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Abstract. This paper deals with a new system of discrete distributions. 
It also gives several characterizations of the Waring (and hence the Yule) 
distribution (and its truncated versions), the super-Poisson, the discrete 
uniform and other discrete distributions by using this system and other 
such systems existing in the literature, and linear regression. Continuous 
analogues of the above results are also briefly discussed. 
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1. Introduction 

There are in the literature several systems of discrete distributions. 
They all start with a discrete distribution (call it the parent population) and 
generate a new one by the system. Such systems were considered, for 
example, by Katz (1945, 1965), Bissinger (1965) and Ord (1967a, 1967b). 
See also Johnson and Kotz ((1969), Chapter 2, Section 4). Rao (1965) 
introduced a system of weighted distributions (which are defined for 
starting discrete as well as continuous distributions). This paper introduces 
yet another system which is used, in conjunction with other systems, to 
obtain several characterizations of the Waring distribution (and hence the 
Yule), the discrete uniform and the super-Poisson. The method used here is 
the equality of distributions of two random variables. 

The motivation for these characterizations comes mainly from the 
question: For what parent population (or populations) do two such systems 
lead to the same new distribution? It then turns out that only the Waring, 
Pareto and super-Poisson, among others, have this property. For further 
motivation and applications to income distribution see also Xekalaki 
(1983). 
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Section 2 introduces the new system and Section 3 contains the 
characterizations of the Waring and the super-Poisson. Section 4 deals 
with the characterization of the discrete uniform. In Section 5 we indicate 
the corresponding results for the continuous case. 

2. The new system of discrete distributions 

Let X be a positive integer-valued random variable (r.v.) with proba- 
bility function 

(2.1) pr = P ( X  = r), r = 1, 2 , . . . .  

Let Y be a new positive integral-valued r.v. with 

Y 

(2.2) qy = P (  Y = y )  = Y, x p x / y ( y  + 1), y = 1, 2 . . . . .  
x=l  

The new system (2.2) arises in at least two different ways. In one approach, 
suppose U is a uniform r.v. on (0, 1) independently distributed of X. Then 

(2.3) [ X / U ]  has the same distribution as Y, 

where [x] denotes the greatest integer in x. To see (2.3) we note that 

Y 

e ( [ x /  u] = y) = ~ ,  ~'([x/ u] = y, x = x) 

Y , P  v < _ < v + l , X = x  

x ) 
P - - <  U < _ - - , X = x  

~=1 y + l  y 

Y 

2 xpx /yO,+ 1). 
x=l  

We can view [ X / U ]  as, for example, an over-report of a true insurance 
claim X. 

Another  approach to (2.2) is to consider Y as being increased from X 
by some creative process. For  example, X particles of some kind give rise 
to Y particles by a process of splitting. In this approach, let the conditional 
distribution of Y given X = x be the distribution on x, x + 1,... given by 

(2.4) P ( Y = y l X = x ) = s ( y l x ) = x / y ( y +  1), y = x , x +  1 . . . . .  
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Then,  clearly the uncondi t iona l  distr ibution of Y is given by (2.2). Another  
example of  a creative process by which Y results f rom X is the following. 

Let X denote  the number  of accidents involving personal  injuries on a 
certain highway during a given period of time. Then Y could be taken to be 
the number  of persons injured in the X accidents. 

Note  that,  since (2.4) has an infinite mean,  so does the new system 
(2.2). 

3. Characterizations of the Waring and Yule distributions 

Star t ing f rom (2.1), Rao (1965) in t roduced a system of weighted 
distributions and the associated weighted r.v. Z by 

(3.1) q'~ = P ( Z  = r) = (r + a)p~/(It + a), r = 1, 2,.. .  , 

where we assume It = E ( X )  to be finite and a > - 1 is a constant.  Distribu- 
t ion (3.1) arises in what is called size-biased sampling. 

A second system frequently used is biased on partial  sums or the tail 
of the distr ibution (2.1). Let W be a nonnegative integer-valued r.v. with 

(3.2) q'; = P(W = r) = j=r+2pj/It, r = O ,  1 , . . . .  

