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Abstract. A new class of confidence sets for the mean of a p-variate
normal distribution (p = 3) is introduced. They are neither spheres nor
ellipsoids. We show that we can construct our confidence sets so that
their coverage probabilities are equal to the specified confidence coeffi-
cient. Some of them are shown to dominate the usual confidence set, a
sphere centered at the observations. Numerical results are also given
which show how small their volumes are.
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1. Introduction

Let X = (Xi,..., Xp)' be a p-variate normal random variable with mean
vector 6 = (f,,...,0,)' and identity covariance matrix. Since Stein (1955)
proved that the usual point estimator of 8, X, can be improved upon under
the sum of squared error if p = 3, a great deal of research has been made to
improve upon X. However, the problem of the confidence set has received
comparatively little attention and its theory has seen advances only in
recent years.

The usual confidence set for the mean is a sphere centered at X, i.e.,

(L. CX)={mln— Xl ¢},

where the radius c satisfies P{y, <c’}=1-a. This implies that the
coverage probability of C°(X)

Pi{fe C'(X)}=1-a forallé.

So C°%(X) has the confidence coefficient 1 — c.
As in Casella and Hwang (1983) we consider a confidence set C(X) to
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be an improvement upon C°(X) if
() Psfb e C(X)}= Poff e CO(X)} for all 6
and
(II) volume of C(X) < volume of C°(X) forall X,

with strict inequality either in (1) for some 8 or in (II) for all X in some set
with positive Lebesgue measure.

Stein (1962) developed the heuristic argument to indicate that C°(X)
can be improved upon for large p. Brown (1966) and Joshi (1967) indepen-
dently proved the existence of a dominating confidence set for p > 3. It was
shown that C°%X) is dominated by the confidence sphere which has the
same radius ¢ and is centered at a Stein-type estimator. However, they did
not give explicit improved confidence sets.

Attempts to construct usable improved confidence sets were made by
several authors including Faith (1976), Berger (1980), Stein (1981), Hwang
and Casella (1982, 1984) and Casella and Hwang (1983, 1986). Berger
(1980) developed confidence ellipsoids associated with his robust general-
ized Bayes estimator. Although uniform dominance results were not
obtained, he gave convincing analytical and numerical evidence that his
confidence sets perform satisfactorily.

Hwang and Casella (1982) considered the confidence sphere which has
radius ¢ and is centered at a positive-part Stein estimator {1 — a/ || X||*}* X,
and showed analytically that it is an improvement upon C%(X) for a
specified range of values of @ when p > 4. Hwang and Casella (1984) gave
an alternative proof which yielded stronger results. Although their confi-
dence set provides uniform improvement in coverage probability, it has the
same volume and confidence coefficient as C°(X).

It would be desirable for the improving confidence set to have the
same confidence coefficient as C°(X) but to have smaller volume than
C%X). Casella and Hwang (1983, 1986) constructed confidence spheres
with variable radii through empirical Bayes considerations. They evaluated
their coverage probabilities numerically and claimed that their confidence
spheres dominate C°(X). However, no confidence set with variable volume
seems to be available which has been analytically shown to be an improve-
ment upon c(x).

Here we introduce a class of confidence sets and analytically show that
some of them improve upon C °(X). We construct the new confidence sets
by shrinking the set C°(X) towards the origin. They are neither spheres nor
ellipsoids, and there isn’t a natural center for the new set, which might be
the associating point estimator with it. In Section 2 we precisely define our
confidence sets and obtain the necessary representations for their volumes
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and coverage probabilities. We shall see that we may easily construct our
confidence set so that it has the same coverage probability as C°(X) for all
6. In Section 3 we give a confidence set which has the same coverage
probability and smaller volume. We cannot express its form explicitly and
have to obtain it numerically. In Section 4 we show that we can obtain the
numerical solution quite easily, and also give our numerical results which
show how small the volume of our confidence set is.

2. A confidence set, its volume and coverage probability

In this section we introduce a class of confidence sets and show how to
represent their volumes and coverage probabilities. Further we show how
to construct our confidence set so that it has the same coverage probability
as C(X).

