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Abstract. The possibility that the conditional maximum likelihood estimator 
(CMLE) is superior to the unconditional maximum likelihood estimator 
(UMLE) is discussed in examples where the residual likelihood is obstruc- 
tive. We observe relatively smaller risks of the CMLE for a finite sample 
size. The models in the study include the normal, inverse Gauss, gamma, 
two-parameter exponential, logit, negative binomial and two-parameter 
geometric ones. 
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1. Introduction 

Let xl,... ,  xn be a sample of size n from a population with the density 
function p(x;  O, lz), 0 e 0 C R ~ and/ t  • M C  R 1. Suppose that there exists a 
statistic t such that the entire likelihood for x = (Xl,..., x,) is factored into 

(1.1) p(x; O, p) = pc(x; OI t).pr(t; O, lu) , 

where pc stands for the conditional likelihood given t being free from p and 
pr the residual likelihood. Traditionally, the parameter 0 is called the 
structural parameter and/~ is called the nuisance or incidental parameter, 
though our interest is often placed on both the parameters. Under this 
setup, conditional inference for 0 has attracted researchers' attention. 
Under weak regularity conditions, the likelihood equation for the CMLE 
of 0 is written as 

O 
(1.2) O0 log pc(x; Olt) = 0 ,  
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and the profile likelihood equation for the UMLE is written as 

(1.3) 
O 3 

log pc(x; Olt) + ~ log pr(t; 0,/1(0)) = 0 
O0 ov 

with lu(O) being the unique solution of 0 log p(t; O,/~)/Op = O. 
We find two approaches justifying the use of conditional inference in 

the literature. One is to show that inference for 0 based on the conditional 
likelihood is not inferior to that based on the unconditional likelihood, 
even though the residual likelihood contains some information on 0. The 
other is to show that conditional inference has optimality or advantages. 
The notion of ancillarity has been widely discussed for the former purpose 
(Fisher (1935), Dawid (1975) and Barndorff-Nielsen (1978, 1980)). The 
ancillarity of a statistic t means that t contains little or no information on 
0. Kalbfleisch and Sprott (1970, 1973) studied the examples where t 
contains little information. The main results on optimality and the favorable 
properties of the CMLE are in Neyman and Scott (1948), Andersen (1970), 
Godambe (1976) and Lindsay (1982). However, these authors do not 
explicitly claim superiority of the CMLE over other estimators such as the 
UMLE, when the sample size is finite. We know the UMLE also has 
optimality in different contexts. 

Yanagimoto (1987) asserted the possibility that the CMLE is properly 
superior to the UMLE under certain conditions, and introduced the notion 
of an obstructive residual likelihood. This notion means that the behavior 
of the profile likelihood for 0 induced from the obstructive residual 
likelihood is undesirable. Therefore, such a residual likelihood is to be 
disregarded for obtaining 0 by the maximum likelihood method. The 
disregard of the residual likelihood results in the CMLE. Although his 
assertion is intuitively appealing, further studies concerning the perfor- 
mance of the CMLE are necessary to confirm its relative usefulness. 

The aim of the paper is to explore to what extent the CMLE is 
superior to the UMLE for a finite sample size in examples where the 
residual likelihood is obstructive. In Sections 2 and 3, general aspects of 
the two MLE's are discussed. Section 4 is devoted to a comparison study of 
the two MLE's in cases of continuous models using various risk functions. 
Comparison studies for discrete models are conducted in Section 5. Our 
conclusion is that the CMLE is superior to the UMLE, when a model is 
specified, and especially when a model has multiple strata. On the other 
hand the UMLE is sometimes more convenient, when multiple candidate 
models exist. In the final section, the other two familiar estimators, the 
jackknifed estimator and the uniformly minimum variance unbiased esti- 
mator (UMVUE), are briefly critiqued. 
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2. Advantages of the CMLE 

