show
P(Ax) — 0. Note that

k
P(Ax) < iE:ll P(By) + P(Ax)
and

k k -1 k 7 -1
2 P(Ba) = ,le(k"< ( max|ey| ) )s ,zlp(n;‘k2“< ( 2 ez-) )
1= = i= j=

gy

2 {9 (146) 7 1-2(1+8)a

Xe <bn. "k -0
& €5 S One :
J=1

K
< g

Under assumptions (A) and (B), ]lﬁ - Bl = Op(k—m). Hence k° n}z}xwijl <
cok” || — Bl = 0 and

P(Ak) — 0.
This completes the proof. [J

LEMMA 2.5. Suppose that assumptions (A) and (B) and (2.2) hold.
Let ¢ = x{(p — B). Then

k n; n;
27  Ra=2X n i J}::] o5 2 Ximein = 0p (k')

and
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Lo 2 & 12
(2.8) R, = i§l n;, ui b; j;l (28,']' - ¢y) by hlel Xint€ih = Op(k ) .
PROOF. From assumption (A), there is a constant C > 0 such that
N k n B
KPRl = CENIB - BIP 2 X lenlui” .

Since ||f — BII* = 0,(k™"), (2.7) follows from Lemma 2.3. Let A, be defined
as in the proof of Lemma 2.4. From (2.6), there are positive constants C)
and C; such that

k n; i 2
k| RolI(AF) < Cik™ ( ma}x@?j) 2’ X |enl ( 2 eyl )
1, = = j=
" k n
<Gk B~ BI° Zlu? P eilen] =50,
1= Jj= =

by Lemma 2.3 and 1B — BII* = O,(k™"). From the proof of Lemma 2.4,
P(Ax) — 0. Hence (2.8) holds. [

3. The main results
Let 7(n;) be defined in (2.4). Define

D = block diag. (61 *mit(m)hn,..., ox ‘met(m) )
D; = block diag. (1 °t(ni),..., 0% ‘T(nm) )

and
= X'DiIX+4X'DyX + 4X’ Do X (X' X) ' X’'DX(X'X) ' X' D, X ,

where D is given by (1.2). Note that under assumptions (A) and (B), there
are positive constants Co and C such that

(3.1 Cl,<k'ZisCl,.

We first derive the asymptotic distribution of £ with w; ' = v; given by
(1.6).

THEOREM 3.1. Suppose that assumptions (A)~(C) hold. Let B be
defined in (1.4) with wi' = v;. Then

(3.2) Ve (B = B) —a NO, ),
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. . . . - 1/2y-1 .
where —; denotes convergence in distribution, Vi = (Vi and Vi 2 is
a square root of

(3.3) Vi=(X'DiX)Y'Zy(X'D:X)'.
PROOF. We first show that

(3.4) 2T —a N(O, L) ,
where

Ti=X"We+2X'D:X(X'X) 'X'e,
with

W = block diag. (ui ' In,..., u ' In) .
Under (2.1), ET: = 0. Then

Var (Tv) = E(TiT?)
= E(X'Wee'WX) + 2E[ X' Wee' X(X'X) ' X'D:X]
+2E[X'D:X(X'X) ' X'ee WX]
+A[X'D:X(X'X) ' X' DX(X'XY'X'D.X].

Since u; e, j=1,...,n;, have the same distribution,
n;
(3.5) E(ui*e}) = n;'! j§1 E@wi’e}) = Eui' = o7 'mit(ny) .

Then the expected value of the (¢, 5)-th element of X’ Wee' WX is

k ni

k ni n;
-2 -2
E ‘Z_Iui ( '21 x,-j,eij)( '21 Xijsey )] =2  Oi RiT (1) Xy Xs
= = Ie

i=1j=
Hence

E(X'Wee WX)=X"D\X .
Similarly, the expected value of the (2, s)-th element of X' Wee'X is

k n;

k ni n; k n
-1 -1
E[ Zu (jzl ey )(}.Zl x"jseij)] =2 2 B e xxys = 2 X xixys
= = < i =S
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since E(u; 'ej) = n{lji E(ui 'e}) = 1. Hence
E[X'D:X(X'X) ' X'ee WX]= X' DoX(X'XY ' X'X = X'D:X .
This shows
Var (Ti) = 2% .

