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Abstract. This paper presents, for bivariate distributions, a unified frame- 
work for studying and relating three basic concepts of positive depen- 
dence. These three concepts are positive dependence orderings, positive 
dependence properties and measures of positive dependence. The latter 
two concepts are formally defined and their properties discussed. Inter- 
relationships among these three concepts are given, and numerous 
examples are presented. 
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1. Introduction 

A large body of statistical research has focused on deriving and 
studying concepts of positive dependence for bivariate distributions. Three 
different types of positive dependence concepts can be distinguished: 
positive dependence properties, positive dependence orderings and (numeri-  
cal) measures of positive dependence.  

Roughly  speaking, a bivariate distr ibution is considered to have a 
specific positive dependence proper ty  if larger values of either r andom 
variable are probabilistically associated with larger values of the other 
r a n d o m  variable. Examples of positive dependence properties are positive 
quadrant  dependence,  association and totally positive of order 2 (TP2). 
Detailed reviews and discussions of a variety of these properties can be 
found in Barlow and Proschan ((1975), Chapter  4), Marshall  and Olkin 
((1979), Chapter  12), Tong ((1980), Chapter  5) and Block and Sampson  
(1984). Interrelationships among  specific properties have been examined; 
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e.g., Block and Ting (1981) and Shaked (1982). However, there has been 
little work done to establish a general framework for studying positive 
dependence properties, with the exception of the framework provided by 
Dabrowska (1981, 1985) for studying regression dependence. 

A positive dependence ordering is a comparison of two bivariate 
distributions to determine whether one distribution is more positively 
dependent than the other, thus attempting to partially order distributions 
according to their degree of positive dependence. Examples of such order- 
ings are Tchen's (1980) more concordant ordering (or essentially equivalent- 
ly Ahmed et al.'s (1979) positively quadrant dependence ordering) and 
Kimeldorf and Sampson's (1987) TP2 ordering. A general framework for 
studying positive dependence orderings was provided by Kimeldorf and 
Sampson (1987). Other frameworks for orderings which are more focused 
on regression considerations are given by Dabrowska (1981, 1985). 

A (numerical) measure of positive dependence, loosely speaking, is a 
number measuring the degree of positive dependence in a bivariate distri- 
bution. Examples of such measures are Pearson's correlation, Kendall's r 
and Spearman's p. A framework for examining general measures of 
dependence was provided by Renyi (1959). Schweizer and Wolff (1981) 
provided axioms for "nonparametric measures" of bivariate dependence; 
these can also be viewed as axioms for measures of absolute positive 
dependence. Other axiomatic approaches are discussed by Dabrowska 
((1981) and (1985), Section 4). 

The primary purpose of this paper is to establish a comprehensive 
structure for studying the three types of concepts of positive dependence. 
Specifically, we define and develop the general concept of positive depen- 
dence property. Secondarily, we relate the concept of positive dependence 
property to the idea of positive dependence orderings introduced by 
Kimeldorf and Sampson (1987), and also study their relationships to 
measures of association. Finally, this leads us to define and study the 
concept of a measure of positive dependence. 

2. Positive dependence properties 

In this section, we introduce the concept of a positive dependence 
property. A positive dependence property can be viewed as a subset ,_~+ of 
the set of all bivariate distributions. Many of the interesting properties 
previously obtained for specific positive dependence properties can roughly 
be thought of as closure properties of the subset under different probabil- 
istic operations. 

Depending on the context, i.e., whether working with random varia- 
bles or c.d.f.'s, we write (X, Y ) e ~ +  or F(x,y)~._~÷. We call a c.d.f. 
F÷(x,y) an upper Frrchet bound if F+(x,y)= min (F÷(x,~),F+(oo, y)). 
Similarly, a c.d.f. F-(x,y) is called a lower Frrchet bound if F-(x,y)= 



A FRAMEWORK FOR POSITIVE DEPENDENCE 33 

max [F-(x, no) + F_(oo, y) - 1, 0]. A c.d.f. Fl(x,y) is called an independence 
c.d.f, if Fi(x,y) = Fi(x, oo)F~(oo, y). If (X, Y) has c.d.f. F(x,y), then we use 
the notation (XI, IIi) to indicate a bivariate random variable with c.d.f. 
F(x, oo)F(~, y). Further, let ,_~'+, ._~r_, and ,.,¢" denote, respectively, the sets 
of all upper Fr6chet bounds, lower Fr6chet bounds, and independence 
c.d.f.'s. 

