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Abstract. For the problem of estimating the normal mean/t based on a 
random sample X1 ..... X. when a prior value kto is available, a class of 
shrinkage estimators/i.(k) = k (T . )X .  + (1 - k(T.))l~o is considered, where 
I". = n~/2(Y.n - Izo) /a  and k is a weight function. For certain choices of k, 
~i.(k) coincides with previously studied preliminary test and shrinkage 
estimators. We consider choosing k from a natural non-parametric family 
of weight functions so as to minimize average risk relative to a specified 
prior p. We study how, by varying p, the MSE efficiency (relative to X) 
properties of/i.(k) can be controlled. In the process, a certain robustness 
property of the usual family of posterior mean estimators, corresponding 
to the conjugate normal priors, is observed. 

Key words and phrases: Optimal weight function, Hilbert space, quadratic 
programming. 

1. In t roduct ion 

Let X1,..., X, be i.i.d. N(/t,  a 2) where 0 .2 is known. A popular class of 
estimators of /2  in the presence of some prior value/~o, near which/2 is 
expected to lie, has the form 

(1 .1)  = k ( T . ) X .  + (1 - k ( T . ) ) / t o ,  

where X .  is the sample mean, T. -- V/n(X. - /~0) la  tests Ho:/z =/.to and k is 
a suitable weight function. The populari ty of these estimators is due to the 
fact that if k is chosen properly, ~.(k) has smaller mean-squared error 
(MSE) than X .  for all/t  in the so-called effective interval (El) of k; i.e., for 
a l l / t  satisfying v%l/t - / t 0 1 / a  < C(k) ,  a constant  depending on k. Thus, if 
/to is sufficiently close to/2, we gain in MSE efficiency (MSEE) by using 
/~.(k) instead of X. .  
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Various choices of k have been considered, the basic idea being that k 
should give "large" weight to /t0 and "small" weight to X,  if H0: /t =/t0 
appears to be true, and just the reverse if H0 appears to be false. As this 
loose specification permits great latitude in choice of k, various optimality 
conditions have been imposed, seeking to define a choice of k optimal in 
some sense. Hirano (1977) studied a special type of preliminary test 
estimator (PTE), formed by taking k in (1.1) as k f f t ) =  /(I t]  -> za/2) (here 
and throughout za/2 denotes the I00(1 - a / 2 )  percentile of N(0, 1)), and 
searched within the class, obtained by varying a, for the one minimizing 
Akaike's (1973) information criterion. From a different viewpoint, Thompson 
(1968) proposed a shrinkage estimator (SE) of the form (1.1) with kz(t) = 
t2/(1 + t2). k2 arises by considering estimators o f / t  of the form cX~ + 
( 1 -  c)/t0 (c is a constant), choosing c--c*(/t) to minimize the MSE for 
each/t  (giving c*(/t) =/t2/(l  +/t2)) and then replacing/t by X ,  (giving k~t. 
Mehta and Srinivasan (1971) (henceforth M & S) considered k3(t) = 1 - ae , 
where a and b are adjustable constants. They attempted to choose a and b 
so as to simultaneously give maximum MSEE for/t  near/to and as long an 
E1 as possible (two antagonistic properties). Although they did not achieve 
a unique solution, certain values of a and b work quite well. Finally, Inada 
(1984) combined the idea of PTE's and SE's and proposed (1.1) with 
k4(t) = d*I ( l t [  < z, /2)+/(I t[-> Za/2), where for fixed a, d * e  [0, 1] is chosen 
by a minimax regret criterion. 

Looking at these estimators and their motivations, one observes that 
they derive from a procedure familiar to statisticians: pick a parametric 
family of candidate functions and search within that family for a member 
optimal in some sense. As the families of kx-k4 a r e  each indexed by a 
real- or vector-valued parameter, familiar methods (e.g., differentiation) 
are applicable to solve the corresponding optimization problems. 

