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Abstract. Expressions for the entries of the information matrix and 
skewness tensor of a general multivariate elliptic distribution are obtained. 
From these the coefficients of the a-connections are derived. A general 
expression for the asymptotic efficiency of the sample mean, when 
appropriate as an estimator of the location parameter, is obtained. The 
results are illustrated by examples from the multivariate normal, Cauchy 
and Student's t-distributions. 
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1. Introduction 

In recent work on multivariate analysis there has been some emphasis 
on the class of elliptic distributions as a source of alternative models to the 
normal. Chmielewski (1981) provides a review and bibliography of specific 
results and areas of application. 

Most of the statistical work reviewed involves testing problems, although 
Maronna  (1976) has studied the robust estimation of the location and scale 
parameters. Maximum likelihood estimation arises mainly in the context of 
likelihood ratio tests. Some work on finding maximum likelihood estimates 
is described by Maronna  (1976) and Hsu (1985). It would appear that no 
work has been done on finding general simple expressions for the entries of 
the information matrix. Its inverse is the asymptotic variance-covariance 
matrix of the maximum likelihood estimators under suitable regularity 
conditions and is relevant in determining asymptotic efficiencies of esti- 
mators of parameters. 

The entries of the information matrix also play an important role in 
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the differential geometry approach to statistical inference, since they define 
a covariant, symmetric tensor of the second degree. Together with the 
skewness tensor, they define the a-connections basic to the general approach 
of Amari (1985) and are fundamental to the study of higher asymptotic 
properties of estimators, tests and confidence intervals for exponential 
models. Some results for elliptic distributions in special cases have been 
given by Mitchell and Krzanowski (1985) and Mitchell (1987, 1988). 

It is the purpose of this paper to derive simple, general expressions for 
the entries of the information matrix and the skewness tensor of a general 
multivariate elliptic distribution. From these, expressions for the coeffi- 
cients of the a-connections will be deduced. This provides a basis for future 
studies of the a-geometry of the class of multivariate elliptic distributions, 
whose members are not exclusively exponential models, and for the 
resolution of related statistical inference problems. The results for the 
information matrix are used to find a general expression for the asymptotic 
efficiency of the sample mean as an estimator of the location parameter, 
when the location parameter is the mean. The results will be illustrated by 
some particular well-known multivariate elliptic distributions. We began 
with some simplifying probability results. 

2. Some simple probability results for elliptic distributions 

A p-dimensional random variable X is said to have an elliptic distri- 
bution with pa ramete r s /7=  (lut,u2,...,,up) and 7 t, a p × p  positive-definite 
matrix, if its density is of the form 

(2.1) J~(xl ¢t, ~u) = (det 7t)-l/2h{(x - / t )r~u- l (x  -/z)} 

for some function h. We say that X has an ELhp(~u, 7 u) distribution. Its 
characteristic function is 

9~h(t) = exp (it%)~Uh( fl'~t) 

for some function q/h. Provided they exist, 

E ( X )  =/2 and cov (X) = kh~ u , 

w h e r e  kh is a constant given by 

kh = -- 2 -d-flu q/h(U) ,=o" 

The class of elliptic distributions includes the normal, Student's t, 
Cauchy, or, more generally, the Pearson VII, and the generalized Laplace 
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or Bessel distributions. For a Np(p, ~2) distribution, for example, 

1 
h(u) = (2re) -p/2 exp - -~- 

~Uh(U)=exp ---~-U , 

u ) ,  ~ = O ,  

k h = l .  

Properties of elliptic distributions have been studied by Lord (1954) 
and Kelker (1970) and are summarized by Muirhead ((1982), pp. 32-40). In 
particular,  any EI_~(B, ~P) random variable X can be reduced to an 
ELh(O, I) random variable Z by the transformation 

(2.2) Z = P-~(X - I~) , 

where I is the p × p identity matrix and P is a non-singular p × p matrix 
such that 

(2.3) p r ~ - l p  = I .  