Let I be a fixed nonzero p-vector and A = Zx "1/ (I'Z¢ '1)*. Then ||| = 1
and

di =Var MT) = Z ' rEf Pz =z

Let A«s and #xs be the s-th elements of Ax and 2(X'X )'IX ' D> XAk, respective-
ly. Then

k P ni
-1
BT = ,-; El ,-;1 (Akstti X + MisXijs€y)

From assumption (A), ||7x|* = 44X’ D2 X(X’X) X' D2 XA < Ci, where C
is a positive constant. Let J be given in (2.2). Then

- s —(1+6
E| hstii ' xis€5 + nesxises] "’ < Co(Ewi " 2 4 Elei1|2+6) < (s,

where C, and C; are positive constants. Hence
~(2+4) i i i -1 246 -(240)
dk PR E) Akstii xysey + rsxisey|” " < Cineopkdh .

From (3.1), kdi**" < Cs 1=92)=%2 . . Hence the Lindeberg’s condition
holds and therefore

di ' MT = 1Z P T (') =4 N0, 1) .

Since / is arbitrary, the proof of (3.4) is completed.
Next, we show that

(3.6) X' We — Tr = 0,(k"?) .

From v; ' = ;' = ui (i — wi) + 4 °vi " (vi — w)’, the z-th element of X' We is

k n k n
-1 —~1
21 v; _21 Xijey = IZI u; 'Zl xije; — R + Rin+2Rs,

i
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where R;; and R;; are defined in (2.7) and (2.8), respectively,
P k -1 -2 n T -
Ry=X X u (EI Xij€ij )( 2 Xinsein ) (Bs = Bs)
and fs is the s-th element of §. From Lemma 2.5, R, = o0,(k"?) and

Ry = 0,(k'%). Note that the t-th elements of X’We and X' D, X(X'X) 'X’e
are, respectively,

k n P ni .

21 u! jgl xjqe; and E.l oi *1(n) jg.l XiuXis(Bs — Bs) .
Hence it remains to show that

Pk 2 n; . )
3.7 s§1 E.l o “t(nj) j§1 xixXys(Bs — Bs) — R = 0,(k'?) .
Since || — Bl = 0,(k™"?), (3.7) follows from
i ) n; k {2 ni n

(38)  Zoit(n) jg,l XijtXijs — z.l nou El Xiji€j hgl xinsein | = 0p(K) .
From (2.1) and (3.5),

E { ntupt ( Z Xiji€i )( E Xins€in )] =0; 2r(n,‘) an XijtXijs -

j=1 h=1 j=1

n; ni ni 2
Also, | ni'ui? jZl Xij€y )( hz.l Xiks€it )‘ < chm; i’ ( 2 lesl ) < cu;'. Hence
< = =
(3.8) follows from Lemma 2.1(i). This proves (3.6).
Finally, from (3.4) and (3.6),

(3.9) X P X' We =4 N(0, 1) .

Since f¥ — B = (X’WX) ' X' We,

(.10 M X'DiX) B - B) = T A X' DX YX'WX) 'S P X We
Note that

by I/Z(XIDIX)(Xr WX)— lz*kl/l
=5 X' DIXONXWX)Y ' ~(X'DX) 15+ 1.

From Lemma 2.4, k[(X'WX) ' — (X'D1X) '] ~, 0. From (3.1) and X'D: X <
N6 1(no) X' X,
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X DX X WX) 'L =, I
Thus, from (3.9) and (3.10),
(3.11) i P(X'DiXYB” - ) —a NO, L) .
That 1s, we have shown (3.2) when (X'D1 X ) 'Zd? is taken to be a square
root of Vi. For an arbitrary square root V%, (3.2) follows from (3.11) by
using the same argument as in Fahrmeir and Kaufmann ((1985), p. 349).

This completes the proof. [

The next theorem shows that (3.2) also holds for f* with ¢/ estimated
by vf given in (1.5).