Dis t r ibut ion (3.2) has been found useful. See, for example,  Johnson  and 
Kotz ((1969), p. 261) and Patil and Rao  (1977). 

It is natural  to ask: For  what  dis t r ibut ion (2.1) is (3.1) and (3.2) 
essentially the same? Since Z takes values l, 2,... and W = 0, 1,..., we need 
to t runcate W on the left at zero. It then turns out that  only the Waring 
distribution (introduced by Irwin (1965)) has this property. For  our purpose, 
a discrete r.v. is said to have a Waring distr ibut ion with parameters  c and 2 
and denoted W(c, 2) if 

(3.3) p r  = P ( X  = r) = (2 - c)c['-q/2 Ir], r = 1, 2,. . .  , 

where )~ - c > 0, c > 0 and 

c P J = c ( c +  1 ) - - - ( c + r - 1 ) ,  r =  l, 2 , . . . ,c  [°1=1.  

A special case (c -- 1) is the Yule distribution (see Johnson  and Kotz (1969), 
p. 250). 

We are now ready to characterize the Waring distribution. 

THEOREM 3.1. Le t  X be a pos i t ive  in tegral-valued r.v. given by (2.1) 
with  a f i n i t e  mean  It. De f ine  Z and  W by  (3.1) a n d  (3.2), respectively,  f o r  
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s o m e  a > - 1. Then W t runca ted  (on the left) at 0 has the s a m e  d i s t r ibu t ion  
as Z if, a n d  only  if, X has the Waring d is t r ibu t ion  (3.3). 

PROOF. "Only  if" part.  Let q' and q~ be given by (3.1) and (3.2), 
respectively, for  some a > - 1. Fur ther  let 

q; = q"r/(1 - q'6), r = 1, 2 , . . . ,  (3.4) 

where  

-1 q~ = 

Then  it follows f rom (2.1), (3.1), (3.2) and (3.4) that  

(3.5) q'; = x ~ q'~/(k + a), r = 1 2,. . .  
k=r+I  ~ 

where 

(3.6) 

F r o m  (3.5) we obtain 

x :  + - 1 ) .  

q'; - q"r+ 1 ---- xq';+ 1 / (r + 1 + a ) ,  

yielding us the recurrent  relat ion 

(3.7) q';+l/q" = (r + 1 + a ) / ( r  + a + 1 + x),  r = 1, 2 , . . . .  

Note tha t  (3.7) holds even for  r = 0. This follows f rom (3.1), (3.2), (3.4), 
(3.6) and q0 =/1 -l. F r o m  (3.7) we get 

(3.8) q'; = (1 + a)[~]qg/(1 + a + x) [r], r = 0, 1 , . . . .  

Equat ions  (3.4)-(3.8) and (3.1) lead to 

q" = (1 + a)[~]q'~/(1 + a + x)[r](1 - qg), r = 1, 2,... (3.9) 

and 

(3.10) p r = x ( l + a )  [r q / ( l + a + x )  It], r = l , 2  . . . . .  

But (3.10) is of  the fo rm (3.3) with 2 = 1 + a + x and c = 1 + a. Note  tha t  
x =  (lt + a ) / ( l t -  1) > 1 and e > 0 since we have assumed a > -  1. This 
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proves the "only if" part. 
"If" part. Let X have the Waring distribution given by (3.3) with 

2 - c > 1 (which is required for X to have a finite mean/ t ) .  Then using the 
Waring expansion 

( X - c )  = or,J/at,+'1, 
r=0 

which is valid for 2 > c > 0, we find that 

PJ = (c + r - 1)p,/(2 - c) .  
j=r+l 

From this last equation and the fact that p = c / ( 2 - c -  1)+ 1, we can 
easily verify that q~ = (1 - q'~)q'r, r = 1, 2,..., where q; and q'; are given by 
(3.1) and (3.2), respectively,  with a = c - 1  > - 1  and q~=/~-l .  This 
completes the proof of the "if" part and the proof of the theorem. 