Such a random variable Z is said to have a spherical distribution. If 
Z r =  (Z1,Z2,..., Zp), the Zi have identical univariate spherical distributions, 
but are not independent unless Z is normal. Any odd function of the Zi will 
have zero expectation, provided the expectation exists. 

When Z r =  (Zt, Z2,..., Zp) is an ELh(O, I) random variable, it is well- 
known that 

II Zll = (zTz) and V :  Z~ II Zll 

are independent ,  V having a uniform distribution on a unit sphere. 
Moreover,  if V T= (1,'1, V2 .... , Vp), it is clear that, for any positive integers r, 
s and t, E(Vi) ,  E(V;V~) and E(  r s t r ViVjVk) ( i ~ j ; j ~ k ;  i ~ k ;  i , j ,  k=  1, 
2,...,p) can be found assuming Z to be Np(O,I). Using this and the 
independence of  F[ ZFI and V, it is easy to show that 

(2.4) E(V~) = 

(2.5) E(V;V]) 

( r -  1 ) ( r -  3) . . .  1 
r even, 

p(p + 2) ... (p  + r - 2) 

0 otherwise, 

( r  - 1 ) ( r  - 3 )  -.- l(s - 1 ) ( s  - 3 )  . . .  1 

p(p + 2) ... (p  + r + s -  2) 

0 

r, s both even, 

otherwise, 



2 9 2  A N N  F .  S .  M I T C H E L L  

and 

(2.6) r s t E( Vi V~ Vk) 

( r - 1 ) ( r - - 3 ) . - .  l ( s -  1 ) ( s - 3 ) - - -  l(t .... 1)(t 3) . . .  1 

p(p  + 2) ... (p  + r +  s + t -  2) 

r, s, t all even, 

otherwise. 

The results obviously do not depend on i, j and k. The proof  follows that 
of Anderson and Stephens (1972) for the cases (2.4) with r = 4, and (2.5) 
with r = 2, s =  2 and r = 3, s =  1. 

In deriving expressions for the entries of the information matrix of an 
ELh(lu, ~ )  distribution and, indeed, in more advanced differential geometric 
descriptions of such distributions, we come face to face with the random 
variable 

d log h(ll Zll 2) 
W= 

d(ll Ztt 2) 

In particular, moments of the following type are often encountered, viz., 

r s E,ZrZSZ t ,i,.l., E(Z~WI), E ( Z i Z j W  1) and t i j kvv ) ,  

for positive integers r, s, t and l and i,j, k = 1, 2,. . . ,p; i ~ j , j  ~ k and i ~ k. 
Using the same type of argument  as for (2.4), (2.5) and (2.6), these can be 
written in terms of (2.4), (2.5) and (2.6) as 

(2.7) 

(2.8) 

E(Z~ W l) = E(  V~)E( 11 eli r Wl), 

E(Z~Z~ W t) = E(V~V~)E(II Zllr+S W ') 

and 

(2.9) 
r s t E(ZiZ~Z~ W t) = E( V~V~ Vf,)E(l1211 r+'" Wz). 

In evaluating the non-zero moments  for which r, s and t are all even, it 
can be useful to work with the distribution of S =  [IZII 2, whose density 
function is well-known and given by 

fh,s(s) = 

7~p/2sp/2-1h( s) 

0 

s > 0 ,  

otherwise. 
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Moments  of the type E(sqw t) = E(I[ZiI2qwt), for positive integer q, can 
be found very easily in special cases like the normal ,  Cauchy, Student 's  t 
and Pearson VII. For  example,  in the normal  case, 

(__ l)t2q-//~ ( q + l p )  

(2.10) E{IIZII2qwt} = F(  l p  ) 

and, in the case of Student 's  t on k d.f. (k-- 1 giving Cauchy) provided 
21- 2q + k > O, 

(2.11) E{I[ZII2qW t} 

( - l ) t ( k + p ) t r ( l k + + p ) B (  1 
-2p 

, ) + q , l + - - ~ k - q  

It is also interesting to note that,  whatever the member  of the elliptic class 
under  consideration,  

(2.12) E(IIZII  2 W) = ( - p ) / 2 .  