To begin with, we suppose that || X} =c¢ and let us define fo by
sin fo = ¢/|| X|| (see Fig. 1(a)). As in Hwang and Casella (1982), we
transform p-dimensional variate # to spherical coordinates and let r = |||
and let ﬂ be the angle between X and #. Then # is on the sphere
lln — X||* = ¢* if and only if

r=2r(i X cos B+ I X[IP-F=0.

This is a quadratic equation in r and has two distinct roots if 0 < f < fo.
We denote them by r. and r- (r-<rs), that is, r. = || X|| cos $+ D and
r-=1X|| cos B — D, where D={c*— || X|> sin’ }'2. We construct our
conﬁdence set by shrinking the boundary points 7 which are on the sphere
lln — X||> = ¢* towards the origin, and by considering the resultmg points
to form the boundary of the new confidence set. Therefore, it is enough to
specify two univariate functions f(r-; D) and g(r+; D) with parameter D

Fig. 1. Two-dimensional representation of C°(X) and Crg(X). (a) Case of || X|[=c: 14,
g(rs), - and f(r-) are the distances of the points from the origin. (b) Case of || X | <e¢: rand
g(r) are the distances of the points from the origin.
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whose values are the distances of the resulting points from the origin. In
order for this construction to make sense, it must hold true that
f(r-; D) < g(r+; D). This is exactly Condition (vi) given below. We occa-
sionally drop D and write f(r; D)(g(r; D)) as f(r)(g(r)). It may be noticed
that 2D = 2{c* — || X||* sin> §}"* is the length of the line segment inside the
sphere C°(X) which passes through the origin at the angle § with X and
that D depends on both f and || X||.

For the case || X|| <c¢ (see Fig. 1(b)), we always use the function
g(r; D) to shrink the points towards the origin. Therefore, if f(r) and g(r)
are specified, we get a confidence set. Let it be denoted by Crz(X). In the
following we assume that f(r; D) and g(r; D) satisfy the following conditions.

CONDITIONS.
(1) f(r; D) and g(r; D) are strictly increasing and continuous in 7.
i) 0=f(r;D)<rand0<g(r;D)=<r.
(iii) f(0; D) =g(0; D) =0.
(v) lim {r - £(r; D)} = lim {r - g(r; D)} = .
V) f(r;0)=g(r;0)=r.
(vi) f(r;D)<g(r+2D; D).

Now we discuss the volume of Crz(X). Since 0 < g(r) <r, it is clear
that Cs¢(X) has a smaller volume than C°(X) if || X|| < c¢. Therefore, we
give its representation only for the case || X| =c. By transforming to
spherical coordinates we obtain

gl X)) cos B+ D; D)

bo
(2.1)  volume of Cre(X) = Kfo ff

(1 X1l cos 8~ D; D)

rP~' sin?7? Bdrdp ,

where fo = arcsin (¢/|| X)), D={c’— || X||*sin’ }'/* and K=2
. pr__Ij{ fon sin’ rdt } We give a sufficient condition for Cr.(X) to have smaller

volume than C°(X) in the following lemma.

LEMMA 2.1. If

r—D
r+ D

g(r+D)<r+D—{r—D—f(r—D)}( )’H forall r>D,

then Crg(X) has smaller volume than C °(X) for every X.

We give the proof of this lemma and those of Lemmas 3.1, 3.2 and 3.3

in the Appendix.
To give a representation of the coverage probability, we define
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B6) = {X: || X - 0|l <c}
and
B (0)={X:0€ Cre(X)}.

Since we use the equality Ps{f € Cr(X)} = Po{X € Br4(0)} as is often the
case, we have to describe By () explicitly. For that purpose we first note
that X € B°(0)(Bs(#)) if and only if PX € B°(P8)(By¢(P0)), where P is an
orthogonal matrix. Therefore, without loss of generality we may assume
that @ is of the form 8 = (6,,0,...,0)', where 6, > 0. For X = (X1,..., X;), put
z=(X2+ -+ XDV If z>c¢, X& Brg(f). Assuming that z<c, let us
define Xi and X{ by

ST = (@ = D =~ ) = 6
and

g(Xl_ + (CZ _ 22)1/2; (c2 _ 22)1/2) — 01 )
Equivalently, if we denote the inverse function of f(-; D)(g(-; D)) (which
really exist from Conditions (i), (iii) and (iv)) by f ' (-; D) = f'(-)g '(+; D) =
g