R e m a r k  3.1. Our theorem covers the characterization of the Yule 
distribution. In the "only if" part the Yule distribution corresponds to the 
case a = 0 and in the "if" part to c = 1. If we take a = 0 in the "only if" part, 
then (3.9) becomes 

(3.11) qr = P(W = r) = x r  ! / (1 + x)  tr], r = 1, 2, . . .  , 

where we used (3.6) and the fact q~--/1-1. Krishnaji (1970) calls (3.11) a 
Yule distribution and characterizes it (see below). In fact, it is not surprising 
that Krishnaji's characterization should come up in the context of our 
theorem. The connection to his characterization is as follows. When a = 0, 
(3.5) in our "only if" part becomes 

( 3 . 1 2 )  (1 - q'~)q; = ~ q~i/j, j = 1, 2,... 
j=r+l 

where 

(3.13) q ~ =  1 ~ I t - s =  ~ q ~ / j .  

The right-hand side of (3.12) is P( [WU] -- r), as shown by Krishnaji (1970), 
where U is a uniformly distributed r.v. on (0, 1) independently of W. Thus 
(3.12) can be interpreted as 

(3.14) W and [UW] truncated at 0 have the same distribution. 



310 R.M. KORWAR 

Krishnaji (1970) has characterized W of (3.11) by the property (3.14). Note 
that the right-hand side of (3.12) for r =  0, 1,..., defines the so-called 
Bissinger (1965) system of discrete distributions corresponding to the 

t oo  

parent {qr} r: I. 

R e m a r k  3.2. Suppose we let X take on nonnegative integral values 
and replace (3.1) by 

q" = P(  Z = r) = co( r)pr / v, r = O, 1 . . . . .  

where co(r) > 0 is a general weight function and v = E(co(X))  < ~.  Then if Z 
and W have the same distribution, we get, corresponding to (3.7) that 

qr+l/q; = co(r + 1)/{x + co(r + 1)}, r = O, 1,... , 

where x = v/lt. Thus, more distributions can be characterized by using a 
more general weight function co. For example, if we take co(r) -- 1/(r  + 1), 
then 

q;+l/q;= l / x { r  + 2 + l / x } ,  r = O, 1,... , 

yielding 

q; = F()t)Orqd/F(2 + r), r = 0, 1,... , 

where 0 = 1/x and 2 - - 2  + 0. This is the probability mass function of a 
super-Poisson distribution (see Patil and Joshi (1968), p. 16). Thus we can 
characterize a super-Poisson by our methods: Let co(r) -- 1/(r  + 1). Then Z 
and W have the same distribution if, and only if, Z has a super-Poisson 
distribution with parameters 0 and 2 = 2 + 0, 0 > 0. 

Next we will characterize the Waring distribution (3.3) with 2 = c + 2 
by using the system of discrete distributions (2.2), (3.1) and (3.2). The 
following two theorems characterize, as expected in view of Theorem 3.1, 
the same Waring distribution. 

THEOREM 3.2. Let r.v.'s X,  Y a nd  Z have the dis tr ibut ions given by 
(2.1), (2.2) a n d  (3 .1) for  s o m e  a > - 1, respectively. A s s u m e  E ( X  2) < ~ .  
Then Y a n d  Z have  the same  dis tr ibut ion if, a n d  only  if, X has the Waring 
dis tr ibut ion W(it - 1, It + 1). 

THEOREM 3.3. Let  X,  Y a n d  W be r.v.'s with dis tr ibut ions given by 
(2.1), (2.2) a n d  (3.2), respectively.  Then Y a n d  W t runcated  at 0 have  the 
same  dis tr ibut ion if, a n d  only  if, X has the Waring dis tr ibut ion W(it - 1, 

I t + l ) .  
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PROOF OF THEOREM 3.2. "Only  if'' part .  Let  Y and Z have the same 
dis t r ibut ion  for  some a > - 1. Then  

y 

~, x p ~ / y ( y  + 1) = (r + a ) p , ( p  + a), r = 1, 2, . . . .  
x = |  

F r o m  this it fol lows that  

(lt  + a)pr+l = (r + 2)(r + 1 + a)p~+l - r(r + a ) p , .  