Moreover,  f rom (2.7), (2.8), (2.4) and (2.5), it is easy to see that,  for 
even r, s and t, 

(2.13) E(Z~+SWl)= ( r + s -  l ) ( r + s - 3 ) . . -  1 
(r - 1)(r - 3) ... l(s - 1)(s - 3) ... 1 E(Z'~Z~Wl) 

and, similarly, using (2.9) and (2.6) also, 

(2.14) E ( Z U  +~ W ~) 

(r + s + t -1)(r  + s + t -  3) ... 1 

( r -  l ) ( r -  3) ... l ( s -  1 ) ( s -  3) ... l ( t -  1 ) ( t -  3) ... 1 

• s t 1 
• E ( Z i Z j Z k W  ) . 

There are many  identities of the above type, but  those in (2.13) and 
(2.14) are useful in deriving simple expressions for the expectations of 
(ZrAZ) W t, (ZrAZ)(ZrBZ) W t and (ZrAZ)(ZrBZ)(ZrCZ) W t, where A, B 
and C are symmetr ic  matrices with constant  entries ai:, bq and cq, respec- 
tively, (i, j = l, 2 , . . . ,p) .  These expectat ions arise naturally in the future 
development .  Before deriving them we introduce the following notat ion,  
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p 

d(A, B) = ]~ aiibii 
i= 1 

and 

p 

d(A, B, C) = ]~ aiibiicii. 
i=l 

From (2.4), (2.5), (2.7) and (2.8), we obtain at once 

(2.15) E(ZrAZW t) = tr (A)E(Z~W t) 1 = - -  tr ta~'t,,7.,w~,.~,._.,,,._.,2,1, 
P 

and, f rom first principles, 

E{(ZVAZ)(ZrBZ) W l} = d(A, B){E(Z~ W t) - 3E(Z~Z~ Wt)} 
+ {2 tr (AB) + tr (A) tr (B)}E(ZZZ 2W'),  

which, using (2.13), (2.8) and (2.5), gives 

(2.16) E{(ZrAZ)(ZrBZ)W t} 

= {2 tr (AB) + tr (A) tr (B)}E(Z~Z~ W l) 

m 

p(p + 2) 
{2 tr (AB) + tr (A) tr (B)}E(IIZII4Wt). 

Again f rom first principles, using (2.7) and (2.8), we get 

E{( Zr AZ)( Zr BZ)( Zr CZ) W t} 

= __ . ~ t ~ E t Z z Z 2 Z  2 u z l ~ l  d(A, B, C){E(Z~W') 15E(Z~Z~.W') + ~u t i j kvr )~ 

+ {tr (A)d(B, C) + tr (B)d(A, C) + tr (C)d(A, B) 

+ 4d(AB, C) + 4d(BC, A) + 4d(AC, B)} 

{E(Z Z WI) 2 2 2 • - 3E(ZiZjZkW )} 

+ {tr (A) tr (B) tr (C) + 2 tr (A) tr (BC) + 2 tr (B) tr (AC) 

+ 2 tr (C) tr (AB) + 8 tr (ABC)}E(ZzZ}Z~W~), 

which, by (2.13), (2.14), (2.9) and (2.6), simplifies to 
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(2.17) F. {( Z" AZ)( BZ)( Z" CZ) W'} 

= {tr (A) tr (B) tr (C) + 2 tr (A) tr (BC) 

+ 2 tr (B) tr (AC) + 2 tr (C) tr (AB) 
2 2 2 + 8 tr (ABC)}E(ZiZjZkW l) 

p(p + 2)(p + 4) 
{tr (A) tr (B) tr (C) + 2 tr (A) tr (BC) 

+ 2 tr (B) tr (AC) + 2 tr (C) tr (AB) 

+ 8 tr (ABC)}E(IIZII6Wt). 

In the refereeing process a t tent ion has been drawn to alternative 
derivations using cumulants ,  see e.g., McCul lagh (1987), and zonal poly- 
nomials and invariant polynomials ,  see James (1964) and Davis (1979, 
1981). Except possibly in the case of (2.17), both  would seem to use heavier 
and less immediately accessible machinery than  is really warranted.  More- 
over, they do not  reveal identities of the type (2.13) and (2.14) which are 
useful in more  applied contexts. 