DEFINITION 2.1. A subset ,_~+ of the family of all bivariate distri- 
butions is a positive dependence property (PDP) if it satisfies the following 
seven conditions. 

(C1) (X, Y) e ,~÷ implies 

(c2) ,~r+ _c ,_~+. 

(C3) ,J_c ,_~+. 

(c4) (x, Y) ~ ._~+ implies 

P(X> x, Y> y) >_ P(X> x)P(Y> y), 

for all x, y .  

(C5) (X, Y) ~ ,~+ implies 

(C6) (X, Y) ~ ,~+ implies 

(C7) {F.} ~ ,.~+ and 

(4~(X), Y) c ._~+ 

for all increasing functions ~b. 

+ . 

( - X ,  - Y) e._~+. 

F, ~ F imply F ~ ,.~+, 

where ~ denotes convergence in distribution. 

Condition (CI) indicates that any positive dependence property must 
satisfy the basic intuitive concept that given X is large, Y is more likely to 
be large than without this knowledge and the analogous statement about 
X, given that Y is large. Since the upper Fr6chet bounds are the most 
positive dependent distributions possible (see Kimeldorf and Sampson 
((1978), Theorem 2)), condition (C2) expresses the requirement that they 
should always possess every possible positive dependence property. Condi- 
tion (C3) can be viewed as a boundary condition and (C4) is an increasing 
monotone invariance condition. Condition (C5) is a symmetry condition 
which requires the dependence property to treat both random variables 
symmetrically. Including (C6) along with (C4) and (C5) allows a concor- 
dance condition. Condition (C7) is closure under weak convergence. 

These seven conditions are logically independent in that if any six of 
them hold, the seventh need not necessarily hold. For example, choosing 
._~= ,~r+ U ._,~r U ~ we have a property satisfying (C2)-(C7), but not 
(CI). Choose ~/~= ~,~ or ,_0 ~= ~ to have properties satisfying all condi- 
tions, except (C2) or (C3), respectively. If ~ = ~ U OivU {N(p),p > 0}, 
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where N(p) denotes the standardized bivariate normal distribution with 
correlation p, then . .~ satisfies all conditions but (C4). To describe the 
remaining three examples, we use the notion of translates (e.g., Mardia 
(1970), Chapter 4) of a set of bivariate distributions, dJ, defined by 
{PIth(X) < x, ~,(Y) <_ y]: ~b, ~u are increasing functions, and (X, Y) -- G e ~ } .  
To find ~ satisfying all but (C5), let F(s, t)= P ( X  <_ s, Y<_ t) be any 
bivariate c.d.f, with continuous marginals which is positively quadrant 
dependent (see Example 2.1) and which satisfies P(X<_s, Y<_ t)= P(X>_ 
- s, Y___ - t) for all s, t and P(X  <_ s, Y <_ t) ~ P (X  <_ t, Y <_ s) for some s, t. 
Let . ~  denote the set of translates of such an F and define ,_~ = ~¢U 
~ r + U  ,.~ Then ,_~ satisfies all conditions but (C5). Now let F be the 
bivariate distribution putting mass 1/2 uniformly on the square (0, 0) to 
(1/2, 1/2) and mass 1/2 uniformly on the line segment from (1/2, 1/2) to 
(1, 1); and let ~ be the set of all translates of this F. The property 
,JL~ .~r÷ U ~ satisfies all conditions but (C6). To find a property satisfy- 
ing (C1)-(C6), but not (C7), let g be the set of all translates of 
{N(p):p > 1/2} and consider J U  ,~r+ t.3 

The following lemma is immediately derivable from the properties of a 
PDP. 

LEMMA 2.1. (a) Let ,_~+ be a PDP. I f ( X ,  Y) e._~÷, then (4~(X), 
~u( Y)) ~ ,_~÷ for  c~, ~u both increasing or both decreasing. 

(b) I f (X ,  Y) ~ .~J÷ and ( - X, Y) ~ ,_~÷, then (X, Y) ~ ,.~. 