That  is, 

p(21+ (2 + a ) ( p - p ~ ) - p ( 1  - p ~ )  = p l 2 ) +  (1 + a ) ,  

where/./(2) is the second fac tor ia l  m o m e n t  of  X. If  p{21 is finite, then the last 
equa t ion  yields (2 + a - lu)p~ = 0. Since we have assumed p t  # 0, we must  
have a = p - 2. 

Now,  with a =/1 - 2, (3.1 5) becomes  

That  is, 

(3.16) 

yielding 

p~+l(r + 3 + a) = pr(r + a) . 

p~+l/p~ = (r + a) / ( r  + 3 + a), r -- 1, 2, . . .  , 

pr = (1 + a)tr-qpl(3 + a)/(3 + a) trJ, r : 1, 2, . . . .  

S u m m i n g  b o t h  sides over  r = 1, 2,... and  using the War ing  expans ion  
(referred to earlier) we get p~ = 2/(3 + a). Hence  

(3.17) pr = 2(1 + a)tr-q/(3 + a) t~l, r = 1, 2 .... , 

which is W(1 + a, 3 + a) = W ( p -  1, kt + 1) (since, a = / z -  2). No te  that  

Tha t  is, 

(3.15) p r + l { ( r + 2 ) ( r + l + a ) - ( p + a ) } = r ( r + a ) p r ,  r =  1,2,  . . . .  

We first show that  a = p - 2. Su mmin g  (3.15) over  r = l, 2, . . . ,  we get 

r ~ 2 r ( r -  1)p~ + (2 + a ) r ~ = 2 r p r - I  1 r~Epr = ~ r ( r -  1)p~ + ( 1  + a) ~ rpr.  
= - r=l  r= l  
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/1 + 1 >/~ - 1 > 0. This completes the proof of the "only if" part. 
The "if" part  follows in a straightforward fashion by the use of the 

Waring expansion. The details are omitted here. This completes the proof. 

PROOF OF THEOREM 3.3. "Only if" part. Let Y and W have the 
same distribution. Then 

Y 

~, r p , / y ( y  + 1) = ~. ,Pr/ l~(1 - q'~), 
r= I r : y +  

y =  1,2,... , 

where q3 -- 1//z. From this, one easily obtains the recurrent relation 

py+i/py = (y  + lz - 2)/(y +/~ - 2 + 3), y = 1, 2 , . . . ,  

which is (3.16) since a = / ~ -  2. Hence pr is given by (3.17). That  is, X is 
Waring (/z - 1,/z + 1). This completes the proof of the "only if" part. 

The "if" part  follows in a straightforward fashion by the use of the 
Waring expansion. The details are omitted here. This completes the proof. 

4. A characterization of the discrete uniform 

In introducing the new system of discrete distributions in Section 2, we 
assumed that the parent population X took all the positive integral values. 
If, however, X is a finite r.v. taking the values 1,. . . ,m for some positive 
integer m 

(4.1) p , =  P ( X = r ) ,  r =  l .... , m ,  

then the new r.v. Y has the distribution 

(4.2) qy = P ( Y =  y) = 

We can write (4.2) as 

Y 

rp, /y(y  + 1), 

rpr /y (y  + I), 
r = [ 

y = 1 , . . . ,m,  

y = m +  l , m +  2 . . . . .  

(4.3) qr = P { x=~ ~ x p x / p y ( y  + 1 ) } I ( y )  

+ (1 - p ) { ( m  + 1 ) / y ( y  + 1)}{1 - I (y )} ,  

where 



CHARACTERIZING DISTRIBUTIONS BY A NEW SYSTEM 313 

m 

(4.4) 1 - -p= r~=l rp, / (m + 1), 

and l ( y ) =  1 if y = 1, . . . ,m and 0 otherwise. Thus Y has a finite mixture 
distribution of  (2.2) truncated on the right at m and the Yule distribution 

f ( y )  = 1/y(y  + 1), y = 1, 2 , . . . ,  

t runcated on the left at m. This representation makes it clear that: (1) Y 
does not  have finite positive order moments,  and (2) we can characterize a 
finite discrete distribution by using only the first distribution in the mixture 
(4.3). The system (4.2) arises in the same two ways as (2.2). 