3. Entries of the information matrix 

In determining the entries of the information matrix of X, an ELhp(t2, 7 J) 
r a n d o m  variable, we shall always use Z to mean the ELh(O, I) r andom 
variable defined by (2.2) and (2.3). We shall assume that  all expectations 
encountered exist. 

F r o m  (2.1), logj~(xL/l, 7 t) is given by 

1 
logJ~ = - - f  log (det 7 t) + log h(u), 

where u = (x - I~)r~-~(x -/1). 
On differentiating with respect to/~/i 

(3.1) a log______~ _ 2 d log h(u) {(x-/z)rT'- lei} 
0]/i  d u  

= - 2 d l o g  h(llzll 2) 
d(llz(12) { zrPr~-lei} 

T T -1 = - 2 w z  P ~ ei, 

where ei is the p × 1 vector with 1 in the i-th entry and zeros elsewhere 
(i = 1, 2, . . . ,p) .  It follows at once, using (2.15), that,  for i , j  = l, 2 , . . . ,p ,  
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(3.2) E (  Ologj~ O lOgfh ) _  4E{(Zrpr~_leiZTpT~_leg)W2} 
O [Ji O /J j 

T T -1 T~j-I  2 : 4E{(Z P ~P eiey PZ) W } 

4 

P 
- - - t r  (Pr~-~e~e~-~P)e(  II ztl ~ w ~) 

4 
= - -  E(][ ZI[: WZ)e~-~ej 

P 

-- 4ah  d j , 

where tf j denotes the (i, j )- th entry of 7 t-~ and 

1 
(3.3) ah = - -  E(II ZU 2 W2). 

P 

To find E{(O lOgfh/Opi)(O lOgfh/&rkl)} for l>_k, i, k, 1= 1, 2,...,p, 
where ak~ denotes the (k,/)-th entry of 7 t, we use the following results due 
to Dwyer (1967) on matrix derivatives for the symmetric matrix 7", viz., 

O 
07 t log (det 7/) = ~F -1 

and 

(3.4) 
0 

(x  - / l ) r ~ u - ~ ( x  - / ~ )  = - 7'-~(x - ~) (x  - / l ) r ~  u-~ 
07 j I 

Applying these, we get 

0 logJ~ 1 d log h(u) 
(3.5) - - -  t p - l+  

a 7 j 2 du 
{ - W-~(x  - l z ) (x  - ~)rT"-~} 

1 d l o g  h( l lz l l  2) _ _  7 t - l+  
2 d(llzll 2) 

( -  ~-~pzzrpr~ -1) 

1 ~_~ w~_~pzzrpr~_ ~ 
2 

which, combined with (3.1), gives 
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(3.6) 
E ( O l o g f h  0 logJ~ ) Opi ~ = E(WZrprgt- leigt- l)  

+ 2E( w Z z r p r ~ - l e i g t - l P Z Z r p r ~  -1) 

= 0 ,  

since each term involves expectations of odd functions of Zi. 
Before finding the entries E{(O lOg fh/ Oaij)(O logfh/ Oakt)} (j >-- i, l >_ k, i, 

j ,  k, l = 1,...,p), we introduce the following notation, 

hi, i) i = j , 

hj = I(i,j ) -~ I(j.i) i ¢ j , 

where fie,j) denotes the p x p matrix with (i,j)-th entry 1 and 0 elsewhere. It 
follows at once, from (3.5), that 

(3.7) 
O logJ~ 1 

Oau 2 
t r  (~-/-1/k/) -- t r  (I[F1PzzTPTt[t-Ilkl)W 

- - -  tr (~- l Iu)  - ( zrpr~- lh tg t - lPz)w 

and hence, from (2.12), (2.15) and (2.16), that 

(3.8) E ( O l ° g j ~  a l o g J ~ )  
&ru Oa,s 

1 
= - -~- tr (g"-'ht) tr (T*-llrs) 

+ E(Z~Z 2 W2){2 tr (~-~IuTt-lLs) 

+ tr (7'-1Iu) tr (~-llrs)}, 

which, using (2.8) and (2.5), can be written as 

/ 0 logj~ 0 logj~ \ 
(3.9) E / ] = 2bh tr (gt-llu~-'Irs) 

O~kl O]O'rs \ ! 