In cases of a finite sample size we have two results by Godambe (1976) 
and Yanagimoto (1987). The latter author pointed out the undesirable 
behavior of the profile likelihood for 0 induced from the residual likeli- 
hood. Let pp(t; O)=pr(t; O, pt(O)) be the profile likelihood for 0 from the 
residual likelihood; therefore, the derivative is equivalent to the second 
term in the left-hand side in (1.3). The residual likelihood is called 
obstructive, if there exists a subset of the support of t and a value of 0m e 
with the closure of O such that pp(t; O) is strictly decreasing in 0 for 0 _< 0,, 
and increasing for 0 >_ 0,, when t is in the subset, and it is constant when t 
is not in the subset. Here we assume that the subset has a positive 
probability for every 0 and/z. Examples where the residual likelihood is 
obstructive for a suitable t are given in Table 1. Our primary interest will 
be placed on these models. Note that the examples also cover other ones 
given by the monotone parameter transformation because of the invariance 
property; such examples include the lognormal and Pareto distributions. 
The first three distributions, the normal, inverse Gauss and gamma, are 
members of the family of the steep exponential distributions (Bar-Lev 
(1984)) and also those of the reproductive exponential distributions 
(Blaesild and Jensen (1985)). Theorem 2.1 in Bar-Lev (1984) essentially 
shows the obstructiveness of the residual likelihood of the steep exponential 
distribution. 

Under weak regularity conditions, the conditional likelihood equation 
(1.2) is unbiased. The definition of an obstructive residual likelihood 

Table 1. Models with a distribution whose residual likelihood given a statistic t is obstructive. The 
sample mean and the minimum order statistic are denoted by -~ and Xll~. 

Model Density function 0,, t 

1 e (x-a¢/2a (1) Normal X / ~  

(2) Inverse Gauss ~ e -e~x-~'¢n~:x, x > 0 
0-1 1 x 

(3) Gamma 0 e x p - x / a ,  x > O  F(O) a 
(4) Two-Parameter 1 

Exponential ~ -  exp - (x - / 0 / 0 ,  x > p 

(nx) exp  - x (Oz  + la) 
(5) Logit {1 + exp - (0z + ~)}"' 

( x + l / O - 1 )  
(6) Negative Binomial kd(l _/j)li0, 

X 

(7) Two-Parameter 
Geometric OX-a(l - 0), x = ~ , ~  + I , . . .  

x~O~..,~n 

x = 0 , 1  .... 

o0 

0 

oo X(i)  

0 

00 .~ 

O0 X(l) 
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suggests that the profile likelihood equation (1.3) is not unbiased in most 
cases. In fact, strict biasedness holds for every 0 and/~ and every model 
under study, except in the case of the logit model. It is difficult to prove 
biasedness of the equation (1.3) in the logit model, but numerical experi- 
ments support biasedness except in the case of 0 = 0. Except for the 
negative binomial model, the conditional likelihood equation can be re- 
written as 

s - ~,(0, n) = 0 ,  

for a suitable statistic s. If the function ~u is free from n, the statistic 
s = ~,(0c) with the CMLE 0c is an unbiased estimator of ~u(0). The normal, 
inverse Gauss and two-parameter exponential models satisfy this condition. 
When (s, t) is sufficient for (kt, 0) and s is unbiased, it is also the UMVUE. 

Godambe (1976) gave an optimality property of the conditional likeli- 
hood equation (1.3) among unbiased estimating equations. He defines a 
measure of an unbiased estimating equation, g(x; O) as 

V(g) 
M(g)  = {E(ag/OO)} 2 ' 

which is regarded as that of the reciprocal of standardized sensitivity. 
Under certain regularity conditions, the estimating function appearing in 
the conditional likelihood equation attains the minimum for every 0. Note 
that his result holds for a finite sample size. The restriction on estimators 
induced from the solution of an unbiased estimating equation is intuitively 
appealing, but it is inconvenient for comparison of the CMLE with the 
UMLE. 

To study asymptotic behaviors of the estimators, we note that there 
are two types of asymptotic cases. The usual one occurs where a sample 
size n tends to infinity. The other, which we call a sparse ease, occurs where 
a model has multiple strata having bounded sample sizes, with the number 
of strata tending to infinity. The density function is expressed as 

K 
p(x;  O, tJ) = ,rI__ pk(xk; O, m)  . 