Let Y* be the r.v. Y truncated on the right at m. Then the r-th 
ascending factorial moment  It~'~] = E(Y*H) of the r.v. Y* can be expressed 
in terms of p = E ( X )  and the r-th ascending factorial moment  Itt~] of X as 
follows: 

Ittr] = {it(m + 2) tr-~] - Ittr]}/(r - l )p,  r > 2 ,  

where p is given by (4.4). No such simple relation exists for It~l] -- E(Y*),  
the mean of Y*. 

Turning to the characterizations referred to in (2) above, we state the 
following counterparts of Theorems 3.4 and 3.5 characterizing the truncated 
W(It - 1, It + 1) on the right at m. 

THEOREM 4.1. Let X,  Y and Z be r.v.'s with distributions (4.1), (4.2) 
and (3.1)for  some a > - 1, respectively. Then Y truncated on the right at m 
and Z have the same distribution if, and only if, X has the Waring (It - 1, 
It + 1) distribution truncated on the right at m. 

THEOREM 4.2. Let X,  Y and W be r.v.'s with distributions (4.1), 
(4.2) and (3.2), respectively. Then Y truncated on the right at m and W 
truncated on the left at 0 have the same distribution if, and only if, X has 
the W(it - 1, It + 1) distribution truncated on the right at m. 

A different kind and new characterization of the discrete uniform is 
obtained below by requiring that either X and Y truncated on the right at 
m have the same distribution, or X has a linear regression on Y with slope 
2/3 and intercept 1 / 3. 

THEOREM 4.3. Let X and Y be r.v.'s with distributions (4.1) and 
(4.2), respectively, f o r  m > 1. Then X and Y truncated on the right at m 
have the same distribution if, and only if, X has the uniform distribution 
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(4.5) 

PROOF. 
the same distribution. Then 

y 

(4.6) Y. r p d p y ( y  + 1)= py, y = 1,... m 
r =  l ' • 

Setting y = 1 in  (4 .6 ) ,  we ob ta inp  = 1 / 2 .  This and (4.6) give 

2(y + 1)py+, = (y + 1)(y + 2)py+, - y ( y  + 1)py. 

That is, 

R. M. KORWAR 

pr = P ( X =  r) = 1 / m ,  r = 1 , . . . , m  . 

"Only if" part. Let X and Y truncated on the right at m have 

giving us (4.5). This completes the proof of the "only if" part. 
The proof of the "if" part is straightforward and will be omitted here. 

This completes the proof. 

(4.7) 

We next characterize the discrete uniform (and other distributions) by 
linear regression of X on Y. But first we deal with some preliminaries. 

Let, then, X and Y be given by (4.1) and (4.2), respectively, where m 
now is a positive integer greater than 1 or oo. The joint distribution of X 
and Y= IX~ U], where as before U is uniformly distributed on (0, 1) 
independently of X, is given by 

e ( x  = x ,  r = y )  = e ( s  = x ,  [ x /  u ]  = y)  

= P ( X  = x,  x / ( y  + 1) < U<_ x / y )  

= I x p , : / y ( y  + 1), y _> x ,  

t O, y < x .  

Hence, the conditional distribution of X given Y = y is given by 

(4.8) P ( X  = x l  r = y )  = 

xpx  = ~ xpx '  x <_ y <_ m , 

/° 
xpx ~=ixpx, x < m < y . 

Assume E ( X )  is finite. It then follows that 

py+l =py,  y =  1 , . . . , m -  1 , 
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(4.9) E(X[ Y = y) = 

X2px Xpx, y <_ m 
x = l  =1 ' 

x px xpx, y > m .  
x = l  x = l  

Note (from (4.8) and(4.9)) that: (a) the condit ional  dis tr ibut ion of X given 
Y is a weighted distribution; and (b) the regression of X on Y is constant  
for Y > m. 

L e m m a  4.1 shows that  if the regression of X on Y is linear, then m 
must  be a positive integer (and not ~).  

