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Abstract. Approximation of parametric statistical models by exponen- 
tial models is discussed, from the viewpoints of observed as well as of 
expected likelihood geometry. This extends a construction, in expected 
geometry, due to Amari. The approximations considered are parametriza- 
tion invariant and local. Some of them relate to conditional models given 
exact or approximate ancillary statistics. Various examples are considered 
and the relation between the maximum likelihood estimators of the 
original model and the approximating models is studied. 
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1. Introduction 

The wide occurrence and usefulness of exponential models makes it 
natural to enquire to what extent and in what ways it is feasible and 
profitable to construct exponential models that approximate a given statis- 
tical model. This question seems, so far, to have been considered only from 
the viewpoint of approximations locally around a single member of the 
model, and this is also the viewpoint taken in this paper, though the global 
viewpoint appears to be at least as important. 

Local approximation by normal models with essentially known vari- 
ance matrices is, of course, a standard theme in statistics. Of some par- 
ticular interest in connection with the setting of the present paper is the 
concept of local asymptotic normality (see for instance, Ibragimov and 
Has'minskii (1981) and Le Cam (1986)). Efron (1975) briefly pointed to the 
possibility of using higher order approximations by simply Taylor expand- 
ing the log model function around a parameter point. This approach 
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seems, however, too primitive to be of much use. A more promising and 
original approach was taken by Amari (1987) who relied on concepts and 
intuition of a differential geometric nature. The purpose of the present 
paper is partly to show that Amari's construction, which belongs to 
expected likelihood geometry (in the sense of Barndorff-Nielsen (1986)), 
has a counterpart in observed likelihood geometry, and partly to investi- 
gate properties of these constructions. (It is not immediate that an observed 
counterpart  must exist, because the Hilbert bundle that Amari used for his 
construction has no observed analogue, due to the lack of an "observed 
inner product" of random variables.) 

One of the potential uses of approximating exponential models is in 
the construction of approximate ancillaries, a theme that we do not pursue 
here, however. 

Section 2 contains a few preliminaries. Section 3 describes Amari's 
definition of locally approximating exponential models and provides some 
elementary properties and several examples of this type of approximation, 
which we refer to as expected exponential approximations. The examples 
concern the von Mises distribution, nonlinear normal regression, and a 
simple model from quantum physics which is of some particular interest 
because it is neither an exponential model nor a transformation model. In 
Section 4 we then address the problem of carrying out a construction 
similar to Amari's but in the framework of observed, rather than expected, 
l ikelihood geometry. Elementary properties of the resulting observed 
exponential approximations are discussed. Section 5 is devoted to a more 
detailed discussion of the degree to which the expected or observed 
exponential approximations are close, locally, to the actual model, and to 
the closeness of the maximum likelihood estimators derived from these 
three types of model. 

2. Preliminaries 

In this section we introduce some notation and discuss in considerable 
generality the idea of projection onto a subspace. 

We shall often consider functions f :  t-2 ---- • where f2 is an open set in 
R d or, more generally, a d-dimensional manifold. Let ~l,...,O~d denote a 
system of local coordinates on t'2. Then we put )5 = af/aogi. The following 
condensed notation will also be useful. For a multi-index a -- (il, i2,..., id) 
with each ij a non-negative integer we put 

l al = ii + i2 + ... + id 

and 
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Similarly, given a function h ~ x ~2 -~ R expressed a s  / ( C O l , . . . , C O d ,  (-01,..., 
&d), we put 

O3l 
l i ; jk-  O~iO~jol~k , etc. 

and for multi-indices a = (ix,..., id) and fl = (j~,...,jd) we put 

01ol + l(co, d)) 

l.;4(~; e3) = Oco';.. .  O0,)dCl(,Ol'°°ut.tld • ,~ iaa  ^jl  ~..,,.j~ " 

Also we write 

ti;jk(co) = li;jk(O); CO), etc. 

and 

= lo:p(co; co ) .  

Some fur ther  no ta t iona l  convent ions  are that  for  a mult i - index a = 
(it,. . . ,  id), we define a! it! i2! id! and coa il ia . . . . .  o)t ... COd, and a _< fl means that 
i, < j ,  for r = 1,..., d where fl = (jl , . . . ,  jd). 

As we shall make use of  general projections of  vector spaces onto 
subspaces we now recall this operation. Let V and W be vector spaces, 
A: W--- V a linear mapping and f :  V x W--" R a bilinear form. Then 
gives rise to a linear mapping ~: V- -  W*, where W* denotes the dual of 
W, given by 

= w ) .  

If the composite  g o A: W---" V--* W* is an isomorphism, then the projec- 
tion o f  V onto W is defined by 

V - - W * - - W .  

The projection has the property n o A = I: W--" W. To obtain an expres- 
sion for n in terms of  coordinates,  let {el,..., ep} and {fl,...,fq} be bases of  
W and V, respectively. Let the matrices B and M have entries bo = ~ ( f ,  ei) 
and rng = q)(Aei, ej). Then the matrix of n with respect to these bases is 
M-~B. If W is a subspace of  V, 9~ is an inner product  on V, and A is the 
inclusion of Win  V, then n is just the orthogonal  projection of V onto W. 
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3. Expected exponential approximations 

In the present section we describe Amari's (1987) definition of 
approximating exponential models and we then go on to investigate some 
of its properties. 