In this paper we propose and study yet another method of choosing k 
in (1.1), based on the idea of minimizing average risk of (1. I). To facilitate 
its introduction, we require some notation. First, reparameterize the param- 
eter space {/1 e R}, for any fixed n ___ 1, by {/t~ =/to + A/v/-n: A ~ R}. Then 
under /tn we have T~ = v ~ ( X ~ - / t ~ ) t a + d / a - -  N ( z l / a ,  I), so for any 
measurable k and z~ ~ R, the MSE (risk) of/2~(k) at/tn is 

(1.2) R (k, 3, = -/t.)/a}2 

= (2r0_,/2 f=_= (xk(x)_aa)2 
1 _g)2 

We shall for simplicity refer to R ( k ,  A, a) as the MSE of/~,(k), in spite of 
the normalization. (Under the same normalization, the MSE of Xn is 1.) 
Since R ( k ,  A, a) depends on A and a only through the ratio zl/a, we let 
a = 1 and write it as 



(1.3) 
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R(k ,A )  = (2n) -'/2 f ~  (xk(x) - ,d)2e-lX-4¢/2dx . 
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Now introduce a prior p(d) on I~ satisfying 

(1.4) f[ z12p(A) < 0% p(A) > O, p(A) = p( - A) for all ,4, 

and define the average MSE (average risk) of fi,,(k) by 

(1.5) Rp(k) = R (k, A)p(A)dA 

ff[° = ( 2 / 0  -1/2 oo (xk(x) - A)2e-lX-a)2/2p(zi)dxd/I . 
- o o  o o  

Generally, our proposed method is to first choose a prior p, and then 
choose k in (1.1) from a sensible class K(discussed below) of candidate 
weight functions so as to minimize Rp(k) over k ~ K. Our choice of p is 
made so as to control the EI and MSEE of/~,(k). This is plausible since, as 
will be seen later, the dispersion of p may be varied so as to lengthen or 
shorten the EI, respectively decreasing or increasing the MSEE on the EI. 
Thus our view of p is merely as a tool for varying the EI and MSEE of 
/~,(k), without any direct Bayesian connotations. By varying the shape o fp  
as well as the dispersion, we may hope to generate an even wider variety of 
EI and MSEE combinations. We remark that our idea of indirectly 
controlling EI and MSEE by varying p is somewhat similar to the 
approaches of the authors of kl, k2 and k4, who attempted this by using 
optimality criteria only indirectly related to EI and MSEE. Of the authors 
of kl-k4, only M & S considered E1 and MSEE directly as their goal. 

Turning now to our class K of candidate weight functions, we note 
that the minimization problem min {Rp(k): k ~ K} may be legitimately 
considered over any set K for which Rp(k) < ~ for all k ~ K, and which 
contains a minimizing function. However, we sought a class K of weight 
functions which preserved the spirit of kl-k4 above, but which also allowed 
considerable generalization. Particularly, we noted of k~-k4 that 

(P1) Each k(t) is an even function of t. 
(P2) For t >_ 0, each k(t) is non-decreasing with range [c, l] where 

0 _ < c < l .  
(Put another way, (P2) says that these weight functions look like cdf's of 
non-negative random variables.) This non-parametric family of weight 
functions contains the parametric families of kl-k4 above and obviously 
many other weight functions. Hence, we decided to consider it as a 
candidate class, in hopes that its richness of possible weight functions, 
together with the approach of minimizing Rp(k) over k in this class, would 
lead to estimators (1.1) superior in terms of MSEE and EI to k~-k4. 
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This turns out not  to be the case. The M & S est imator based on k3 is 
not dominated in terms of E1 and MSEE performance by our estimator 
~,(k) for any of the p we investigated. However, for p - - N ( 0 , 7  2) for 
appropriate 7 2, our method produces /J,(k) with E1 and MSEE almost 
identical to M & S but with k constant and hence simpler than k3. Also, 
our class of estimators is clearly more flexible than that of M & S, and is 
also more intuitive, due to the connection between dispersion of the prior 
and the behaviour of the resulting MSEE and El. Possible reasons that our 
method does not defeat M & S are: (1) Our method does not directly 
address the M S E E / E I  criterion, while M & S does; (2) the average risk 
approach is too inflexible and (3) the exponential family of weight func- 
tions used by M & S is a very rich family within our class. Nonetheless, our 
method offers another  means of obtaining and understanding the choice of 
weight function k in (1.1). For  future reference, define a weight function k* 
to be p-opt imal  in a class K if Rp(k*) <_ Rp(k) for all k e K. Observe that k* 
will depend on p, in general. 

The rest of the paper is organized as follows. Subsection 2.1 establishes, 
for p satisfying (1.4), the existence of a p-opt imal  weight function k* in a 
set of  weight functions formed from a slight extension of (P1) and (P2). 
Subsection 2.2 shows how to approximate k* numerically. Subsection 2.3 
illustrates the approximations for a selection of p. Section 3 compares our 
estimator to some of the above-mentioned estimators in terms of the 
MSEE and EI. Section 4 contains some conclusions. 