LEMMA 4.1. Let X and Y =  [X/  U] be given by (4.1) and (4.2) where 
m is aposit ive integer or ~ .  Let E ( X )  befinite and E(XI Y) be linear. Then 
m must be a positive integer and not ~ .  

PROOF. 

(4.10) 

Let 

E(xI  Y :  y) = a + p y ,  

for some constants a and ft. Then f rom (4.9) with y = 1 and (4.10), we get 

a + f l = l .  

It can be shown that  for y _< m the r ight-hand side of (4.9) is an increasing 
funct ion of y. Hence fl > 0. F r o m  (4.10) and a + fl = 1, it also follows that  
fl <_ (y - 1)/y. Thus we have 

0 < a <  1, 0 < f l <  1 and a + f l =  1 . 

Now equat ing the right-hand sides of (4.9) and (4.10) we have, for y _< m, 

Y Y 
(4.11) ~ x2px= (a + fly) E=lxpx. 

F r o m  a + f l  = 1 and this last equation,  we get 

(4.12) py/py-~ = {(y - 2) + (1 - a)/a}/y ,  y = 2,..., m ,  

yielding, finally, 

(4.13) py =pl{(1 - a)/a}tY-l]/y!, y = 1 , . . . ,m .  

Now, suppose  (1 - a ) / a >  1. Then  (4.13) yields p y > p ~ / y ,  y =  1, . . . ,m,  
g n  

and y=Epy will diverge if m = ~ .  Thus,  in this case, m must  be a positive 
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integer. Next, suppose (1 - a)/a < 1. Then, if m = ~ ,  (4.13) is the Waring 
distribution (3.3) with 2 = 1 and c = (1 - a)/a _< 1. Such a Waring distribu- 
tion has an infinite mean (see, for example, Patil and Joshi (1968), p. 50). 
This contradicts the assumption that E(X)  < ~ ,  completing the proof. 

Theorem 4.4 below characterizes distributions (4.13) (with m a positive 
integer) which include the discrete uniform, by linear regression of X on Y. 

THEOREM 4.4. Let X and Y have the distributions (4.1) (m > 1) and 
(4.2), respectively. Let E(X)  be finite. Then the regression o f  X on Y 

(4.14) E(X[ Y = y) = [ a + fly, y <_ m ,  
const., y > m ,  

for some constants a and fl if, and only if, X has the distribution (4.13). In 
particular, (4.14) holds with a = 1/3 and fl = 2/3 if, and only if, X has the 
discrete uniform distribution (4.5). 

PROOF. "Only if" part. Let (4.14) hold for some constants a and ft. 
Then from the proof of Lemma 4.1, we get (4.13), where m now is a 
positive integer. 

To prove the "if" part we assume (4.13) and make use of the identity 

Y 

(4.15) ~, alXl/x! = ( a +  1)[Y]/y!- 1, a ~ O ,  
X = I  

repeatedly to obtain 

V 

(4.16) E xat~-q/x! = (a + I)EY-~I/(y- 1)!, y = 1, 2,... 
x = i 

and 

V 

(4.17) ]~x2a Ex q / x ! = ( a y + l ) ( a + l )  Ey t~ / (a+l ) ( y - l ) ! ,  y =  1 ,2 , . . . .  
x = |  

Finally, (4.9), (4.16) and (4.17) (with a - - ( 1 -  a)/a) give us (4.14), com- 
pleting the proof of the "if" part. 

The "only if" part of  the second assertion of the theorem is obvious 
from (4.13). The "if" part follows from (4.16) and (4.17) with a = (1 - a)/a = 
2. This completes the proof. 

The following theorem shows that if a positive r.v. T has a linear 
regression on X, then it will continue to have linear regression on Y= 
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IX~ U] if X has the dis tr ibut ion (4.13) provided U is independent ly  dis- 
t r ibuted of (X, T). 