THEOREM 3.2. Suppose that assumptions (A)~(C) hold. Let B be
the WLSE with wi' = v}. Then

Ve (B~ B)—=a N0, 1) -
PROOF. Let
W, = block diag. (v1 ', ..., 0¢ In)
and
W, = block diag. () ' Lu,..., (D) 'L) .

The result follows from

(3.12) X'Wre = Ty + 0p,(k'?)
and
(3.13) XWXy (XWX)— I,

where Ty is defined in the proof of Theorem 3.1. Following the proofs of
Lemma 2.5 and Theorem 3.1, (3.12) follows from

max|vf — vl = Op(k ) ,
=

which is implied by max hi= O(k™") under assumptions (A) and (B). For
(3.13), it suffices to show that
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(3.14) max oo’ — 1| =, 0,
which follows from
max hvi' =, 0.
Since max hi= O(k™"), it remains to show

- -1
(3.15) k' max v’ =, 0.
-1 -1 ni 2 -1 ni
Let Bk={ma}cxld,~u.~ |>l/2},whered,~=m—u,-=n,- Zl¢,j—2n,- _Eld)ijeij.
iz j= j=
On Bi,
-1 _ A1 -1 _ Al 2 a\!
maxv; <2 'maxu <2 nmmax(z e,»,-) )
i<k i<k isk j=1

Since k' max ( .Z: e?j) —, 0 by Lemma 2.1(ii), (3.15) follows from
< J=
P(B:x) — 0. Note that
-1 -1 5 5 2 -1 -1 5 2 |2 —ip
a | <ni” Zlxi(B =BT +2ym” ZIxi(B-B | w™.
Hence P(By) — 0 follows from ||f — Bl = O,(k™") and
max{ ;' .2; [x5(B - BV ui’ } < o[l — BII* max i’
i j= s
- Mo -1
< chnw||f — BII? qla}‘x(l_gl eé) -, 0. O
From the above theorems, Vi defined in (3.3) is the asymptotic
covariance matrix of f”. A consistent estimator of Vi is required for
making statistical inference based on §*. Let w; ' be either v; or v,
U = block diag. (n1'wiln,..., ni ' wiln)
and

Vi=(X’WX) ' +4X’WX)' X' UX(X'WX)"
+A4X'WX)Y ' X UX(X'X)Y ' X W' X(X'X)Y' X UX(X'WwX) "' .

The following theorem shows that Vs is consistent for Vi.
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THEOREM 3.3. Suppose that assumptions (A)-(C) hold. Then
k(Vii— Vi) = 0.
PROOF. From Lemma 2.4 and (3.14),
K'X’WX-k'X'DiX —,0
and
K'X'UX-k'X'DX—,0.
It remains to show that
(3.16) K'XW'X-k'X’DX—,0.

k ]

When w; ' = v, the (¢, s)-th element of k' X'W ' X is k™ ‘21 ‘21 Xiexis0i. Let
i=1lj=

u; be defined as in (2.5). From Lemma 2.1(1),

k n

k
-1 -1 2
k -21 ,ZI Xijxysui — k iZ”  XiXys0i —p 0.
e &

From the proof of Theorem 3.2, ni1<akx[v,'u,~'1 -1 = n[lgcxlA,-u{" = 0,(1).
Hence (3.16) holds. The same argument shows that (3.16) also holds if

wi ' = v}, This completes the proof. O

In some situations the parameter of interest is 8 = g(f), where g is a
function from R’ to R and is differentiable at . A natural estimator of 6
is 8= g(B"). Let

Vi = Ve(BVi(Vg(B)Y ,
where Vg( ) is the gradient of g at 8. We have the following result.

THEOREM 3.4. Let 0 =g(B") with wi' = either v; or vl Suppose that
assumptions (A)—(C) hold, Vg is continuous at f and Vg(p) is of full rank.
Then
(3.17) (VE (0 - 6) —4 N(O, I)

and

(3.18) kVE—kVE—,0,
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where
VE = Ve(B)Viu(Ve(B)Y .
PROOF. From Theorems 3.1 and 3.2, and the continuity of Vg,

8- 0=ve(BUB" - B)+op(k) .