X1+ ‘—=f—1(01; (c2 _ 22)1/2) + (CZ . 22)1/2
and

X =g O - DD - (F-DH".
We can easily check that X7 < X because of Condition (vi). Thus, we see
that for fixed (X,..., Xp) with the property z < ¢, (X1, Xa,..., X;) € By (X) if
and only if X: € [X1, Xi'] because f and g are strictly increasing (see Fig. 2).
We may notice that if z = ¢, (6, X1,..., X,) is the common boundary point
of B%(6) and B¢(8) because of Condition (v). Therefore, we have

B ()={X:z<c,XI < X1 < Xi}.

We also notice that Br(0) = B°(0).

As mentioned before, using the equality Pe{f € Crs(X)} = Po{X
€ Bi¢(6)}, we have
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Fig. 2. Two-dimensional representation of B°(8) and Br,(9).

(2.2)  Po{f e Cre(X)}

f‘l(el;(cl"ZZ)I/Z)+(CLAZI)1u

p
zf"'fzzscl zI:Izd)(XE) g ' (B~ (- ¢(X1 - gl)dxldXZ"'pr ’

where z* = x5 + --- + x5 and ¢(+) denotes the standard normal density. If
f(r; D) and g(r; D) depend on D in a pathological manner, the inner
integral of (2.2) may not even be a measurable function of z. However, we
will choose f and g so that the integral is a well-behaved function of z and
the expression (2.2) makes sense. From (2.2) we see that a sufficient
condition for Po{f € Cre(X)} = Ps{f € C°(X)} for all 8 is that

ff"(ﬁl:D)-#D
g'@;p) D

6+ D
2.3) $(xi — O)dxi =, | d(x1~ Oydx,

for any 0 < D < ¢ and for any 6: = 0.
As a matter of fact, we may choose a function g for given fso that the
equality holds in (2.3); that is,

(24 D{f'B)-6i+D}+®B—g '(6)+ D}-28(D)=0,

where @(-) is the standard normal distribution function. It should be
noted that if f satisfies Conditions (i)-(v), then the function g defined by
(2.4) also satisfies them and Condition (vi) as well. So we can always
obtain a confidence set with the same coverage probability as C°(X) so far
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as f satisfies Condition (1)-(v). Further, if fis appropriately chosen, we may
have a confidence set which has the same coverage probability and also
smaller volume. We discuss this in the next section.

It may be remarked that with some needed modification we may apply
our method to confidence sets of the form (for example)

16 - (X))l = v(X),

where 6(X) is some Stein-type estimator. When v(X) is a constant our
method does not work, and it is necessary that 6(X) and v(X) are chosen
so that the resulting confidence set is Cy,.(X) for some choice of f and g.
However, the corresponding f and g may not satisfy Conditions (i)—(vi)
(especially Condition (v)). Even if this is the case, Cs¢(X) may dominate
C°(X). Here we do not pursue this possibility further.

3. A confidence set with the same coverage probability and smaller
volume

In this section we show analytically that if we choose the function f
appropriately, and if we define the function g by (2.4) for the given
function f;, then Cr¢(X) improves upon C°(X). Since we define g by (2.4)
for given £, Cr¢(X) has the same coverage probability as C°(X) for every 6.
Therefore, we need only to show that C;.(X) has smaller volume than
C%X) for every X.

Now let a and b4 be some numbers which may depend on the
parameter D and suppose that a= b > 0. Let

br
3.D fo(r)=r— ! r=0,

and let us define go(r) by the equation
(32 P{fi ' W-A+D}+PA-gi'D)+D}-286(D)=0 Ai=0,

for the given function fo. We note that the form of f; is the same as the
Stein-type estimator which first appeared in Stein (1955) and was also
considered in Shinozaki (1984). We can easily verify that fo and go satisfy
Conditions (i)-(iv) and (vi) given in the previous section. Since we will
assume further that b < 4D, they also satisfy Condition (v). We will give a
sufficient condition on a and b for Csg(X) to have smaller volume than
C%(X) for every X.