We know the two MLE's are equally efficient in the usual asymptotic case. 
Neyman and Scott (1948) gave examples where the UMLE is inconsistent 
and also where it is consistent but inefficient in sparse asymptotic cases. 
Sufficient conditions that the CMLE be efficient and asymptotically 
normal in both the asymptotic eases were discussed in Andersen (1970). 
The measure M(g) provides the asymptotic variance of the CMLE in the 
models in the study. We observe that inconsistency of the UMLE in sparse 
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asymptotic cases is due to biasedness of the profile likelihood equation 
(1.3). 

The above finite sample size results support the superiority of the 
CMLE. Because of the inconsistency of the UMLE in sparse asymptotic 
cases, our interest will he placed on the possible superiority of the CMLE 
when K is small, typically 1. Therefore, the comparison study in the case of 
a single stratum with a small or a moderate sample size will attract our 
primary attention. Although these general reasonings strongly support the 
superiority of the CMLE, a case study is necessary to confirm our 
assertion. Prior to the case study we also refer to advantages of the UMLE 
from other standpoints in order to make a fair comparison. 

3. Advantages of the UMLE 

Advantages of the UMLE with emphasis on its comparison to the 
CMLE have rarely been discussed. The following two facts may be known, 
but they have not been stressed explicitly in the literature. In addition, the 
importance of the two facts is not recognized in a correct way. One of the 
two is that the amount of computation for the CMLE is often greater than 
that for the UMLE. The other is that the UMLE provides all the estimates 
of all the parameters contained in a model without any additional 
principles. 

Superficially, the numerical computation for the CMLE looks simpler, 
since the conditional likelihood in (1.1) is free from the parameter /~. 
However, solving the likelihood equation for the CMLE is regarded as a 
constrained maximization, while that for the UMLE is regarded as an 
unconstrained one. Actual examples show that the former is likely to be 
more elaborate than the latter, which is summarized in Table 2. It is 

Table 2. Comparisons of rule of thumb estimates of amounts of computations for obtaining the 
CMLE and the UMLE. The "amount  of computation" means the amount of computation for the 
CMLE relative to that for the UMLE. 

Solution Amount of 
Model Comment 

CMLE UMLE computation 

(1) Normal E E ~- 
(2) Inv. Gauss E E ~- 
(3) Gamma I I > 

(4) Exponential E E ~- 
(5) 2 × 2 table I E > 
(5') Logit I I >~ 
(6) Neg. Binomial I I 
(7) Geometric 1 E > 

digamma, trigamma, 
Difficulty in initial value 

combinatorial 

Symbols: E: explicit form is possible, I: iterative procedure is required, ~:  even, >: larger, >>: 
much larger. 
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interesting that the CMLE is most widely accepted in the logit model, 
whereas the computation problem can be most serious. 

Another advantage of the UMLE is that it presents estimates of both 0 
and/z by a common principle. The CMLE presents an estimate of 0 only. 
Although the other parameter,/1, is assumed to be a nuisance in conditional 
inference, both the parameters can be of interest in practice. The maximiz- 
ed likelihood, which is given by p(x; O.,fi.) with 0. and ft, being the UMLE, 
is useful in diagnosing the goodness of fit of the model compared with 
other candidate models in terms of deviance (Nelder and Wedderburn 
(1972), for example). 

Although these two practical disadvantages of the CMLE may be 
dissolved by future research, the use of the CMLE is not recommended at 
present unless it behaves more favorably as an estimator than the UMLE. 
Fortunately, we can expect the superiority of the CMLE as discussed in the 
previous section. Therefore, our purpose in the following will be to show to 
what extent the CMLE is actually superior, when the residual likelihood is 
obstructive. 

4. Case study--the continuous models 

The result of a comparison study of estimators usually depends on the 
criteria employed. In general, it is unlikely to hold that one estimator is 
preferable to another estimator with respect to every criterion for every 0 
and/~. Therefore, we select several criteria for our comparison study. 