2. The p-optimal weight function approximately satisfying (P1) and 
(P2) 

In order to ensure a solution for the minimization problem, min {Rp(k): 
k ~ K}, care must be taken in defining K. We first replace the class of 
functions given by (P1) and (P2) by a slightly larger class. For  this we need 
the following 

DEFINITION 2.1. If k, and k are real-valued functions on R, k, ~-2 k 
(almost uniform convergence) means that given any e > 0, there exists a set 
A C R with m ( A ) <  ~ (m denotes Lebesgue measure on R) such that 
sup {Ik,(x) - k(x)l: x e A C} ~ 0 as n --- o~. 

For some specified M e (0, oo), let 

(2.1) 

Kz = {k: R -- Rlk  satisfies (i) and (ii) below} 

(i) k( - x) -- k(x) 

(ii) k(x) = fo f (t)dt, 0 <_ x < M, k(x) -- 1, x > M for some 
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cont inuous function f satisfyingf(t) >_ 0, 

0 _ < t - < M a n d  t)dt = 1. 

The funct ions in Kz are all even and non-decreasing on [0, M].  They are 
also absolutely cont inuous ,  a restriction we do not  wish to impose.  To 
remove this restriction, we extend Ks to the bigger set K~ by at taching a.u. 
limits. Specifically, define 

(2.2) K1 = {k: R ~ R[ there exist k, ~ KI such that  k,  ~ k}.  

The class K1 provides a practically adequate approximat ion  to the 
class of functions specified by (PI)  and (P2). The slight flaw in K~ is that,  
since M is finite, it does not contain cdf's (like k2 or k3 in the introduct ion)  
which are suppor ted on all of [0,oo). However,  since we may make M 
arbitrarily large, there are functions i n / ( i  which approximate  such func- 
tions arbitrarily closely. Otherwise, K~ contains all f initely-supported cdf's 
on [0, M], including the step functions which are a.u. limits of cont inuous  
cdf's. It also contains funct ions which are constant  (between 0 and 1) 
everywhere on (0, M)  (again as a.u. limits). Al though such functions are 
not  of the fo rm given by (P2), they turn  out  to be impor tan t  in this 
investigation. 

With KI as defined in (2.2), we now turn,  for a specified p satisfying 
(1.4), to the problem of minimizing Rp over k e K~. 

2.1 Existence of  a solution 
Define w(A, x) = p(d)e -Ix-~2/2, (d, x) e R 2, and let 

L2(R2, dw) = {h: R 2--- R measurable [fR~h2(A,x)w(A,x)dAdx < ~ } .  

Then, Z2([~ 2, dw) is a Hilbert space. Let 

K ' =  {~b: ~2 --~ ~[  for every A, ep(d,x) = xk(x) a.e. (x) for some k ~ K1}. 

THEOREM 2.1. Under (1.4), 
(i) K ' C  L2(•2,dw). 

(ii) K' is convex and closed in L2(R 2, dw). 
(iii) fbo(A,x) = A for al lx  ~ R is in L2(R2,dw). 
(iv) The problem, min Rp(k), k e K1 has a unique solution k*. 

PROOF. (i) Let ~b e K'. Then for every A, ~b(A, x) = xk(x) a.e. where, 

for some {k~} C Kz, k~ ~ k. By Theorem 2.5.2 in Ash (1972), kn -" k a.e. 
(M).  Thus, k(x) = 1 a.e., Jxl > M and 0 _< k(x) <_ 1 a.e., [xl -< M. Hence 
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f f= _= p(zl)[ _x2k2(x)e-" -"¢/2dx]dd 
and the inner integral may be written 

f lxl > M xZe-(X-'J)~/2dx + f lxl ~ M x2k2(x) e-lx- a)gadx 

<L~ x2e-1~-a¢/2dx + M2 e-lX-a)~/2dx 

"42 <_ C~ + C2 , 

where C~, C2 are constants. That  ~b ~ L2(R 2, dw) follows by (1.4). 
(ii) First consider convexity. Let ~b~, th2 e K '  and 0 < 2 < 1. There 

exist k~, k2 ~ Kl such that for every ,4, ~('4, x) = Xkl(X) a.e., thffd, x) = xkz(x) 
a.e. Further,  since kl, k2 e K~, there exist sequences {k,(ll}, {k, (2}} of Kz- 
functions such that k~l)a-2~kl, k~21~'k2. Let g, = 2k, (ll + (1 - 2)k, (21. Then 

g, e Kz for all n, and it is easily checked that g,,~2k~ + (1 - 2)k2. Thus, 
2kl + (1 - 2)k2 e K~. This implies that 2~b~ + (1 - 2)~b2 ~ K', so K'  is convex. 