Let us arbitrarily fix ro> D and let us put Ao =fo(ro — D). From
Lemma 2.1 we see that it suffices for us to show that
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(3.3) go(ro+ DY<ro+ D~

b(ro — D) ( ro— D )1’_1
a+(ro-DY \ro+ D ’

if @ and b are appropriately chosen. To do this we give the following
lemmas.

LEMMA 3.1. If a and b satisfy the inequalities
azb and 0<b<4D?,

and if fo is given by (3.1), then

fo ') > A+ \/—%8? forall A=,
where
3.4 b’ = b(ro— DY'/{a+ (ro— D)’} .
Using Lemma 3.1 we have the following lemma.
LEMMA 3.2. If a and b satisfy the inequalities
a=b and 0<b<4D*,
and if we define go by the equation (3.2) for fo which is given by (3.1), then

] b p
"> A (
N A sy, ey

)s forall A=io,

where b’ is given by (3.4) and s = max (b'/2,1).
Finally from Lemma 3.2 we have the following lemma.
LEMMA 3.3. Ifaand b satisfy the inequalities
a=b and 0<b<min{4D*2(p-2)},

and if we define go by the equation (3.2) for fo which is given by (3.1), then

" (r=D
35)  go(r+D)<r+D-—2 (r

p-2
e i r=
r+ D r+D) forall r=ro,
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where b’ is given by (3.4).

If we put r=rs in (3.5), we have (3.3) which is the desired resuit.
Therefore, we have shown the following theorem.

THEOREM 3.1. Let a and b satisfy the inequalities
a>=b and 0<b<min{4D’2(p-2)}.

Let fo be defined by (3.1) and for this fo let go be defined by (3.2). Then
C..5(X) has the same coverage probability as C%X) for every 0 and has
smaller volume than C°(X) for every X.

We can easily see that if g is defined by (2.4), then g 7' (1) <f~'(4) for
all >0, which is equivalent to the condition f(r) < g(r) for all r>0.
Therefore, we see that go(|| X || + ¢) > fo(l X|| + ¢) > || X||, and this implies
that X itself is in Cr5(X). We may also notice that {1 — b/(a + | X||)}X is
also in Cj,g(X), where a and b are constants to be chosen so that they
satisfy a = b and 0 < b < min {4¢",2(p - 2)}.

To examine whether B .(8) is convex or not is of interest if we
consider the associated hypothesis testing problem (see Casella and Hwang
(1983)). However, even if we set a = b = min {4D°,2(p — 2)}, for example,
it seems quite difficult to settle the question, although B¢(0) = B°(0) is
always convex. In general if f(r; D) depends on D in a curious way and g is
defined by (2.4), Br¢(0) will not be convex. Another convexity problem is
that of C.g(X) itself. This also seems difficult because go is not explicitly
defined.

4. Numerical results

In this section we discuss how to obtain the value of go(r) defined by
(3.2) and we also discuss how small the volume of Cf,¢&(X) can be if we
compare it with that of C°(X).

Suppose that we want to determine the value of go(r) for a given value
of r. If we put 1 = go(r) and if we define ¢ by A = fo(f), then the equation
(3.2) can be rewritten as

(4.1) @it - fo(t) + D} + ®{fo(t) — r + D} — 20(D) = 0.

If we can solve the equation (4.1) for 7, then we can get the value of go(r) by
go(r) = fo(t). Since the left-hand side of (4.1) is negative for 7 < r, positive
for t=f""(r), and strictly increasing for r <t <f '(r), we see that the
solution ¢ of (4.1) exists in the interval (r,r + D) and is unique. Therefore,
we can solve the equation (4.1) quite easily by some iterative method.
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To get some idea about the behavior of fo(x; D) and go(x; D), we give
in Fig. 3 the two-dimensional loci of (7, 8) for C°(X) and Cr.(X) when
p=>5,a=b=min{4D 2(p — 2)} and c satisfies P{xs < ¢’} = 0.95. Figure
3(a) corresponds to the case || X|| =0 and 2¢, and (b) || X|| = ¢ and 3¢. It
may be seen that go(r) differs from r by relatively little compared to fo(r),
and that the value of go(r) changes very slowly.