Let J~ '=  (.~,p, f2) be an arbitrary parametric statistical model, the 
parameter space £2 being a d-dimensional differentiable manifold (as in 
Section 2). We shall assume that the model function p has any requisite 
smoothness as a function on £2. For a multi-index a the a-th derivative of 
the log-likelihood function at 09 will be denoted by l~(09). In view of the 
pleasant properties of exponential families, it is natural to consider approxi- 
mating .~" (at least on some small portion of Q) by a full or curved 
exponential family. For 09 in 12 and for r = 1,2,..., Amari (1987) first 
constructs a full exponential model E~/~,o, the r-th order fu l l  exponential 
approximation to ,//dat co. This model E ~ / ~  is the full exponential family 
generated by the element of .~¢ given by 09 and by the log-likelihood 
derivatives l~(09) for 1 _< l al - r. Thus one can regard E~'o~ as having "r-th 
order contact with d ¢  at co". It is easiest to visualise the particular case 
when . .~  is a (k, 1)-exponential model. Then, if O denotes the canonical 
parameter space of the corresponding full exponential model and J¢ '  has 
canonical parameter function 0:12---O, the family EL/Z¢'~ has canonical 
parameters in the affine subspace of O through 0(09) parallel to that 
spanned by the derivatives (diO/ d09i)(09), 1 < i < r. 

Amari's construction does more than provide a full exponential family 
E~' ,o  which is "close to ,~ '  at co". It also gives a "canonical" curved 
submodel E ~ , o  of this full model: the parametric dimension of ELg¢,~ is 
the same as that of ~ '  (i.e., dimension d) and E~¢~, is, in a certain sense, 
closest to .~r among all submodels of this kind. 

We shall refer to E ~  as the r-th order expected exponential approxi- 
matron to , /~  at 09. The term "expected" here refers to the expectations in 
(3.1) below used in the definition of EL-~',o and serves to distinguish E ~ ' ~  
from the "observed" exponential approximations OL~L introduced in the 
next section. There is a strong connection between this terminology and 
that of expected and observed statistical geometries. 

To describe the detailed construction of EL~',o it is useful to introduce 
the following notation. Let ~ o ,  = { f : . ~ -~  R IE, , ( f )  = 0, Varov(f) < 0% 
V 09' ~ £2} and equip ~ with the inner product 

( 3 . 1 )  ( f ,g )  = E,o[fg], f , g  ~ ~ o  , 

thus giving ~o~ the structure of a Hilbert space. For any multi-index a, 
define o~ in ~o~ by 

oo = 
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Also, for r = 1,2,. . . ,  define M as the square matrix with entries M ~  = 
(o~, op) for l a l ,  I/~1 -< r. Assume that  M is invertible and denote the entries of 
M -~ by M ~z. Then the model  funct ion pto~l of E~/~¢, is given by 

(3.2) pt~l(x; co') = p(x; co) 

• exp {(/(co') - l(co) + I(co, co'), o&M~%p - x(co')}, 

where the convent ion  of summing  over repeated indices is used, /(co, co') 
denotes the discr iminat ion informat ion  E,~[l(co) - / (co ' ) ] ,  and x is the log 
norming  constant .  (Of course, x depends also on the point  co at which we 
approximate ,  but  we shall consider co as fixed and so shall suppress this 
dependence.)  The intuitive idea behind this construct ion is the following. 
Let ,.~2rl denote  the subspace of ~r~¢',o spanned by {o~: lal -< r}. The no rmed  
log-density-ratio funct ion c o ' ~  l (co ' ) -  l(co)+ I(co, co') maps 1"2 into ~ ,o .  
Combin ing  this with or thogonal  projection H e of ~ onto oj(~l we obtain 
a funct ion 

co' ~ ({/(to') - l(co) +/(co,  co')}, o~)Ma%~, 

f rom 12 into g2r l  and so a funct ion co' ~ p~l( .  ; co') given by (3.2) of f2 into 
the exponent ia l  family E~/~'o~. A more detailed discussion of this construc- 
t ion is given in the following Remark.  The union U ~o~ forms the total 

space of a vector bundle . . ~  over f2. This is Amari 's  (1987) Hilbert bundle. 

Remark.  Let/~ be a measure on , ~  domina t ing  all members  of the 
family given by ~ .  Denote  by M1 the set of measures v on . ~  which are 
absolutely cont inuous with respect to/~ and with v ( .~ )  = 1. Then 

TM1 = { (v , f ) l v  ~ M~,f:  .Jg-- R, Ev ( f )  = O, 

Varv,(f)  < ~ ,  V v' ~ Ml} ,  

together  with the project ion /7." TM~ ~ M~ given by / - / ( v , f ) =  v can be 
regarded as in some sense the " tangent  bundle"  to M~ (cf. Dawid (1975)). 
Note that  this vector bundle has a metric given by 

( f , g )  = Ev[fg], ( v , f ) , ( v ,g )  ~ TM1.  