To see that K'  is closed in the L2(R 2, dw) norm, suppose that {~b,} C K'  
and 4~, -" (h in the L2(R 2, dw) norm• We shall show that this implies that 

~b c K'. First, by Theorems 2.5.1 and 2.5.3 in Ash (1972), ~b, £~b implies 
the existence of a subsequence {m} such that ~b,,---~b a.e. (R:). Since 
th,, c K', there exists a function k,, ~ K~ such that for every d,  

(2.3) q~.~('4, x) = xk.,(x) for all x e A~, m(A,) = O. 

Since th,~('4, x) --- ~b(A, x) for all x e B ~, with m(B) = 0, (2.3) implies that for 

all x outside E ~ t~ A~ U B U {0}, which has m-measure zero, 
v = l  

6..('4, x) 6('4,x) 
(2.4) k(x) =- Jim k.v(x) = lim - - -  exists.  

v ~  X X 

Thus, for every d,  4~(d, x) --- xk(x) a.e., and it remains to show that k e K1. 

For this we shall construct a sequence {g~} C Kz with g~ ~ k  as a -- oo. This 
will give the result. 

In this direction, we first claim that there exists a subsequence {nv(a)} of 
{m} such that 

a.u.  

(2 5) -- k as a -- • k . . ~ o ,  . 

To see this, note that since ~bn,, ~ q) in L2(R 2, dw), 
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(2.6) f f - x k ( x ) ] 2 e - 1 ' : - ' ~ ¢ / 2 p ( d ) d d d x  
R 2 

Hence, 

(2.7) k,, ~ k in L2(R 1, dg), 

where g ( x ) :  x 2 e-'X-'~¢/Zp(A)dzl and 

L2(Rl,dg) = f :  R 1 ~ R 1 measurable f 2 ( x ) g ( x ) d x < ~  

(another Hilbert space). (2.7) implies (by Theorems 2.5.1 and 2.5.3 in Ash 
(1972)) the existence of a subsequence {n~)} of {m} such that k,~o,- k a.u. 
(dg). This implies (2.5) since m is absolutely continuous with respect to dg 
under (1.4). 

Secondly, note that since k,,.~ ~ K~, for each fixed a >__ 1 there exists a 
sequence {k~,,l} C Kx such that 

a, l l .  

(2.8) k.,o,,t -" k.,o, as 1 --- ~ .  

Using (2.5) and (2.8), we construct the sequence {ga}. Let ~ > 0, 6 > 0 
be given. By (2.5) pick N~(e, d) and a set A C R with m(A) < e/2 so that 

6 
(2.9) sup~,a ~ I k.,.,(x) - k(x)l < --~, a > N~(e, O). 

Fix a >_ Nffe,6). By (2.8) pick N2(a,e, 6) and a set Ba C R with m(B,,)< 
2-a-e/2 so that 

6 
(2.10) sup Ik.,.,.,(x) - k,,.o,(X)l < - ~ ,  

xeB~ 
l >_ N2(a, e, 6) .  

Set g~,(x)= k,,~,,l<a)(x), where l(a)= N2(a,e,d), a_> 1. By (2.9) and (2.10), 

C = A U ( a=tt~ B,)  satisfies re(C) < e  and, for any a0 _> N,, 

sup [g~(x) - k(x)[ -- sup [kn~®~,tt~)(x) - k(x) l • 
xc C" x~ C ~ 

_< sup I k,,~,,lt~)(x) - k.,~,(x) l + sup I k,,~,(x) - k(x) l 

6 d <5-+y--6. 
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Thus, ga a.u.k. 

(iii) f :  f_: 49~(A,x)w(A,x)dzJdx =L: A2p(A) [L:  e-'X-a)212dx ] dA < 

since the bracketed term equals (2/t)  1/2. 