Note that the result of Lemma 2.1(b) says that only independent 
random variables can be both positively and negatively dependent. 

In the framework for regression dependence, Dabrowska (1985) 
considers some conditions similar to (C1)-(C6). But due to the specific 
nature of the regression situation, her conditions reflect the necessary 
asymmetries. For example, in place of Lemma 2.1(a), she requires the 
condition: if (X, Y) has the property, then (aX + b, 4~(Y)) has the property 
for all a > 0 and increasing ~b. 

We now consider several illustrative examples. 

Example 2.1. (Positively Quadrant Dependence PDP) Lehmann 
(1966) defined F(x,y)  to be positively quadrant dependent (PQD) if 
F(x,y)  > F(x, o~)F(o~,y) for all x, y. Let , ~ ' O o  denote the set of all PQD 

, + 
c.d.f.s. That ,-~eqD satisfies (C2) is the well-known Fr6chet result (see 
Johnson and Kotz (1972), pp. 22-23), and that it satisfies (C1) and 
(C3)-(C7) is obvious. 

Example 2.2. (TP2 PDP)  Block et aL (1982) define F to be TP2 if 
P(Xl < X < x 2 , y ~  < Y < y 2 ) .  e ( x 3 < X < - x 4 , y 3 <  Y<y4)  > e(x1 <g<-x2, 
y3 < Y-< y4)  " P(xs < X < - x4,yl < Y <- y2) for all x~ <_ xz <- xs <- x4, yl <- y2 <- 
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y3 -< y4. Let ~ ' P 2  denote the set of all TP2 c.d.f.'s. Barlow and Proschan 
(1975) show ,-~P2 satisfies (C1) and Nguyen and Sampson (1982) show 
• -~a2 satisfies (C2). That . ~ P 2  satisfies (C3), (C5) and (C7) is obvious. 
Condition (C4) follows because xl -< x2 _< x3 -< x4 implies th(xl) -< ~b(x2) _< 
4~(x3) -< ~b(x4) and (C6) follows by the symmetry of the TP2 condition and 
by choosing - x4 < - x3 < - x2 ~.~ -- Xl and - y4 --< -- y3 < - y2 -< -- y~. 

Example 2.3. (Association PDP) Esary et al. (1967) define X, Yto 
be associated random variables if Cov ( f(X,  Y),g(X, Y)) >_ 0 for all increas- 
ing f, g for which the covariance exists. Let , ~ s s o c  denote the set of 
c.d.f.'s for all associated random variables. Since ,-~+TP2 c_ t.~iASSOC+ C__ t-~PQD 
(e.g., Barlow and Proschan (1975), Chapter 4), it follows that (CI), (C2) 
and (C3) are satisfied. Conditions (C4), (C5) and (C6) are obvious, and 
(C7) follows from property (P5) of Esary et al. (1967). 

Example 2.4. (Weak PQD) Let ,-~v ~ .~'+ t..; ,~. Obviously .-~v 
satisfies Conditions (C1)-(C6). Condition (C7) follows essentially from 
Theorem 3 of Kimeldorf and Sampson (1978). 

Example 2.5. (Nonnegative Covariance) Let ~ be the set of all 
c.d.f.'s with nonnegative covariance. Then ~ is not a PDP, because it fails 
to satisfy (C1) and (C4). To see the latter, let (X, Y) put mass .45 on (0, .5), 
mass .45 on (.5, 1) and mass .1 on (1,0). Then Cov (X, Y) = .005625. Let 
~b(X) = 0, if X <  1/2, and 1, otherwise. Then Cov (O(X), Y) = - .0675. 

In establishing the conditions which specify a PDP, a number of other 
conditions were considered, but not included in Definition 2.1 for a variety 
of reasons. However, several of these are worth noting in their own right. 

DEFINITION 2.2. A set ,_~ of c.d.f.'s satisfies the generalized mono- 
tone invariance condition if for independent pairs (X1, Y1) and (X2, Y2) 

(2.1) (X1, I:1) e .-~ and (X2, Y2) e .-~ imply 

( $ ( X i ,  X2), w ( Y I ,  Y2)) E ~ ,  

for any functions 4~(u,o) and ~,(u,o), which are increasing in each 
argument. 