Further ,  Amari 's  "Hilbert  bundle"  ._~ over 12 is precisely the pull-back of 
TM~ over the inclusion 12 -- M~ and the metric on ~ is that  pulled back 
f rom TM1. For  details of the pull-back (or induced bundle) construct ion of 
vector bundles,  see Husemoller  (1966), p. 18 and 26. 

The log-likelihood funct ion for ~ determines a section s: 1"2 ~ ~ of 
the Hilbert bundle by 
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s (co)  = l(09) - e 4 t ( 0 9 ) ] .  

Amari's 1-connection on .9/(has parallel translation operator Tff: ..~,o, ~ ,~go~ 
from the fibre of ~ over ~0' to that over co given by 

T ~ ( f )  = f - Eo ,[ f ]  . 

Then, given 09 ~ f2, we can define the function ~,o: f2 --- ~ '~  by 

(3.3) = T Y ( s ( 0 9 ' ) )  - s ( @  

= l(o9') - l(o9) + I(09,09') .  

By analogy with the differential-geometric concept of development of 
paths in a manifold as described, for example, on pp. 45-46 and 77-79 of 
Lichnerowicz (1976), we propose the name A m a r i  d e v e l o p m e n t  or e x p e c t e d  
d e v e l o p m e n t  for the above function ~uo~ which lifts the parameter space I2 
into the Hilbert space ~ .  

Let I-Ie:~gf~---" , .~r)  be the orthogonal projection onto ~.~2r). Then 
H e o ~,,,: Y2 ~ ,_~2r) gives rise to the above-mentioned inclusion of EL//g,0 as 
a curved submodel of E ~ ,  the full exponential family generated by 
{L(@: lal <- r}. 

We proceed to list some simple but important properties of the 
approximating construction. 

First we consider the effect of repeated random sampling. Given a 
model ~/~= (,_~,p,(2), let ,//g"= (,~",p",f2) denote the model obtained 
from , /~by  taking random samples of size n, so that 

n 

p n ( x l , . . . ,  Xn; O)) = iO1 p(x i ;  CO). 

Standard calculations then show that Er(, / /g")o = (ELff¢,o) n, so that we can 
denote this approximating exponential model without ambiguity by E', /H2. 

Next we consider two important classes of models: exponential models 
and transformation models. 

Suppose that ,/fie is a (k, d)-exponential model with canonical para- 
meter space O. 

Let t and 0(09) denote, respectively, the canonical statistic and the 
value of the canonical parameter corresponding to co in £2. Then E~/g¢~, is 
obtained from , /~by  orthogonal projection H (gwen by the inner product 
on span (O) obtained from ]~ = Var,o(t)) onto the subspace through 0(09) 
parallel to that spanned by 0~(09), l al-< r. To see this, note that if 
t: O --" ~q~ is given by 
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t ( o )  = l ( O )  - tO(co)) + tO(co), 0), 

then the diagram in Fig. 1 commutes.  Here, H e again denotes the 
orthogonal projection given by the inner product (3.1). Note that the inner 
product given by Y- is the expected information at 0(co) of the full 
exponential model generated by ,/gO. 

! 

1/1: 
H • 

O 

Fig. 1. Relationship of the orthogonal project ions/7 I: a n d / / ' .  

It may further be noted that , ~ =  E~¢o, if and only if ~ is a (k, d)- 
exponential model and dim span {l,(co): lal -< r} = k. This dimensional 
condition is usually satisfied whenever 

i=l  i " 

If ~ is a (composite) transformation model with an invariant domi- 
nating measure, that is if there is a group G acting on . .~and f2 such that 

p(gco; gx) = p(co; x) ,  

then the action ofg  on .~induces the following G-action on the set L; E ~ o ,  
co~f2 

of r-th order exponential approximations. The element g of G sends 
p~l( .; o9') to ptdl(g-'. ; co') = pgt~l( .; gto'). 

Example 3.1. (von Mises distributions with known concentration) 
Let ~ b e  the von Mises model with known concentration parameter tc > 0. 
Then both . ~ a n d  f2 are the circle S ~ and 
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(3.4) p(x; co) = {I0(x)}- 1 e '~ ~os I~-~,l, 

where the dominating measure/.t is the uniform probability measure on S ~. 
As , /~  is a (2, 1)-exponential model, it follows from the general construc- 
tion that E~,/~',o is a (1, 1)-exponential model, corresponding in the plane of 
canonical parameters of the (2, 2)-model generated by ~ to the tangent 
line at co to the circle representing ,//g. Calculation of E~,//(o shows that 

(3.5) p~l(x; co') = {I0(xx/l + (sin d)2)} -~ 

• exp {K[cos (x - co) + sin d sin (x - co)]}, 

where d = co ' -  co. Thus in E~,/~o~ the parameter  co' corresponds to the von 
Mises distribution with concentrat ion xx/1 + (sin ~)2 and mean direction 
co + tan-~(sin d). The geometrical description of this approximation is that 
E~,//(o is obtained from the circle representing ~ by projection parallel to 
the line between 0 (corresponding to x = 0) and o9 onto the tangent to ~ at 
o) (see Fig. 2). 

Fig. 2. 

(D 

Expected exponential approximation to von Mises model (3.4). 