(iv) By (i) and (ii), K'  is a closed convex set in the Hilbert space 
Lz(R 2, dw). Thus, by a well-known result (see Ash (1972), Theorem 3.2.9), 
there exists a unique 49* e K'  such that  

(2.1i) t149" - 49o1I,.',~>.~w)= min {tl49 - 49oll,J<~'.~w>: 4, z K'} .  

at_ 1122 2 But 1149- V,0NLIR,aw) = Rp(49/x), 49 ~ g ' .  T h u s ,  if k*(x) = 49*(x)/x, (2.11) 
gives, since 49 ~ K'  iff k(x) = 49(x)/x ~ K1, 

min {Rp(k): k e K1} = min {Rp(49/x): 49 e K'} 
2 2 = min {1149 - 49011L(R:,dw): 49 ~ K'} 

- -  2 2 = 1149" 49011L2~,dw) = Rp(k*). 

Thus, k* is a solution. Since 49* is unique in K'  (up to a.e. (m) equivalence), 
so is k* in KI. [] 

2.2 Numerical approximation of k* 
For  computa t iona l  purposes we restrict our  search to the set Kz, and 

rewrite Rp(k) in (1.5) (with M as in the definition of/£t)  as 

(2.12) 

where 

(2.13) J ' eK j  

= I f :  [0, M]  -- [0 ,~)  f_> 0 is 
t 

continuous and fMo f(t)dt = l } . 

Clearly, KI is one-to-one with Ky, so we may consider the problem 

(2.14) min {Rp(f): f ~ Kf} , 

as a reasonable approximat ion  to our  problem min {Rp(k): k ~ K1}. Also, 
only the first term on the RHS of (2.12) is involved in the minimization;  
henceforth we redefine Rp(f) as equal to this first term only. 
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For  N >_ 1 we discretize the feasible set KI by taking K} m = {fg: f u  is 
piecewise linear connecting points (xug, fui) satisfying (i*)-(iii*)}: 

i 
_ _  , - -  _ _  (i*) XNg = N 0 < i < M N  partit ions the interval [0, M] .  

(2.15) (ii*) fNi= fN(XNi) satisfies fNg >_ O, O <_ i <_ M. 

1 1 MN-I 
(iii*) ~ (fNO +fN, MN) + ~ E__, fN~ = I. 

Since anyfN ~ K} ul may be written in the form 

MN 

(2.16) fN(X) -= i~ [fN, i-, + N ( x  - XN, i-1)(fui-- fu, i-O] I[xN., ,,xN,)(X) , 

0 ~ x <  M ,  

an easy calculation shows that  the condi t ion fN(x)dx = 1 is equivalent  to 

(iii*). Thus,  K}N) c Kf. As N -  ~ ,  the set K} N) approximates  the set K f  
arbitrarily closely in the sense that  for any fixed f e Kf, there exists 
fN ~ K} N) such that  

sup {IfN(x) - f ( x ) l "  0 <_ x _< M} -~ 0 as N ~ o~. 

FOrfN e K ~N), we approximate  the functional  R p ( f )  a s  follows. Choose 
a number  P >  0, so that  the suppor t  of the prior pdf  p(.) is (exactly or 
approximately) [ - P, P]. Partit ion this interval as {auj = -- P + ((N + j ) /N)P:  
- N<_j<_ N},  so that  aNo = 0. Define pNj =p(aNj), -- N<_j< N. Part i t ion 
the interval [ - M, M]  of the y-integration a s  {yNk = k / N :  - M N  <_ k <_ MN} ,  
so that  yNO = O. Replacing integrals by Riemann  sums, we thus approximate  
Rp( f )  in (2.12) (remember: first term only) by 

(2.17) IN) p N Rp (fN) = (2n) -'/2 ~ j ~ u P U J  

l1 ) 1 × - N  k =-MN 2 " + i--1E f N i  -- agj 

× exp [ -  1 

In (2.12) the integralflk/utf(x)dx has been replaced in (2.17) by 



356 D.L. HAWKINS AND CHIEN-PAI HAN 

Ikl-1 ] 
(ty~,l fN(x)dx = 1 fz¢o + fu, lkl + ]~ fNi , 
~o -N 2 i=1 

the equality following from (2.16). The approximation of Rp( f )  by (2.17) 
thus involves two components of error: that due to truncating the support 
of p to [ -  P, P], and that due to approximating integrals by Riemann 
sums. The latter tends to zero as N --- ~; the former does not. (However, if 
p is finitely supported, there is no error due to truncation.) 