The risks of an estimator 0 or (0,/~) in cases of continuous models are: 
(i) Bias of 0; E(O- 00), MSE of 0; E{(O - 0o)2}, 

(ii) Bias of 1/0, MSE of 1/0, 
(iii) Bias of log 0, MSE of log 0, 

(iv) K-L risk; E{KL(O, fi; 00,p0)} = E [ f -  log {p(z; Oo, l~o)/p(z; 0,fi)} 

• p(z; 

where the expectation is taken with respect to p(x;Oo,po), and K-L risk 
denotes the Kullback-Leibler risk. To aid our understanding, explicit forms 
of the Kullback-Leibler loss to the normal, inverse Gauss and gamma 
models are exemplified as: 

-2n { O + (l~- lu°)z - l°g 0 -~o - 1  ' 

n {  00 00(~o~o /z0 ) 00 } 
-~- -log-if+--/ao + - - - 2 p  + - f f - I  , 

r(O) 
n - l o g  F(Oo~ /2o /~o 
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with ~u(0) being the d igamma function. This seems to require some 
comments on the use of the bias and the MSE. We employ bias and the 
MSE for 1/0 and also log 0, since the parameter of 0 in a standard 
expression is not always of interest. In addition the criteria, the bias and 
the MSE are reliable, especially when an estimator 0 has support  ( - 0% o~) 
and distributes symmetrically at a point. Since the range of 0 in our 
examples is (0, oo), the logarithmic transformation changes it into ( - ~ ,  o~). 
Recall that the parameter 0 in the two-parameter exponential distribution 
corresponds to 1/0 in the Pareto distribution by the exponential trans- 
formation. Furthermore, other transformations of 0 may attract our interest. 
The Kullback-Leibler risk is employed as the risk of a simultaneous 
estimate of (0,/z). Here the CMLE of ~ is given by maximizing the entire 
likelihood for a given 0c, p(x; O~,la). We are often interested in an estimated 
model as well as estimates of parameters. In fact, the UMLE is regarded as 
an estimate of a model; this property is desirable for an estimate. 

The risks of the two MLE's are compared. Since in the ease of gamma 
distribution, analytical comparison appears impossible for some risks, 
simulation studies are applied. The results are summarized for comparison 
in Table 3. The results concerning the normal and gamma models are 
presented in Yanagimoto (1987) and Yanagimoto (1988a), respectively. 
Those concerning the remaining two models are obtained after straight- 
forward calculations. 

Table 3. Risk comparison between the CMLE and the UMLE. The symbol < denotes smaller risk of 
the CMLE, and • means that the evaluation is based on the simulation study. 

0 1/0 log 0 
Model K-L Loss 

Bias MSE Bias MSE Bias MSE 

Normal < > < < < < < 
Inv. Gauss < < < > < < < 
Gamma < < * < > * < * < * < * 
Exponential < > < < < < < 

As expected, we observe that in most cases the CMLE presents a 
smaller risk than the UMLE. The exceptional cases are the MSE for 0 in 
the normal and two-parameter exponential models, and that of 1/0 in the 
inverse Gauss and gamma models. Yanagimoto (1988a) pointed out that 
the relative bias of 1 / 0c is small compared with that of 0c. In this sense, the 
role of 1/0 in the gamma model corresponds with 0 in the normal model. 
We think that this result is associated with a possible defect of the MSE as 
a criterion. Note first that the UMLE in the above cases is downward 
biased; in fact, it holds E(Ou) < E(tg~) < Oo or E(1/0,)  < E(1/O~) < I/0o. We 
suspect that the smaller MSE of the UMLE is associated with its greater 
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bias. The fact that the squared error takes the same value, 002, for 0 = 0 and 
200 is obviously undesirable in our examples. The MSE of an estimator of 
log 0 is free from this controversy, since the range of log 0 is ( - ~ ,  ~). 

The consistently smaller risk of the CMLE is also observed in the 
Kullback-Leibler risk. This fact looks surprising; it means that conditional 
inference may be useful in estimating both the parameters in a model as 
well as estimating simply a structural parameter. We conclude that the 
CMLE is a better estimator than the UMLE in continuous models where 
the residual likelihood is obstructive. 