The ratio of volumes of Cy..(X) and C°(X) calculated numerically by
using the expression (2.1) is given in Table 1. Again, in this case we have
chosen a = b = min {4D?, 2(p — 2)}. We also calculated the ratio for the
case @ = b =min (2D% p — 2), but it was larger except when it was nearly
equal to 1. From Table 1 it is seen that improvement is larger if p is larger,
if || X|| is smaller, or if the confidence coefficient is smaller. We may say
that improvement is substantial except in the case where p is small and

rsin f

(a)

(b)

Fig. 3. Loci of (r,B) (r=r. or r) for C°(X) (solid) and Cr.z(X) (short dash) witha=b =
min (4D°,2(p — 2)) when p=35. (a) || X|| =0 and 2¢, where ¢ satisfies P{x? <1 =0.95. (b)
Xl = ¢ and 3¢, where ¢ satisfies P{](s2 < *}=0.95.
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Table 1. Volume ratio of Cs.z(X) to C°(X) when a = b = min (4D2, 2(p — 2)) and c is the constant
such that P{x/ <’} =1-a.

P
1-a x|
3 5 10 15 20
90% 0 758 .695 .652 .631 617
¢ .820 729 .668 .642 .626
2¢ 955 .856 751 704 673
3¢ .986 933 .839 91 759
4c .994 .965 .895 .854 826
S¢ .997 979 929 .895 872
95% 0 799 738 .688 .663 .646
¢ .851 767 701 673 654
2c 965 .878 75 127 .696
3e .989 944 855 807 174
4c 995 97 907 .865 837
5S¢ 997 .983 937 .903 .880
99% 0 855 199 .744 714 693
¢ .891 818 754 721 .700
2¢ 978 910 813 765 734
3¢ 993 .960 .881 .833 .801
4c .997 979 924 .884 855
S¢ 998 .988 .949 917 .893

|| X|| is large. Hwang and Casella (1982) have shown numerically that their
confidence sphere has greatly increased coverage probability while main-
taining the same volume. By trading coverage probability for volume, it
should be possible to get a confidence set which has reduced volume and
maintains the specified level of coverage probability. Our results seem to
endorse this, although our confidence set is not a sphere.

To compare our confidence set with the ones given in Berger (1980)
and Casella and Hwang (1983), we give in Table 2 the volume ratios of the
three confidence sets to C°%X) when 1 —a=09 and p=5 and 10.
Although the confidence sets of Berger and Casella and Hwang are not

Table 2. Volume ratios of three confidence sets to C°(X) when | — a = 0.9 and ¢ is the constant such
that P{y < cl=1-aq.

=5 =10
B{ ? F

Berger  Casella-Hwang Ch.go Berger  Casella-Hwang Gz

0 410 .607 .695 .078 .189 652

¢ 593 .607 129 244 .189 .668
2¢ 877 .905 .856 581 766 751
3¢ 946 958 933 .840 .896 .839
4c 970 977 965 .891 941 .893

S¢ 981 985 979 922 962 .929
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analytically proven to improve upon C°(X), they have smaller volume than
Cre(X) for ||X|| near zero. This may be due to the fact that fo(r)
(accordingly, also go(r)) does not shrink enough for r near zero. We may
remark that fo given by (3.1) will not be the only choice of /' which leads to
the improvement upon C°(X), and another choice may lead to larger
improvement. This may be a subject for further research.
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Appendix

PROOF OF LEMMA 2.1. To show that C;¢(X) has smaller volume
than C°(X) for every X, we need only consider the case || X|| = ¢. From the
expression (2.1) we see that it is sufficient for us to show that

(A.D) {r+ DY = (r— DY} - {g”(r+ D) - fP(r— D)} >0,

for all r> D. We can easily verify that if f(r — D)/(r— D)=g(r + D)/
(r + D), then (A.1) holds. Therefore, we assume in the following that
f(r—D)/(r— D)<g(r+ D)/(r + D), and show that (A.1) holds.