DEFINITION 2.3. A set ._~ of c.d.f.'s having the same pair of 
marginal distributions satisfies the mixture condition, if 

(2.2) F1, Fz ~ ._~ implies aFl + (1 - a)F2 ~ ,_~ , 
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for all a e (0, 1). The mixture condition can also be viewed as requiring the 
convexity o f ,~ .  

DEFINITION 2.4. A set ,_~ of c.d.f.'s satisfies the normal-agreeing 
condition if 

(2.3) ,~÷ c_ . ~ ,  

where ,A/÷ denotes the set of all bivariate normal c.d.f.'s with nonnegative 
correlation. 

~IpQD satisfies the generalized monotone invariance condition (see 
Theorem 3.1 of Kimeldorf and Sampson (1987)), obviously the mixture 
condition and the normal-agreeing condition (see Slepian (1962))..-~p2 
satisfies the normal-agreeing condition (see Chapter 4 of Barlow and 
Proschan (1975)), but does not satisfy the generalized monotone invariance 
condition (see Example 3.1 of Kimeldorf and Sampson (1987)), and does 
not satisfy the mixture condition as may be seen from the following 
example. 

Example 2.6. Let F~ assign mass 1/3 to each of the points (1, 1), 
(2,2), (3, 3) and let F2 assign mass 1/9 to each of the points in 
{1,2,3} × {1,2,3}, so that F~ is an upper Fr6chet bound and F2 is an 

+ + 
independence distribution. Then F ie  ,-~TP2, F2 e ,-~TP2, but (F1 + F2)/2 

+ 
~ T P 2 .  

~ , s s o c  satisfies the generalized monotone invariance condition (this 
follows from Esary et al. (1967)) and the normal-agreeing condition (see 
Chapter 4 of Barlow and Proschan (1975) or more generally Pitt (1982)). It 
is obvious that , ~ v  does not satisfy any of the three conditions. 

If we remove from Definition 2.3 the requirement that the distribu- 
+ + + 

• -~ASSOC and tions have the same set of marginals, then ,-~Tl'2, ,-~PQO all 
fail to satisfy the mixture condition. To see this, let F ~ ( x , y ) = x y  and 
F2(x,y) = x2y ~/2 on (0, 1) × (0, 1) with a = 1/2. Although F~ and F2 are TP2, 
the resulting mixture is not TP2. In fact, this mixture is not even PQD. To 
verify this fact, note that as x - - O  +, 2P(X<_x, Y<y)=xy~/2(y~/2+ x)= 
xy + o(x) < x (y  + y~/2)/2 + o(x) = (x + x2)(y + y~/2)/2 = 2P(X _< x ) P ( Y  <_ y), 
for 0 < y < 1. Krishnaiah et al. (1985) provide a counterexample for the 
non-convexity of ,-~,QD when the marginals differ. 

3. Obtaining PDP's from PDO's 

Kimeldorf and Sampson (1987) discuss properties which an ordering 
on bivariate distributions should have, if that ordering describes how 
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positively dependent one pair of random variables is relative to another 
pair. In particular, they introduce the concept of a positive dependence 
ordering. 

DEFINITION 3.1. (Kimeldorf and Sampson (1987)) A relation 
on the family of all bivariate distributions is a positive dependence ordering 
(PDO) if it satisfies the following nine properties: 

(P0) F <  G 

(PI) F <  G 

(P2) F <  G 

(P3) F < F ,  

(P4) F-  < F < F ÷ , 

implies F(x, ~) = G(x, oo) and F(oo, y) = G(o% y),  

implies F(x, y) < G(x, y) for all x, y ,  

and G ~ H imply F ~ H ,  

where F ÷ and F-  are, respectively, the upper and lower Fr6chet bounds 
corresponding to F(x, y). 

(P5) (X, Y) ~ (U, V) implies ($(X), Y) < ($(U), V), 

for all increasing functions ~b, where the notation (X, Y)~  (U, V) means 
that the relation ~ holds between the corresponding bivariate distribu- 
tions Fx, rof  (X, Y) and Fv.vof (U, V), i.e., Fx, r ¢  Fv, v. 