Example 3.2. (Nonlinear regression) Let x~ ..... xn be independent 
normal  variates with a common variance o .2 and with means Exv = ~v(~O), 
v = 1,..., n. For  simplicity we assume that 0 -2 is known and that  o) is one- 
dimensional. The r-th order expected exponential approximation with base 
point o9, i.e., E ~ ,  may conveniently be described as follows. Letting 
2 = a -2 we find 

v = l  

/(co') - l(co) + I ( ~ ,  co') = 2 ~ (Xv - ~)(~:" - ~ )  
V = I  
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and 

M~p = 2 ~ ,  

where ~v = ~v(o~), ~,~ -- ~(o9),  ~' = ~(co'), and 

/1 

~v~ denoting the a-th order derivative of ~v. Now, for a = 1,..., r, let 

n 

yo(~o) = ~ ,  ( x ~ -  ~v(co))~o(co). 

Then, under  EL/~,o, the vector [y~(o~)] is a sufficient statistic and 

[y~(og)] -- Nr(r/~(og, co'), tr2~(~)) , (3.6) 

where 

n 

~o(~o, co') -- v~,{~v(co') - ~v(~)}~vo(~o). 

Thus, E~/~,o is again a nonlinear regression model, specified by (3.6). 

Example 3.3. We shall consider a model from quantum physics 
discussed earlier, in the statistical literature, by Barnard (1971, 1982), 
Sprott  (1977) and DiCiccio (1984) (see also Solmitz (1964)). The measure- 
ments concerned are of the cosine of the scattering angle for decaying A 
particles, and the model function for the cosine is 

(3.7) 
1 

p (x; ~)  = -~- (1 - wx) ,  

the observed cosine x and the parameter  e~ (termed the parity non- 
conservation parameter) both varying in the interval ( - 1, 1). 

Note that (3.7), which we shall refer to as the A model, is neither an 
exponential model nor a transformation model. 

With l(a 0 = log (1 - ~ox) we have 

i(co) = - x(1 - cox) -l , 

l(~) : - x z(1 - cox)-2, 

f rom which we find 
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i(to) to-3 [ 1-7- log 1 + o 9  ] 
2 1 - co 

wi th  similar ,  bu t  more  compl i ca t ed ,  express ions  for  E{/(co)l(co)} and E{l'2}. 
F u r t h e r m o r e  

E~,[i(to){l(to') - / ( t o ) } ]  

1 {  l + c o '  1 + o 9  } 
- - -  - + 2co i(to) 4 log 1 - to' 2to'i(to') log 1 - to 

whereas  a fully explicit  express ion  for  

(3.8) - t(to)}] 

does  no t  exist in general .  
However ,  for  co -- 0, (3.8) can  be eva lua ted  and  this case is of  s o m e  

par t i cu la r  interest ,  in  the  early d e v e l o p m e n t  interest  centered  on  whe the r  to 
was,  in fact,  0 and  while  this has n o w  been  f i rmly  es tabl ished no t  to  be the  
case, the available evidence indicates  tha t  the actual  value of  o9 is close to 0. 
We will therefore  cons ider  exponen t i a l  a p p r o x i m a t i o n s  to  (3.7) based at 
t o = 0 .  

The  second order  expec ted  exponen t i a l  a p p r o x i m a t i o n  turns  ou t  to be 

(3.9) ptoZl(x; o9) = a(O(to))e -°=~°')'`-°~t°'); , 

where 

3 (2)-1 3 1 + o 9  
Ol(to) =-~-  + "~- (1 - co-2) log 1 - t o  

5 15 o)_ 2 ~ 1 1 + o) 
02(o9) = - ~ -  + - - ~  + _ _  (to- _ to-3) log 1 - to 

and 

a(O)-' = f'_ e-°'x-°=X'clx 

~- ~ 0,2/2(282) O1 @ -- ~ /~2 ( O1 

¢~ deno t ing  the d i s t r ibu t ion  func t ion  of  the s t andard  n o r m a l  d is t r ibut ion.  
Thus ,  (3.9) is the t r unca t i on  of  a n o r m a l  mode l  to the  interval  ( - 1, 1). 

Near  o9 = 0, 01 (to) and  02 (to) behave as 
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01(C0) = CO + O(co3) , 

1 2 
02(~o) --- - ~  co + O(co4).  

257 

4. Observed exponential approximations 

Because observed geometries are in a sense closer to the da ta  than  
expected geometries and because they often give rise to simpler formulae 
(see Barndorff-Nielsen (1987, 1988)) it is natural  to seek a way of  approxi-  
mat ing  models  ~ by "observed" exponential  families OL/~',o analogous to 
Amari 's  "expected" exponential  families EL/~o, described in Section 3. The 
obvious choice for the full exponential  family generated by O ~ ,  is just  the 
full exponential  approx imat ion  EL¢(¢~, that  is, the full exponential  family 
generated by the element  of , / ~  given by co and by the log-likelihood 
derivatives L for 1 < l al -< r. However,  offhand it is not  at all clear what  
the curved subfamily OL/~',o should be. Amari 's  construct ion of  EL~',o 
makes essential use of E,o[oaoa] where o~ = 15 - E~[L]. The observed ana- 
logue of E,,,[o,,o~] is zero and so is of no use in constructing OLg(,o. 