THEOREM 4.5. Let X,  Y have distributions given by (4.1) and (4.2), 
respectively, for a positive integer m > I. Assume that the r.v. T has a f ini te  
mean and has a linear regression on X 

(4.18) E ( T I X =  x) = a + bx, b ~ 0 ,  

f o r  some constants a and b. Further assume that E ( X )  < ~ and U is 
independent o f ( X ,  T). Then, T has a linear regression on Y 

(4.19) E ( T l y = y ) = { ~ + c ~ y ,  y < _ m ,  
const., y > m ,  

f o r  some constants ~ and ~ if, and only if, X has the distribution (4.13). In 
particular, (4.19) holds with y = a + b /3  and  ~ = 2b/3 if, and only if, X has 
the discrete uniform distribution (4.5). 

PROOF. "Only if" part. Suppose  (4.19) holds for some constants ~, 
and ci. Then 

E(TI Y) = E ( E ( T I X ,  U)[ Y), a.s. 

(4.20) = E(a + bxl Y) 

= a + bE(XI  Y ) ,  

the middle equality following f rom (4.18). Hence, f rom (4.10) and (4.19), 
we have 

Y 2 / Y 2 
(4.21) 7 + O y = a + b  ~=lxPX ~=lXpX, y < m .  

Now, (4.21) is (4.11) of L e m m a  4.1 with a = (~, - a)/b and fl = 3/b.  Thus,  
f rom L e m m a  4.1, (4.13) holds with (1 - a)/a  = (b - ~ + a)/(7 - a) = 6/(b - 
8) (the last equality following f rom (4.21) with y --- 1). 

The "if" part  follows f rom the "if" part of Theorem 4.5 and (4.20). 
The second assertion follows f rom (4.13) (with (I - a)/a = ~(b - ~) = 2) 

and (4.20). This completes the proof.  

Remark  4.1. In Theorem 4.5 we assumed that  b # 0. However,  if 
b = 0, then (4.19) will hold with y = a and 3 = 0 for any r .v .X.  This follows 
f rom (4.20). 
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5. Continuous analogues 

In this section we state, for most of the time, continuous analogues of 
the results obtained in earlier sections. 

Let X be a positive r.v. on (a, ~) ,  a _> 0 with densi tyf .  Then we define 
a new r.v. Y by the density 

(5.1) g(y) =ja y x f ( x ) d x / y  2, y > a . 

It turns out that Y has the same density as X~ U, where U is uniformly 
distributed on (0, 1) independently of X. As before, Y has no positive order 
moments.  This is clear from the representation that the conditional density 
of Y = X / U  given X = x is the Pareto distribution 

(5.2) h(y lx )  = x / y  2, y >_ x ,  

and obviously, (5.2) has an infinite mean. 
If, however, we restrict X to a finite range say, (a, b), 0 ___ a < b < ~ ,  

then taking Y = X~ U, the density of Y will be 

(5.3) g ( y ) = p  { f f  x f ( x ) d x / p y  2 } l ( y )  + ( I -  p){b/y2}(l  - /(y)) , 

where I (y )  is the indicator of (a, b) and 

(5.4) fa b 1 - p -- x f ( x ) d x / b ,  

we can, then compute the r-th moment  of Y*, the truncated version of Y 
on the right at b, as follows 

(5.5) 
I l~* : (br-l,u - pr)/p(r - 1), r >_ 2,  

E(y*r )  = b 

where E ( X  r) = I.zr. 
Before turning to characterizations, let us note the analogues of (3.1) 

and (3.2) for the continuous case: A r.v. Z is said to have the weighted 
distribution corresponding to X with a weight function co(x)> 0 if its 
density is given by 

(5.6) k(z) = co(z)f(z)/  E(co(X)),  z > a ,  
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where E(co(X)) < oo. Similarly let W be the r.v. with density 

(5.7) l(w) = {1 - F(w)} /p ,  w > O ,  

where E ( X ) = p  < ~ .  See Patil and Rao (1977) for an example in which 
(5.7) arises naturally. We are now ready to state characterizations of some 
well-known cont inuous distributions. 

THEOREM 5.1. Let X be a posit ive r.v. on (a,o~), a >_ 0 with the 
density f ( x ) .  Let Z and W be given by (5.6) and (5.7), respectively, f o r  some 

weight func t ion  co. Assume dr~ co(v) = ~ .  Then Z and W have the same 

distribution if, and only if, X is given by 

(5.8) 1 -  F ( x ) = e x p  ( -  d f  x dv/co(v)) ,  

where d = E(co(X))/p. 