1 
+ -~- (4bh - 1) t r  (~l-llkl) t r  (~-I-1Irs), 

where 

1 
(3.10) bh - E(II Zll 4 W2). 

p ( p  + 2) 
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It is a simple, if tedious, matter to now derive the expression in (3.9) in 
terms of the entries a u of ~ u-1. Care must be taken with combinations of 
different values of k, l, r and s with l _> k, s _> r. 

To summarize, the elements of the information matrix are given by 

(3.11) 

0 logfi  0 logfi 
0].1i O~lj 

0 logfi 0 logfi 
Olz~ Ocrkl 

T - |  ' '  
= 4 a h e i  ~ e j  = 4ahd J , 

= 0 ,  

0 logfi a logfi \ 

] = 2bh tr (~-lht~-~Ls) 
OtYkt OtYrs l 

1 
+ --~ (4bh -- 1) tr (Tt-llkt) tr (T-1Ls) 

(l>_ k ,s  >_ r).  

In the particular case of multivariate normality, it is easy to show, 
from (3.3), (3.10) and (2.10) that 

1 
ah = bh --  

4 

The elements of the information matrix then reduce to those given by 
H ayakawa (1980) and derived by Skovgaard (1984). 

As a very simple example of one type of use of these results, we 
consider members of the elliptic class for which E ( X )  and cov (X) exist 
and are given by 

E ( X )  = p and coy (X) = k h T .  

In this case an obvious simple estimator of / t  would be the sample mean 
vector, X. Assuming a random sample of size n and the appropriate 
Central Limit Theorem, X is asymptotically Np(lt, khT/n).  From the 
inverse of the information matrix in (3.11), the asymptotic efficiency of X 
is given by 

(3.12) { 1 (det 7t)l/p }/{ kh(det ~u) lip } 1 
4ahn n 4ahkh 

where ah is defined in (3.3). 
To illustrate this result we consider a Student's t-distribution on k 

(k > 2) degrees of freedom. It is well-known that 
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k 
kh F m  

k - 2 '  

and it is easily verified from (2.11) that 

(k + p) 
ah 

4(k + p + 2) " 

q 

Hence, we find that the asymptotic efficiency of X is given by (1 - 2/k) 
• (1 + 2/(k +p)). 

Letting k --- ~ ,  irrespective of the dimension p, we get 100% asymptotic 
efficiency corresponding to the fact that, in the normal case, X is the 
maximum likelihood estimator of p. For finite k > 2, increasing the dimen- 
sion leads to a fall in the asymptotic efficiency to the lower bound 
( 1  - 2/k) = 1/kh. This is an increasing function of k and is as high as 80% 
for k = 10. 

More generally, however, (3.12) provides an interesting interpretation 
of the factor by which the usual multivariate normal Mahalanobis distance 
must be multiplied to give the distance between members of a general 
elliptic family differing only in location. Following Mitchell and Krzanowski 
(1985), it is easy to see that the factor is the inverse of the asymptotic 
efficiency of the sample mean, X, as an estimator of p. 

4. The skewness tensor and a-connections 

For simplicity of notation we denote the r = p(p  + 3)/2 distinct parame- 
ters by O r = (01, 02,..., Or), the first p being ,ul, p2,...,pp and the remainder 
being akt for l_> k. In the differential geometry approach to statistical 
theory, Amari (1985) uses the entries, gq(O) (i, j =  1, 2,...,r), of the 
information matrix as the basic covariant symmetric tensor, known as the 
Riemannian metric tensor. A one-parameter family of affine connections is 
then defined by the a-connections with coefficients 

a 
°r jk = [i j ,  k] -- T, jk , 

where 

( ag, (o) ) 
[ij, k]= aOj + aOi 

ag,j(O) ) 
aOk ' 

the Christoffel symbols of the first kind and 
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( 0 l o g J ~  0logJ~ 01ogJ~)  
r jk = E 00------T- 00j  ' 

the skewness tensor (i, j,  k = 1, 2,..., r). 
It follows at once, from (3.1), (3.2), (3.4), (3.5) and (3.6), that 