A clue to the manner  in which one might  const ruct  OL/~,o comes f rom 
the following two observations: 

(i) the canonical  statistic of EL/~',o is 

{l~(co; ,): 1 ~< l al ~ r},  

(ii) L is obtained f rom l by applying the differential operator  

01al 
05 = i, i, where a = (h, . . . ,  i d )  . 

Ocox . . . O09d 

Thus one might  proceed by projecting (in a sense to be clarified) a version 
of the log-likelihood funct ion onto  a space of differential operators.  To 
make  this precise, let ,~'~ denote  the set of C ~ real-valued functions on I2 
and let ~ denote  the set of linear differential operators  of order  r and 
with zero constant  part,  that  is, ~ = span {ds: 1 _< l al -< r}. Then, given co 
in £2, there is a bilinear mapping  ~ r  × ~ r  r --" • given by 

( 0 5 , f ) ~  0 5 f ( c ~ )  . 

Let a: ,~¢ - -A  be an auxiliary statistic for ~ such that  (03, a) is a one-to- 
one t ransformat ion  of  the minimal  sufficient statistic, where 03 is the 
m a x i m u m  likelihood est imator  of o9. Then there is a linear mapping  
l: ~ r  --. cj-r  given by 
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la l= l  l a l= l  ' ' 

where co is fixed, the coefficients b~ are constants, and the r ight-hand side is 
regarded as a funct ion on £2. Thus, as in Section 2, the above bilinear 
mapping  yields a linear mapping  ~ -- ( ~ r ) . .  If (as we shall assume) this 
is an i somorphism,  then it gives rise in a canonical  way to a project ion 17 ° 
of ,~"~ onto  ~ .  Denote  by ~ t h e  space of all measurable functions on .~.  
Then the linear mapping 6: ~ '  --- ~ d e f i n e d  by 

6 [ I~  b~O,]= lal=l ~ b~L(co;.) , 

can be regarded as sending ~ r  into the canonical  parameter  space of 
E~go .  By analogy with the expected development  (3.3), we define the 
observed development ~o: (2 --" ~ - r  by 

~o(co,) = / (co ' ; . ,  a) - / ( c o ; . ,  a ) .  

The corresponding parallel t ransport  operator  is the trivial one sending f 
at co' to f at co. We now define O ~ ,  the r-th order observed exponential 
approximation to J/g at co, to be the submodel  of E~(o~ with log-density 
functions with respect to p(co; .) obtained f rom the composi te  function 
6 o H ° o ~u°: £2 ~ ~ .  More explicitly, O~¢o~ = (~,~, q~l, £2) with 

(4.1) q~l(x; co') = p(x; co) 

• exp {[l:~(co'; co, a) - l:~(co; co, a)]/~'#l#(co; x) - x(co')}, 

where the summat ion  convent ion is used and t °;# denotes the (a, fl)-th 
element of the inverse of the matrix which has (a, fl)-th element L,~ for 
1 _< l al ,  I#1 -< r assuming that  this matrix is invertible. The log-norming 
constant  K(co') depends also on o9. Note that,  a l though (4.1) gives a 
coordinate-based description of O~(~,  the const ruct ion above is indeed 
independent  of the coordinate system chosen. 

F r o m  the viewpoint  of condi t ional  inference we shall be interested in 
the model  ' / ~ [ a  = ( g 2 , p ( . , .  la), g2), where p ( .  ;co'la) denotes the probabili ty 
density funct ion  of cb condi t ional  on the auxiliary a under  the element of 
~/~given by co'. In the present context  it is natural  to approximate  ,/~'[a by 
or(,//gla), the r-th order observed exponential  approx imat ion  to ~/~1 a at co. 
That  is, Or(,/~l a),o = (£2, ~trl, g2) with 

(4.2) q~rl(a3; o9'1a) = p(o3; cola) 

• exp {[La(co'; cola) - l:a(co; cola)]t~:Pl#(co; chla)} 
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• exp { - x(aY; cola)}. 

Differentiation of the identity 

/(co'; o3[a) =/(co'; o3, a) + Z(co', a) ,  

where Z(co', a) denotes the logarithm of the appropriate norming constant, 
yields 

l;~(co'; o3la) = l:o(co'; o3, a ) ,  

l~(co'; o3la) = l~(co'; o3, a) + Xp(co', a) 

and 

lp;~(co; ~ol a) : t~: . ,  

for [a[ _> 1. (This last equation is used in (4.2) to obtain the expression 
/~;P.) It follows that O'(,//gl~)+o can also be obtained from O~o~ by first 
restricting the sample space to f2 (identified with a subspace of , ~  by the 
mapping o3 ~ (03, a)) and then renormalizing. We shall refer to Or(J~l~),o as 
the r-th order conditional observed exponential approximation to .//g at co. 
Formulae (4.1) and (4.2) should be compared with their "expected" 
analogue (3.2). Note that tc does not necessarily denote the same function 
in these three formulae. 