Let / be a fixed nonzero g-vector, k= (V&) *I and A = Vi*(Vg(B) k]
(#VEL)". Then
V(VE (0 - )N = kvg(BYBY - B UVEL)'”
+ l/( ng)- 1/20p(k— l/2)/(1;l)|/2
= 4Ve (B = B) + 0p(1) ~a N(O, 1),

by Theorems 3.1 and 3.2, and ||A«|| = 1. This proves (3.17). (3.18) follows
from Theorem 3.3 and the continuity of Vg. [l

Let M denote a nonnegative definite matrix. If the map M — M" is
continuous with respect to the norm || M|| = [trace (M'M )]1/2, then the
square root M"? is said to be continuous. An example of continuous
square root is the Cholesky square root.

Statistical inferences such as testing hypothesis and setting confidence
region for # can be made by using the following result.

COROLLARY 3.1. Let (V&) be a continuous square root of VE.
Under the conditions of Theorem 3.4, we have

(VE '@ - 0) =4 N, 1) .
PROOF. From (3.17), it suffices to show that
(3.19) (VEPWEH - 1,—,0.
From (2.3) and (3.18), (V£) ?PE(VE)Y > — I, =, 0. Then, (3.19) follows

from (2.3), the continuity of the square root (V£)”? and the result in
Gourieroux and Monfort ((1981), p. 85). O

4. Some examples of error distributions

The following are examples of the distributions of e; and the function
7 defined in (2.4).
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Example 1. 1f e; have normal distribution N(0,6?) and n; = no = 3,
then assumption (C) holds and

t(n,-) = (}‘l,‘ - 2)_1 .
Thus, the result in Fuller and Rao (1978) is a special case of our results.

Example 2. Let the distribution of e¢; have a density
fi®y =[] 'A% 11* exp (= £/,
where a > 0 and A; = 67/ o. Then the density of 21 e; is
f=

[ =T (ma)] A" exp (— t/A), =0.
Thus, assumption (C) holds if and only if
4.1) na=na>1,
and if (4.1) holds,
(n) = a(ma—1)7".

When a > 1, (4.1) holds for no = 1 and therefore, there is no restriction on
n’s.

Example 3. Let e; be uniformly distributed on [ — 3"%6;,3"?7]. Then
Eey* = o0

Note that ¢; = o; 'ey are uniformly distributed on [ — 3%, 3 1. Let0<d<
1/2, m =2 be an integer, ¢ = 3m) "*” and d = 37"*?. Then

m -(1+9) o m
4.2) E( )y 3,3) :f P( Sei< g1+ ) dt
j=1 [4 j=1
4.3) = (n/ 12T my 2+ D] ] 7
d v 2 -1/(1+d)
+£P(j§18”<t )dt,

which is infinity if m = 2. When m = 3, the first term in (4.3) is equal to

(4.4) (=) 12y [F(m)2 + D] '[m/ @2 + 28) — 1171321
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Thus, assumption (C) holds if and only if n: = no = 3. If no = 3,
t(n) = 3 (/A [F(f/2 + D] ' (/2 = 1) + 4(ni) ,

where
3m ni
A(ny) =f3 sIP (E.l &< s ) ds.

The following result gives a large class of distributions satisfying
assumption (C).

PROPOSITION 4.1. Assume that n: = no = 3 and e; has a density fi(t)
which is symmetric about zero and satisfies f 111**°fi(0)dt < C and f(1) < C

when t € [ — a, a], where a and C are positive constants and independent of
i. Then assumption (C) holds.

no ~(1+6)

PROOF. We only need to show that E ( '21 e,zj) <oo, Let A=
i~

[—a,al x[ —a,al X[ — a,a]. For0 <6 < 1/2, from (4.2)-(4.4),
J @+ B+ 800 fien) fits) dndnds
<C fA(t% + 4+ 8)"dndndt; < e .
The result follows from

fAt(t% + 2+ B [ filt) dndndt < a2 < oo O
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