5. Case study--the discrete models 

The comparison study for estimators in discrete models is more 
complicated. Although we obtained the inequalities of risks between the 
two MLE's in the continuous models, we can not find the corresponding 
inequalities in the discrete models. The analytical comparison study looks 
impossible, and even the numerical one is much more elaborate than that 
in the continuous models. 

The comparison study of the two MLE's of the common log odds 
ratio in multiple 2 x 2 tables has been extensively performed (Lubin (1981) 
and Hauck et  al. (1982)). The comparison study is extended to those of the 
logit model with multiple strata. Breslow and Cologne (1986) regard the 
CMLE as "a golden standard". Note that existing evidence of its superi- 
ority is concerned only with simulation studies of comparing bias. We 
conducted further comparison studies for a single stratum using various 
risks, and our results support the superiority of the CMLE, although we 
could not succeed in obtaining clear ones. Fortunately, there is no contro- 
versy over the conclusion of the CMLE's superiority in the literature, 
though further studies are necessary. 

The use of the CMLE in the negative binomial models was recom- 
mended in Kalbfleisch and Sprott (1970), Godambe (1980) and Yanagimoto 
(1987), but no comparison study was conducted. As in the logit model, the 
negative binomial model also has multiple strata in practical applications 
(Bliss and Owen (1958), for example). Therefore, the possibility of the use 
of the CMLE attracts our attention. The negative binomial distribution is 
approximated by the gamma distribution, when/~ is close to 1. We can 
expect from the results in the previous section the superiority of the CMLE 
in such a case. 

Anraku and Yanagimoto (1988) conducted simulation studies using 
bias and the MSE for 0, 1/0 and 0/(1 + 0), which are summarized as 
follows. The CMLE has the smaller bias for 1/0 and 0/(1 + 0), for any 00 
and /.to they employed. The CMLE has the smaller MSE for 1/0 in all 
cases, and for O/(1 + 0) in most cases. They conclude that results in terms 
of bias and MSE for I /0 and 0/(1 + 0) support the superiority of the 
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CMLE, but that results in terms of 0 are confusing. When there are 
multiple strata, say 5 strata, simulation studies show the clear superiority 
of the CMLE. 

Yanagimoto (1988b) introduced the CMLE in the two-parameter 
geometric model, and compared it to other estimators, including the 
UMLE. The limiting distribution of the two-parameter geometric distribu- 
tion as 0 tends to 1 is a two-parameter exponential one. Though his 
conclusion is not as definite as our conclusion in the continuous models, 
his results support the superiority of the CMLE. 

6. Other estimators 

Although our interest was restricted to the two MLE's, we know some 
estimators based on other principles could be useful. We discuss briefly the 
two familiar estimators among them: the UMVUE and the jackknifed 
estimator. 

The UMVUE is appealing, if our interest is actually in the parameter. 
However, this assumption looks restrictive in practice. Recall that the 
likelihood equation for the CMLE is unbiased, which yields that the 
CMLE of a transformed parameter, g(O), is the UMVUE. Therefore, the 
CMLE and the UMVUE coincide with each other, when the former is 
unbiased. The strict restriction on unbiasedness can result in an undesirable 
estimate. For example, the UMVUE can take the value I in the case of the 
two-parameter geometric model, though the estimated likelihood is zero. 

The jackknifed estimator is introduced to eliminate first order bias in a 
general way. The estimator requires a large amount of computation, when 
the sample size is large. It coincides with the CMLE in cases of the normal 
and inverse Gauss models. However, the jackknifed estimator can not be 
recommended in our other examples. Consider the two-parameter expo- 
nential model. It is expressed as 0 j=  E-X(1)~-(n- 1)(xl21- xl11)/n. It is 
obviously less satisfactory than the CMLE,  n ( E - x ~ l ) / ( n - 1 ) .  As 
Yanagimoto (1988a) showed, the jackknifed estimator of the shape para- 
meter in the gamma model takes a negative value with a positive 
probability. 
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