Although E~go~ and O~(,o are both d-dimensional curved exponential 
submodels of E~ /~ ,  there appears to be no general relationship between 
Er~g,o and O~Jg~. 

We now investigate some simple aspects of O~(+o analogous to those 
of E~g~ considered in the second half of Section 3. 

One might reasonably ask about the behaviour of observed exponen- 
tial approximations under repeated random sampling. That is, how are 
Or(dg")~ and (O~/~+o) n related? In general, it is not clear what auxiliary 
statistic is appropriate for ,/~'n. Even in the case of a location model 
(discussed in Example 4.1 below) where there is an "obvious" auxiliary, 
there seems to be no simple connection between O~(,/d(~)o+ and (O~J~o~) ~ -  
in contrast to the "expected" case. 

For curved exponential models and for transformation models, the 
observed exponential approximations have properties similar to those of 
their "expected" counterparts. 

For curved exponential models, observed exponential approximations 
of suitable order are exact. In fact, .~¢= O~/~',o (that is p -- qt~I) if and only 
if ~ i s  a curved (k, d)-exponential model with k = dim span {l~(co; • ) : l a l  -< 
r]. 



260 O . E .  B A R N D O R F F - N I E L S E N  A N D  P. E. J U P P  

Now suppose that  J C i s  a (composite) t ransformat ion model  under  the 
action of a group G. Suppose  that  the domina t ing  m e a s u r e / t  of ,/Z¢' is 
invariant  under  G and that  the auxiliary statistic is G-invariant. Then the 
action of G on . ~  induces the following actions of G on the sets t.) O ~ o  

t o ~  

and L~JO'(,/gl,)o,. The element g of G sends qt~l(.;co,[a) to q~l(g-l.;  co'l a) 

and q~l(.  ; co'la) to ~d(g-1 .  ; co'la). Further ,  we have 

@rl(x; co'[a) = q~,l(gx;gco'la) 

and 

Example 4.1. (Location model) Consider  a location model  with 
~ =  £2 = ~ and p ( x ; c o ) = f ( x -  co) for some known probability density 
funct ion f A natural  choice of auxiliary statistic for ,/K" is the configura- 
t ion (al,. . . ,  a,) defined by 

ai = xi - ~ , 

where xl, . . . ,  x,  are the observations. Then 

n 

/(co; 05, a) : - i~=lg(ai + d~ - co), 

where g = - logf i  and so 

?/ 

t s ; ,  = ( - -  1)  s + l  i~tgtS÷t)(al) . 

Note, in particular,  that  for r _> 2, the matr ix [1,;,] is not  symmetric.  The 
observed exponential  approximat ion  O1~/~¢~ has model  funct ion 

ql~l(xl,...,xn; co') = { iOlf(x~ - co) } 9~(co') 

exp{w aoo [   
where w(a, co, co ' )= ~ (g ' (a i ) -  g'(ai + c o -  co')) and ~(co') is a no rming  

i = l  

constant.  
As the following example indicates, the condi t ion that  the matr ix [/a;B] 

is nonsingular ,  which underlies the definitions (4.1) and (4.2), can be 
presumed to be valid in great generality. 
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E x a m p l e  4.2. Let 2 c IR, x > 0 and 9 > 0 be parameters ,  here con- 
sidered known,  and let y~,. . . ,y, ,  be a sample f rom the scale parameter  
family generated f rom the family with model  funct ion 

cy "~-i exp { - K(y -1 + y ~ 0 ) }  , 

where y > 0. This scale family constitutes a (2, 1) exponent ia l  model.  (For  
9 = 1 the distr ibutions considered belong to the family of generalized 
inverse Gauss,an distributions.) Denot ing the scale parameter  by a and 
letting xi = log yi and co -- log a we find that  

x {Y,e- '+ 9 2 Xe  t,;, = T 

IC { ~ , e - ' -  9 3 E e  ~a'} = - f,;2, h;1 = -~- 

t2;2 m - -  - -  ' K {~.~e_a, + 94 Xega,} 
2 

where al = x i -  (f-). Hence 

] I1; 1 I2; 1 I - -  

I 11;2 12;2 

K 2 
4 (Y"e-a')(~'e~'a')92(9 + 1 ) 2 '  

which is # 0 whatever the values of 2, x, 9 and x , , . . . , x , .  

5. Accuracy of approximations 

One of the major  purposes of in t roducing OLff¢o, and O'(,~t,),o is to 
obtain tractable approximat ions  to ,/fie and ./flOra. In this section we investi- 
gate the closeness of these approximations.  

Before going into detail, it is worth  Widening the discussion to include 
a general class of  exponent ia l  families like O~/~¢~ which approx imate  ,/ff¢ 
near co. Recall that  ~ denotes the space of all measurable real-valued 
funct ions on ~ .  In practice, we shall mostly be interested in certain convex 
subsets of ~ consisting of funct ions which satisfy appropria te  regularity 
conditions.  I f / 7  is any projection of ! ~  onto the subspace spanned by 
{/a(co; .): [a[ < r}, then /7 gives rise to a curved exponential  sub-model  
//./~¢~ = (,~,ptn], f2) of E~/~o, with 

(5.1) ptnl(x; co') 

= p (x ;  o)) exp {/-/(/(co'; x) - l(o9; x)) - x(co')}, 
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where x(co') is an appropriate log-norming constant. To see that O~,~¢,o can 
be constructed in this way, take ~ r  to be the space of C r functions on . ~  
and define ~o:  £2 ~ ~ as the log-likelihood-ratio function given by 

~°(co') =/(co' ; .  ) - l(e~;. ) .  