With the approximations to Rp( f )  and KI as above, we replace the 
problem (2.14) by the problem 

(2.18) min {R(pNt(fu): fN • K(fm} , 

for some N sufficiently large. (2.18) may be converted to a quadratic 
programming problem as follows. Define 

(2.19) 

f *  = (fNO,fN:,...,fN.~tN)' ~ NMN÷t, and let 

K} NI" = f*:  fNs >-- O, 0 <-- i <_ M N  and 2 aNifm = 1 
i=0 

where aui= I/(2N) if ie{0,  MNl  and a m = l / N i f  i e { l ,  2 , . . . , M N -  1}. 
Then K)r NI' is one-to-one with KJr N), so we may clearly write R(pm(fA,) in 

(N) * (2.17) as Rp (f~v). Therefore, the problem (2.18) is equivalent to 

(2.20) {R(N)( ~ KIN)'}. min p f ) : f * e  

(N) , But (2.20) is a quadratic programming problem since Rp (fN) is clearly a 
convex quadratic objective function and the feasible set is a closed convex 
set in R MN÷I (defined by M N +  1 inequality constraints and a single 
equality constraint) in the M N  + 1 variables fN,', 0 <-- i <_ MN. 

The solution f * =  (fNO,...,fU, MN) to (2.20) gives the values of the 
optimalfN e K} N) at the points xm, and the piecewise linearity offN defines 
it elsewhere. If N is sufficiently large, we may regard this solution fN as 
corresponding to some k e / ( i  which is near the optimal k* ~ K1. 

2.3 Approximations to k ' f o r  selectedp 
Before embarking on this discussion, we dispense with some special 

cases. First, if p = N(0, y2) for some y2> 0, it may be shown analytically 
that Rp(k) in (1.5) is minimized over all measurable k (not just over k e K~) 
by k*(t) = y2/(1 + y2), t > 0. Since this k* happens also to lie in K~ (as an 
a.u. limit), it is also the constrained (over K~) minimizer. Thus, for normal 
p, no approximation is required. (We include a couple of normal priors in 
Fig. 1 below to check the computational algorithm.) The resulting estimator 
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k(x) 
1.0- 

0.9. 

0.8. 

0 . 7  

0 . 6  

0.5. 

0 . 4  

0 . 3  

0 . 2  

0 . 1  

0.O 

f 
i 

I . . . . . . . . .  I ' ' ' m t ~ l l  . . . . . .  I 1 ' i . . . . . . . . .  I . . . . . . . . .  I . . . . .  1 '  ; ' I ' 1 '  ~ '  I . . . . . . . .  T T  

1 2 3 4 5 6 7 8 

i .  ~ U( - 4,4): o(p)  = 16/3, cp = .8446 
2. - . . . . . .  U( - 2,2):  o(p)  : 4 /3 ,  cp : .5828 
3. - . . . .  U ( -  1,1): o ( p ) =  1/3, c p =  .2683 
4. - - - - -  N(0 ,1) :  o(p)  = I,  cp = .5000 
5. - - - - - -  N(0, .01):  o(p)  = .01, cp = .0099 
6. - - - - -  B E T A  (.5,.5): o(p)  = 1/8, Cp = .1172 

F i g .  1. A p p r o x i m a t e  o p t i m a l  w e i g h t  f u n c t i o n s .  

(1.1) is the usual Bayesian posterior mean. 
We also note that for non-normal priors p, the constrained (over K~) 

and unconstrained minimizers do not typically agree. In fact, the uncon- 
strained minimizer is generally not nondecreasing. 

This and the next section are, respectively, devoted to studying how 
the p-optimal kl* depends on p, and how the MSEE/E1 properties of/zn(k*) 
vary with p. Therefore, for a variety of p, we used the quadratic program- 
ming technique described in Subsection 2.2 to compute approximations to 
the optimal weight function k*. M was set equal to 8 and the grid size 
parameter N was set to 10, yielding a grid-width of 0.1 and a quadratic 
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programming problem with M N  + 1 -- 81 variables. (When the prior was 
very concentrated--e.g.,  the N(0 , .01) - -a  suitably smaller grid was used.) 
The reader should note that the priors with finite support do not satisfy the 
positivity restriction in (1.4) required for Theorem 2.1. However, we can 
alter these slightly by adding "super-light" tails, without significantly 
affecting k*. For approximation of k*, this is of no import. 