Tqk = [i j ,  k] = ~Fqk = 0 

for all i, j ,  k _< p and for only one of i, j ,  k _< p. 
We now consider the case where only one of i, j ,  k is greater than p. 

For convenience, we change the notation slightly and in an obvious way. 
From (3.1) and (3.7), the entries of the skewness tensor corresponding to 
all permutations of pi, pj and O'k~ (l > k) are given by 

( O lOgfh O logfh 01ogJ~)  
T~,~ .... = E Opi Opj Oakl 

-1 T T -1 T -1 = - 2 t r ( g  t I k t ) E { ( Z P  gt e i e j ~  P Z ) W  2} 

- 4 E { ( Z r P r T - l e i e ~ P - I  P Z ) ( Z r p r g t - l l k l ~ - I  PZ) W 3 }, 

which, from (2.15) and (2.16), gives 

2 
(4.1) T,.u .... - tr (T+-llkt) tr (~:leier)E(l[Zl[2 W 2) 

P 

4 -1 T {2 tr (~-leierj~-l lkt)  + tr (~u eie2) tr (7+-1Ikl)} 
p ( p  + 2) 

• E ( I I z I I n w  3) 

2(an + 2Ch)gr ij tr (~U-llkt) r -1 -l = - -  - -8Ch(ei~[  I Ikl~[ -I e j ) ,  

where ah is defined in (3.3) and 

1 
(4.2) Ch -- E([] ZI[ 4 W3). 

p ( p  + 2) 

Moreover, from (3.2) and (3.4), 

(4.3) [].li].Aj, ak l ]  = --  [~ l i~k l ,  ]..lj] = --  [akl/,.li, ] l j ]  

= - 2ah eTi ~ J - l d j  

0 -1 T 
= -  - -  ( ~  eiej) 2ah Oakl tr 
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= 2ah tr (~-~eier~-tlkt) 

= 2aheT~-t-llkltI-rlej. 

Combining (4.1) and (4.3) we get 

(4.4) ~F,,,:~, = 2(ah + 2CtCh)(eri~-~Ikt~-~e~) 

+ a(ah + 2Ch)a q tr (~-~I,~) 

and 

(4.5) 

301 

= - 2(ah -- 2ach)(e~- l lk l~- le j )  + a(ah + 2ch)# j tr (~-~Ik~). 

1 E{(Zrpr~- l l kz~- lPZ)  W} = - -~- tr (~-llkl) 

and, from (2.16) and (3.10), 

(4.7) E{( Zr pr~-~ li j ~-1 pz)( zr pT~-l lk~T-~ PZ) W 2 } 

= bh{2 t r  (~[I-1Iij~l-lIkl) q- tr (~l-lIij) t r  (~l/-lIkl)} 

and, finally, from (2.17), 

(4.8) E{( ZT p r ~  -1 liy~-I p z ) (  zT p r ~ - l  At ~- l  p z ) (  z r  pr~-~ Ls ~ -I-1 PZ)  V~ 3 } 

-1 = dh{tr (~U-II, j) tr (~-llkt) tr ( ~  Ls) + 2 tr (~u-~Iij) tr (~-lht~-~Irs) 

+ 2 tr (~U-llkt) tr (~- l l i jT-ILs)  + 2 tr (~-lLs) tr (~-1/~: ~-llkt) 

+ 8 tr (~- l l i j  T- lh lT- lL~)} ,  

where 

(4.9) 
1 

dh p(p + 2 ) ( p  + 4)  '~'" ~'" ""  " ~ t l l z ' l l 6 r v  3) " 

Combining these results we get 

(4.6) 