Let p: ~ --- . ~ "  be the restriction map which is given by 

p(f)(cb) = f(a3, a ) ,  

and define H: ~ r  --. ~ , r  by 

H = f i  o H  ° op. 

Then, H is a projection and commutativity of the diagram in Fig. 3 shows 
that (4.1) is a special case of (5.1). Similarly, (4.2) and (3.2) are analogous 
to (5.1), with (~'",H °) and (/~;ff, o,H e) used in place of (~r ,H) .  Here H e 
denotes orthogonal projection of._~fo, onto span {lo(o0: I al -< r). 

The closeness of an approximating family H,/~',o to ,/Z¢' near co can be 
investigated by using Taylor expansions and by exploiting the linear nature 
of projections. We have 

log p(x; co') = log p(x; a~) +/(co'; x) - /(co;  x) 

and 

logptnl(x; ca') = log p(x; o2) + H(I(oY; x) - / (co;  x)) - x(oY). 

Then, by Taylor expansion and using the fact that Hl,~(~)= lo(co) for 
l a] -< r, we have 

~ r  

/ 
£2 P 

kuo, ° 

H 

H ° 

6 

Fig. 3. Relationship of the orthogonal projections/7 and H". 
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(5.2) log pffrl(x; co~) - log p(x; co') 

= ( / / - / ) ( l ( o ) ' ;  x) - l(o9; x)) - x(o~') 

i ) [  2,+1 d a ] 
= ( / / -  , io~1 la(~;x) ~ + 0(11,~11 z~+2) J - K(O)') 

= ( /7-  I) jolE+ ]o(co;x)-~.v + 0(116112"2) - ~c(co') 

2r+ 1 ~a 
= E Ca(o~;x)--~(+ O(Jl6112'+e)-x(co ') 

[al:r+l 

where 

Ca(co; x) = (17 - I)L(og; x ) ,  

I denotes the identity map of !~, and 8 = e)' - 09 --* 0. 
Since pWa(.;co,) is a probability density function with respect to the 

underlying measure/z on ..~, we have 

fexp (log ptnl(x; o/))dlt(x) = 1 . 

It then follows from (5.2) that the norming constant x(w') is of the form 

f { 2r+ 1 
exp x(co') = exp ]E 

lal=r+l 

6a } 
Ca(CO; X) ~ + o(11~112'÷2) p(x; ~o')d/4x) 

f{ 2.1 6o } = 1 + i=l~.lca(o);x)--~. + o(II6H 2r+2) p(x;o/)d~(x) 

2r+ 1 ~a 
= 1 + ic, l~+lE, o,[Cc,(o);x)] -~. + O(116112'+2), 

under fairly general regularity conditions. Then 

2r+ 1 
x(o/)  = E 

lal=r+l 
E~,[G(~o; x)] ~ + O(llfill 2'+2) 

and 

(5.3) log [ PW](x; ~') ] 
p(x;oy) 

2r+ 1 (~a 
Z n°(o),~';x) + O(ll~ll 2"2) 

lal=r+l - ~ .  
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Ba(co, co'; x) = Ca(co; x) - Eo~,[Ca(og; x)], 

so that H,/~'~o is r-th order close to . /g  near to. There is also corresponding 
closeness of derivatives of log-likelihood because differentiation of (5.3) 
yields 

(5.4) lYq(og'; x) - l~(o9'; x) 

fia-~ 
lal~'~=r+lBa(('O'og"~X) (a-- ]~)! - -  + O(llall~+Z-tal), 

where ltnl(co,; x) = log pt~q(x; co') and 6"-~/(a - fl)! is interpreted as 0 if any 
component  of a - f l  is negative. In part icular ,  put t ing l°(og';x)= 
log q~dl(x; co'), the versions of (5.3) and (5.4) for O~¢'o, are 

(5.5) log [ q~l(X;p(x; co') o9') ] 

2r+  1 (~a 

= Y, Ba(og, og';x) + 0(115112r+z) 
lal = r +  1 

and 

(5.6) o ? l~ (o9 ; x) - l~(o9'; x) 

= E Ba(og, o g ; x ) - -  
l a l = r + l  

5a-P 
( a  - f l ) !  

+ O(llOIl~+2-~at), 

As ELg~ and Or(,~,.),o are also obtained by projection (but using ~ and 
~ . r  instead of ~ ) ,  formulae analogous to (5.3) and (5.4) show that E~o~ 
and or(,/~l,,),o are r-th order close to ~ ' a n d  ./~,, respectively, near o9. Thus 
for Or(,//t%)~, we have 

(5.7) log [ CrJ(°3; co'la) 
p(03; og'la) ] 

2r+  1 ~ a  

'" 031a) O(ll ll zr+2) = E Bo(co, co, + 
[ a [ = r + l  . ' 

where Ba(co, o9'; cbla) -- C,(co, co'; 031a) - E,o,[C,(co, o9'; 03)], the expectation be- 
ing with respect to the conditional probability density function p ( . ;  og'[a). 
Putting 
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7 "trl(Co'; 031a) = log 4 trl (a3; o9'1 a) 

and 

l(o9'; 031a) = log p (03; og'[a), 

differentiation of (5.5) yields 

(5.8) 7t'1(~o'; 031a) - l~(co'; 031a) 

= ,o,~+1B°(C°' °~; 03) (a-/~)--------5 + O(llallr+>lP'). 