Shown in Fig. 1 are the approximations for the U( - 4, 4), U( - 2, 2), 
U ( -  1, 1), N(0, 1) and Beta (.5,.5) (shifted to have mean zero) priors. 
These priors are grouped together because the corresponding optimal 
weight functions kl* are apparently constant. The non-constant portions of 
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Fig. 2. Approximate optimal weight functions for logistic and mixed normal priors. 
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the functions,  near x = 0 and x = 8, are due to constraint  (ii)--recall ( 2 . 1 ) -  
on k~. The x-values at which these functions become non-cons tant  depend 
on the grid-width and are thus artificial. (The functions rise f rom height 
zero to a positive value at x = 1/N, and increase to one near x = 8 - 1/N, 
regardless of N.) The normal  priors, as noted above, are included as test 
cases. The uniform priors are included because they provide precise concen- 
t ra t ion of the averaging process in (1.5) to a specific region of the 
parameter  space, and hence allow intuitive control  of the EI. The U-shaped 
Beta distr ibut ion is included for a look at the effects on k* of a bimodal  
prior. We note that  we also computed  k* for p a t runcated normal ,  and k* 
was essentially constant,  as for the above priors. 

For  these p for which k* is apparent ly a constant,  say cp, we see that  cp 

increases with o(p) =fp2(A)dA, the dispersion o f p .  In view of (1.1), this is 
intuitively reasonable, cp apparent ly does not,  however, depend on p only 
th rough  o(p), since N(0, 1) and U ( - x / 3 ,  x/~) (not shown) both have 
o(p) = 1, but have cp = .500 and .513, respectively. 

Figure 2 shows the approximate  optimal  weight functions for the logistic 
and mixed normal  (.8 * N(0, 1) + .2 * N(0, 2)) priors. For  these priors, and 
also for the double  exponential  (not shown), k* is apparently not  constant.  
The quest ion of which priors p have constant  k and which do not is open 
to the authors.  

3. Comparison of p,,(k*) with other estimators 

The estimator/~,(k*) claims only to minimize the A M S E  (average risk) 
with respect to the specified p,  which as noted earlier only indirectly 
addresses EI and MSEE.  Therefore, we now compare  its EI and MSEE for 
the p in Subsect ion 2.3 with that  of some of the est imators in the 
introduction.  

First,  consider  the priors in P ' =  {p: p satisfies (1.4) and k*( t )= 
Cp(COnstant) V t e (0, M)}, which is apparent ly  non-empty  f rom Fig. 1. For  
these p, ft,(k*) has a very simple form: 

(3.1) ^ k*  l tLn(1)  = CpXn -~- (1 - cp)/~0, 

with cp depending on p (recall Fig. 1). We consider its MSEE at /z ,  = kt0 + 

m 

(3.2) ep(A) = MSE~(X.)/MSE,~(I?t~(k*)) = [c 2 + (1 - Cp)2A2] -1 , 

where A = n l / 2 ( f l  - flo)/q. (Note: A is in units of s tandard errors of Xo.) 
F r o m  (3.2) it follows that  the MSEE is a decreasing funct ion of IAI, with 
m a x i m u m  value ep(0) = 1 / c 2, Also, 
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(3.3) ep(zl)_> 1 iff I•1 ~< [(1 + ep)/(1 - cp)] t/2 , 

which gives the E1 in terms of A. The E1 in terms of/z  can be easily 
obtained. 

We note, in view of (3.2), that for p e P '  the E1 and MSEE of/2,(k*) 
depend on p only through Cp. This means that if we restrict p to P', the set 
of possible EI /MSEE combinations is indexed by cp e (0, 1). Further, any 
family of priors P{ C P' such that {Cp: p e P~'} -- (0, 1) (call this property S) 
will generate all possible constant (between 0 and 1) weight functions, and 
hence all possible (for p e P') E l /MSEE combinations. The normal family 
P[ = {N(0, y2): y2 > 0} is such a family, and is convenient because it requires 
no approximation of k*. The uniform priors (apparently in P'  from Fig. 1) 
would do as well, but are not so convenient. 

These results are interesting for several reasons. First, relative to our 
method of using the prior p as a tool for selecting k, they show that a large 
class (namely P') of priors (containing N(0, 7 2) and apparently uniform and 
some betas) lead to constant k~'. In fact, the family of constant k's can 
apparently be generated by any of a number of families of priors. Although 
some priors lead to non-constant k*, this seems to indicate an unattractive 
inflexibility of this method of choosing k to control EI and MSEE, since 
the E l /MSEE combinations seem restricted. 