All that remains is to consider the final case, viz., T,,:~,~.. and [adrkt, ars] 
for j >_ i, l >_ k, s _> r. In finding T~,,o,,~,, it is clear, from (3.7), that we are 
required to evaluate expressions of the following type. From (2.15) and 
(2.12) 
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(4.10) T~,,~ ..... - 
1 
4 (1 - 4dh - 6bh) t r  ( T t - l & )  t r  ( ~ - l h l )  t r  (~u-lLs) 

- ( 2 &  + bh){tr (~j-l//j) tr (T-~ /uT-1 I r~ )  

+ tr  ( 7 F l h l )  t r  (gt-lIijgff-lIr~) 

+ t r  (~[t-llrs) t r  ( t I t - l l i j l l - t - l l td)}  

- 8dh t r  (T-lli.iTU-lh, tT-IL~).  

T o  f ind  [auau, ars] we no te ,  f r o m  (3.9),  t h a t  we r e q u i r e  e x p r e s s i o n s  fo r  
t e rms  o f  the  type  

0 tr ( T - l h t )  and 0 - -  - -  t r  ( ~ t - l h / ~ v - l L , )  . 
Oao O~u 

These  are  g iven  by  

0 
0~o 

- -  tr  ( ~ - l h t )  = - t r  ( g J - l h t ~ - l L j )  

and  

0 
O~u 

- -  tr  (~-lIkt~-ILs)  = - 2 tr (~T-'c-I//j I t l - l l k l~ l - l l r s  ) . 

T h e  e x p r e s s i o n  fo r  [auakt, ars] is n o w  i m m e d i a t e  and  g iven  by  

(4.11) [ffijffkt, 6,.s] = - 2bh t r  ( g-t-l Iij lp-l lklttt-l Ls) 

_ 1 ( 4 b h  - -  1) tr (~U-lIr,) t r  (~- l Iu~-l Ik l )  
4 

C o m b i n i n g  (4.10) and  (4.11),  we get  the  coe f f i c i en t  o f  the  a - c o n n e c t i o n  

Ct 

(4.12) aF,,, ...... - 8 - - -  ( 4& + 6bh -- 1) t r  ( 7 t - ' l u )  t r  (gt-~/u)  tr  (gt-~I,~) 

a 
+ -~ (bh + 2dh){tr (7t-lIu) t r  ( ~ - l I k t ~  lIrs) 

+ tr  (~U-lIu) tr ( l t l - l Io '~J - l l r s ) }  

1 
+ --~ {a(2bh + 4dh) + (1 - 4bh)}{tr (~-tIrs) t r  (Tt- lIu~-lIu)}  

+ 2 ( 2 a &  - bh) t r  (~"t- l lqf fr t - l lk l~"t- l lrs)  . 
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If we restrict ourselves to members of the ELh(l t, ~ )  class with the 
same, known location /~, the only relevant a-connections are those in 
(4.12). It is easy to see, from (2.10), that, in the normal case, when a = - 1, 
these are identically zero and the manifold consequently flat. This is, of 
course, a well-known result due to Amari (1985) for the exponential family 
and the expectation parameters. 

Finally we note that the affine connections can also be described by 
Christoffel symbols of the second kind. Skovgaard (1984) has found 
expressions for these in the normal case when the Riemannian (a = 0) 
connection is considered. 

It would have been possible to work in terms of the parameters/~ and 
the distinct entries a k; (l > k) of ~-~. The results are analogous to those for 
/.t and 7 t and are derived similarly. In particular, in the normal case with/ t  
known, the 1-connections are identically zero and the manifold consequently 
flat. This is again a well-known result due to Amari (1985) for the 
exponential family and the natural parameters. The dual coordinate systems 
(aij, j > i) and (a k;, 1 >_ k) lead to orthogonal parameters. In particular, in 
the bivariate ease, when X = (X~, X2), it follows that the variance of the 
marginal distribution of XI and the variance of the conditional distribution 
of X2 given X1 are orthogonal, a result shown by Mitchell (1962) in a direct 
approach to finding orthogonal parameters. 
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