Next we wish to compare the maximum likelihood estimators 03 and 
03tin in ./gO" and H(./~"), respectively, at least asymptotically for large n. Let 
17. denote the projection used in the construction of H(,/~n)o,. Let ~ and 
~ ,  denote the spaces of all measurable real-valued functions on ~ "  and 
..~ r=, respectively, where ..q~ is the set of infinite sequences of elements of 
..@. Then , / / . ,  which is a projection of ~ onto some subspace, can also be 
regarded as a projection of ~ ,  onto a subspace of ~_.~.. We shall assume 
that H. converges (in some sense) to a limiting projection //,  so that 
17. = 17 + O(n-~n).  For the case of observed exponential approximations 
O'(,/~")~,, this holds in particular if 

(5.9) ~im n-'/.;e(og) exists for all a, fl 

with lal ,  I/~1 -< r .  

Then, we have, under appropriate regularity conditions, 

(5.10) n- 1B~(o~, a~; x) 

= n-~(17 - I +  O(n-V2)) lo(~o;x)  

- E ~ , [ n - ' ( 1 7 -  I +  O ( n - ' n ) ) l o ( ~ ;  x)] 

= { n - ' ( 1 7 -  t ) lo(co;x)  - Eo,[n-l(17 - I )L(oa;x)]}  + Op(n -'/z) 

= O p ( n - l / = ) .  

Then, taking co'= 03tin and Ifll = 1 in (5.4) gives 

0 - n- ' l~(03wl; x)  

= g n- lB.(co,  og;x) - 
laJ=r+l 

a°-p 

(a -/~)! + 0(11311'+'), 



266 

and so 
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n- '  - o5) + O(llJ o3112) = G ( n - ' Z )  O( l lSI I3  , 

where f denotes observed information at 03 and 3 = ost/z~- o9. As e3-o9 = 
Op(n-1/2), we obtain 

(5.11) 0 3 [ / / ]  03 _-- Op(n-tr+l)/2). 

Let ose, o30 and ~ denote, respectively, the maximum likelihood estimators 
of co' in the models E ~ d ,  Or( ,~")~ and Or(,MG)o. Then, as a special case 
of (5.1 l) we have 

(5.12) ose _ O5 = Op(n-(r+ l)/2) . 

A similar argument to the one above shows that, if condition (5.9) holds, 

(5.13) o5o _ 03 = Op(n-lr+l)/2). 

Example  5.1. (von Mises distribution with k n o w n  concentration) 
Consider again Example 3.1. For random samples Xl, . . . ,x ,  from the 
distribution with model function (3.4) we can write 

Z (cos xi, sin xi) = r(cos 03, sin 03) 
i : l  

and (r, o5) is a one-to-one transformation of the minimal sufficient statistic. 
Calculation shows that O~d~',o, the observed approximation based on the 
ancillary r, has model function 

(5.14) q~'~(os, r;og') = {lo(xX/1 + (sin fi)z)}-, 

• exp {xr[cos (03 - co) + sin fi sin (o3 - co)]}, 

where 6 = o9' - o9. Differentiation of (5.14) shows that 03o satisfies 

-1 
n r sin (03 - ~o) 

= A(KX/1 + (sin 80) 2) sin 3°{1 + (sin 8°)2} -1/2 , 

where 3 ° = o 5 ° - o 9  and A(z )=I i ( z ) / Io ( z ) .  As n - l r - A ( x )  = Op(n-m), it 
follows from further calculation that O5° - 03 = Op(n -1) in agreement with 
(5.13). However, as n-~r - A(t¢) ~ Op(n-l), we have o3° - O5 ~ Op(n-3/z), so 
that we cannot replace r + 1 by a larger integer in (5.13). 

Now consider the conditional observed approximation ol(.~[r)o~. By 
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restriction of  (5.14) and renormal izat ion  we obta in  

(5.15) q~q(05;co'lr) = {10(xrx/1 + (sin 3)2)} -~ 

• exp {Kr[cos (o3 - co) + sin ~ sin (o3 - co)]}. 

Differentiat ion of (5.15) leads to 

sin (05 - co) = sin (3)A(xrx/1  + (sin ~)2){1 + (sin ~)2}-v2, 

where ~ = 0 5 - c o .  Since x r =  Op(n) for x > 0  and A ( z ) =  1 - 0 ( -  7-1) as 
z --, ~ (see e.g.,  Mard ia  (1972) ,  p. 288),  it fo l lows  that  o3 - o~ = Op(n-3/2). 
Thus  05 can be considerably  closer to 05 than 05 ° is. 
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