To the Bayesian, however, these results are very interesting. Since 
/2n(k) becomes the posterior mean estimator when p is N(0,7 2) (and 
k*(t) = 72/(I + 72)), he is pleased to note that any family P( C P' with 
property S generates this same family of posterior mean estimators. In 
other words, the family (1.1) with k constant is in a sense "prior robust"! 
This could be made precise if P' were known. However, the characteriza- 
tion of P' is an open question to the authors. 

To get some idea of the possible E l /MSEE combinations correspond- 
ing to P', Fig. 3 shows these functions for a selection of N(0, 72) priors. For 
comparison the MSEE functions of the M & S estimator (with the 
recommended values a = .302, b = .01) and the Thompson estimator are 
also shown. We see that ft,(k l), with p = N(0, 7 z) and 7 2 between 2 and 3, 
will very closely approximate the performance of the M & S estimator. 
However, choosing 7 2 so that/~,(k*) dominates the M & S estimator in 
terms of EI and MSEE does not appear possible. 

The next question is whether any of the priors leading to non-constant 
k* lead to /~,(k*) with superior MSEE/EI.  This is a formidable mathe- 
matical question which we did not attempt in general. Instead we computed 
the MSEE functions for the logistic and mixed normal to illustrate what 
can happen in this case. 

Table 1 gives MSEE of ft,(k) for these priors and the p-optimal weight 
functions pictured in Fig. 2. By comparing these figures to Fig. 3, we 
observe the following. First, except for ,3 >~ 3.5, the estimator based on the 
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Fig. 3. Efficiency for  normal  priors versus other  shrinkage estimators.  

Table 1. M S E E  for logistic and mixed normal  priors. 

M S E E  

A Logistic Mixed normal  

0.00 1.95 3.50 
0.50 1.86 2.93 
1.00 1.63 i.97 
1.50 1.37 1.28 
2.00 1.14 0.87 
2.50 0.96 0.62 
3.00 0.82 0.47 
3.50 0.73 0.37 
4.00 0.67 0.31 
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logistic prior is dominated by the M & S estimator which, as noted above, 
has approximately the MSEE of ft,(k) with prior N(0, y2) for some y2 ~ (2, 3). 
The estimator based on the mixed normal prior is dominated by the one 
based on N(0, 1) for 0_<,4 < 1.5, but slightly dominates this one for 
,4 _> 1.5. (This result is intuitive.) 

These observations, though scanty, suggest that priors in the class P' 
yield estimators/~,(k) which are not uniformly dominated in MSEE by 
estimators corresponding to priors outside P', but may be dominated over 
some sets of ,4. We conjecture that this is the case, but as far as we know it 
is an open question. 

4. Conclusions 

We have studied an indirect way of controlling the MSEE function of 
/~n(k) by minimizing its average risk over k e K~ for a given prior p. With a 
normal prior, this method chooses a constant k in K~, so that (1.1) becomes 
the usual Bayesian posterior mean estimator. For a suitable choice of the 
normal prior variance, this estimator compares well in terms of MSEE and 
El with the M & S estimator, which was aimed directly at optimizing these 
criteria. 

For an apparently large class of non-normal priors (including uniform, 
Beta, truncated normal) the p-optimal k* is still constant, although the 
unconstrained (Bayes) minimizer of (1.5) is not constant. (Typically, it is 
decreasing in Itl, which is contrary to intuition.) These priors lead to the 
same class of posterior mean estimators as do the normal priors. 

Other non-normal priors (e.g., the logistic and mixed normal) have 
non-constant p-optimal weight functions, but apparently do not give 
estimators (1.1) which uniformly dominate those estimators (1.1) generated 
by priors with constant weight functions. 

Finally, we note a potentially fruitful alternative to (1.1), due to 
Srivastava and Ramkaran (1982), of the form 

where Sn is the sample standard deviation, and g and k are constants to be 
determined. These authors attempt to show that this estimator dominates 
Xn uniformly in MSEE over all /~, which of course contradicts the 
admissibility of X ,  in the one-dimensional case. (The authors have been 
notified.) Nonetheless, estimators of this form, or generalized to depend on 
t, in the spirit of (1.1), may be worthy of further study. 
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