To evaluate (r+ D)” — g”(r + D), we use the following inequality
which can be easily verified:

(A.2) for g=1, 1—(1—-uw)?=v{l -1 -uw}

0<u<l, 0<v<l.
We express (r + D) — gP(r+ D) as (r + D)’{1 = (1 — uv)*} with u={r -
D—f(r—D)}/(r—D)and v=(r— D){r+ D—g(r+ D)}/[(r + D)fr— D~

f(r— D)}] and (r — D)? — f?(r — D) as (r — D)"{l — (1 — w)*}. Noting that
0<u<1and0<v<1and applying the inequality (A.2), we have

(r+ DY —g"(r+ D)—(r— DY’ +f°(r— D)

}p](r+D)”_](r~ D)

z[l—{l«r_Dr__fg_D)
I e e e

which is positive from the condition of Lemma 2.1.

PROOF OF LEMMA 3.1. Let us arbitrarily fix A(= 4¢) and put r =
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fo '(1). Then we have

b
or
brt 1
. =1 —
(A4 r +a+r2r

From (A.3) we have

that is,

(A.5) r<\A2+8D%.
On the other hand,

br? N b(ro — DY

(A-6) a+r " a+(ro— DY

=,

since r > ro — D. Combining (A.4), (A.5) and (A.6), we have

bl

> A+ ————
¢ 8D

343

PROOF OF LEMMA 3.2. From Lemma 3.1 and the equation (3.2), we

see that it is sufficient for us to show that
4A)=0 forall A=4,

where

"W:‘”{W—'i—g—af“)}

b A

+¢{D* \/12+8D2(/1+2D )s]_z(p(D)'

Since }11~m A4(4) = 0, we need only show that
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A'(A)<0 forall A=4o,

which is equivalent to the condition

1 b’ 2
exp| — & D+————)
p[ 2( VAT + 8D

(A.7) +%{D— \//12?:81)2 ( 1321) ) }2]
2( 1321) ){ _%}’

for all A > Ao. (A.7) clearly holds if 1 — 2Ds(4* + 8D%/{A*(1 + 2D)} < 0. So,
we may assume that it is positive and may take its logarithm. We can easily
verify that the left-hand side of (A.7) is an increasing function of s.
Therefore, if we set s = 1, it suffices for us to show that

o ( Y )—1 [1_2Ds(/12+8D2)
°\7+2p ) 8 22(%+2D)
___ WDGA+D) "D+ D)
ViR 18D A +2D) (A +8DYA +2DY

(A.8)

is nonnegative for all 4 = Ao. Since (A.8) approaches 0 as 4 — oo, we need
only show that (A.8) is a decreasing function of A. Differentiating (A.8)
with respect to 4 and noting that s > b’/2, we see that (the derivative of
(A.8)) x (A + 2D)b'D) ! is not larger than

1 (. 2Ds(A+8D ]—1 { £+8D° 16D’
A A2 +2D) 1(A+2D) A
2A4(A + D) 2D
(A9) F R sDY T I 18D +2D)
4b90.+D) 2b'A

(A* +8DY(A+2D) (> +8D)A+2D)
Using the inequality

_ 2Ds(2’ +8D%) | - 2D(A* + 8D%)
A+ 2D) - A ’

we can verify that (A.9) is not positive and this completes the proof.
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PROOF OF LEMMA 3.3. First we note that
g(r+D)y<r+D-w for r=r,
if and only if
r+D<g'r+D-w) for r=ro,

where we put w=b'(r— D)""?/(r + D)?"'. Noting that 0 <w < D by the
condition b < 4D, we see that if r = ro

r+D—w>r=zro>A.

So we can apply Lemma 3.2 with A = r + D — w and we have

- b +D-w \r?
g'r+D—-w)>r+D-w+ (r w)

Vor+D-wP+8D* \r+3D—w

r=ro.

Therefore, we need only show that

b (r+D—w

p-?
—_— >0 for rz
YT e+ D-wy + 8D r+3D—w) or =

which is equivalent to the condition

for r>r.

r—Dr-+—3D—w]1"2< r+D
r+D r+D-w " N+ D-w)+8D

Since (r — D)(r +3D — w)/{(r + D)(r + D— w)} <1, it is sufficient for us
to show that

h(w) = (r - DY}/(r + D)*,
where

B 1 (r+D—-w)?
(r+D—wy+8D" (r+3D—-w)"

h(w)

We can easily check that 0glvisnb h(w) = min {h(0), (D)} and that both h(0)
and h(D) are not less than (r — D)*/(r + D)*.
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