Thus we can characterize different distributions by taking different 
funct ion  co. For  example,  if we take co(x)-- 1 /x  (and a = 0) we get the 
Rayleigh distribution, and if we take co(x) = x, we get the Pareto distribu- 
tion. 

The  next result characterizes a Beta distr ibution of the second kind. A 
r.v. X is said to have a Beta dis t r ibut ion of the second kind with 
parameters (p,  q), p ,  q > 0 if its density is given by 

(5.9) f ( x ;  p,  q) = xp-1/{fl(p, q)(1 + z)P+q}, X > O, 

where fl(p, q) is the beta function. 

THEOREM 5.2. Let X be a positive r.v. on (0, o.) with the density 
f ( x ) .  Let Y and Z be given by (5.1) and (5.6), respectively, with co(x) = x + c 
f o r  some constant c > O. Then Y and Z have the same distribution if, and 
only if, X~ c has a Beta distribution o f  the second k ind  with parameters 

2). 

The following result characterizes the Pareto distribution of the second 
kind (see, for a definition, Johnson  and Kotz (1970), p. 234). 

THEOREM 5.3. Let X be a posit ive r.v. on (0 ,~)  with the density 
f ( x )  and a f ini te mean p. Let Y and W be given by (5.1) and (5.7), 
respectively. Then Y and W have the same distribution if, and only if, X 
has the Pareto distribution o f  the second k ind  with the distribution 
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funct ion F given by 

(5.10) 1 - F ( x )  = {/t/(~u + x ) }  2, x > 0 .  

Now,  tu rn ing  to charac te r iza t ions  by l inear regress ion,  we start  wi th  a 
l emma.  

LEMMA 5.1. Let X be a posi t ive r.v. on (0, b) with the density f ( x )  
where b is a posit ive constant on ~ .  Let the density o f  Y- -  X~ U be given 
by (5.3). Let E ( X )  < ~ and assume that X has a linear regression on Y 

(5.11) E ( X i Y = y ) = { a + f l y ,  0 < y < b ,  
const., y > b ,  

f o r  some constants a and ft. Then, (i) a -- 0, 1 / 2 < fl < 1, (ii) b < oo and (iii) 
X has the power  distribution on (0, b) 

(5.12) f ( x )  = {/tfl/(1 - fl)b2}(x/b) pm ~)-z, 0 < x < b .  

In particular, X has a uniform distribution on (0, b ) / f f l  = 2/3.  

THEOREM 5.4. Let X be a positive r.v. on (0, b), b < 0% with the 
density f ( x ) .  Let  Y - - X / U  be given by (5.3). Then, (5.11) with a = 0 ,  
1/2 < f l <  1 holds if, and only if, X has the power  distribution (5.12). In 

particular, (5.11) holds with a = 0 and fl = 2/3 if, and only if, X has a 
uniform distribution (0, b). 

Our  f inal  resul t  asserts tha t  if a posi t ive r.v. has a l inear regress ion  on  
X, then  it will still have a l inear  regress ion on  Y = X / U  if, and  only  if, X 
has the power  d is t r ibut ion  (5.12). 

THEOREM 5.5. Let X be a posit ive r.v. on (0, b), b < ~ ,  with the 
density f ( x ) .  Let  Y =  X~ U be given by (5.3). Let, fur ther ,  T be a posi t ive 
r.v. with a linear regression on X 

(5.13) E ( T I X  = x) = a' + f l ' x ,  

f o r  some constants a' and fl'. I f  T has a linear regression also on Y, 

(5.14) E ( T l y = y ) = { y + 6 y ,  0 < y < b ,  
const., y > b ,  

f o r  some constants ~ and 6, then, (i) ~ = a', (ii) 1/2 < O/ f l '<  1 and (iii) X 
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has the distribution (5.12) with fl = 6/fl'. Conversely,  i f  X has the distribu- 

tion (5.12), then, (5.14) holds with 7 = a' and 6 = tiff'. 
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