(P6) 

(P7) 

(P8) 

(X, Y) ~ (U, V) implies ( - U, V) ~ ( - X, Y). 

(X, Y) ~ (U, V) implies (Y,X) ~ (V, U).  

F,, ~ G., F. - ~  F, G. ~ G implies F ~  G, 

where F,, F, G,, G all have the same pair of marginals. 
It follows immediately from (P1) that 

(P9) F ~ G  and G ~ F  imply F = G .  

We conclude from (P2), (P3) and (P9) that the relation ~ induces a partial 
ordering on the family of all bivariate distributions. The notation G >> F 
indicates that G (or a pair of random variables whose distribution is G) is 
more positively dependent than F (or a pair of random variables whose 
distribution is F). 

The motivation of these properties is essentially given in Kimeldorf 
and Sampson (1987). Proceeding as we did for PDP's, we could similarily 
demonstrate the logical independence of these nine conditions. 
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We now discuss the relationship between PDO's and PDP's, showing 
that every PDO yields a PDP. 

THEOREM 3.1. Let ~ be a PDO and define 

(3.1) ,_~; = {F: F(x,y) >> F(x, ~ )F(~ , y )  for all x, y} . 

Then . ~  is a PDP. 

(C1): 

(C2): 

(C3): 

(C4): 

PROOF. 
This follows directly from (P1). 

Let F ÷ ~ ,_~r+. Then by property (P4), F + >> FI, so that F ÷ ¢ , . ~ .  

By (P3), Fr ~ ~ ,~ .  

If (X, Y) >> (XI, Y0, then (P5) implies (~b(X), Y) >> (~b(X~), Y0 = 
(~b(X)~, Y~) which yields that (~b(X), Y) ~ , _~ .  

(C5): This follows from (PT). 

(C6): If (X, Y) >> (Xx, YI), then by (P6) and (P7) ( - X, - Y) >> ( - X~, 
- YI) = (( - X)I, ( - Y)I), so that ( - X, - Y) ~ ,_~ .  

(C7): If F, >> F~ and F, z" F, then by (P8) F>> F~, which implies F ¢  ~i~,. 

Note that if F~  ._~, and G >> F, then by property (P1), G ~ ._~ .  
Kimeldorf and Sampson (1987) define a TP2 ordering for bivariate 

distributions F and G with the same marginals. The distribution G is said 
to be more TPz than F if for all intervals I~ < 12 and J~ < J2, 

(3.2) F( I~, J,)F( h, J2)G( I~, Jz)G( I2, J1) 

<_ G(h, J~)G(I2, J2)F(I~, J2)G(I2, JO, 

where F(L., Jj) and G(Ii, Jj) denote the probabilities assigned by F and G, 
respectively, to the rectangle I; × a~, and I < J means x ~ L y e J imply 
x < y. Denote this ordering by G >> T F. Also considered by Kimeldorf and 
Sampson (1987) is the weak Fr6chet ordering where for any pair F, G of 
bivariate distributions, we write G >>w F if and only if either F = G, or G is 
the upper Fr6chet bound corresponding to F, or F is the lower Fr6ehet 
bound corresponding to G. Kimeldorf and Sampson (1987) show that >>~, 
>>w are PDO's, and also that the more PQD ordering >>POD (see Tchen 

(1980)), is a PDO. Thus by Theorem 3.1, the corresponding dependence 
concepts defined by (3.1) must be PDP's. It is straightforward to prove the 
following theorem. 
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+ + + + 
THEOREM 3.2. (a) ._~;. = ,_~a'P~, (b) , _ ~ ,  = ,-~w, and (c) '-~pQD = 

+ 
~ P Q D .  

We note that just as >>w can be viewed as the weakest PDO, .-~v is 
the weakest PDP, since by (C2) and (C3), if ~ +  is any other PDP, then 

The interesting question remains: Is there a PDO >>A such that .-~,A = 
+ 9 • -~ASSOC. There are two orderings related to the concept of association 

which have been recently introduced. Kimeldorf and Sampson (1984) and 
Hollander et al. (1985) define (U, V) >>a (X, Y) if 

(3.3) Cov (qb(X, Y), ~u(X, Y)) _< Cov (~b(U, V), ~u(U, V)), 

for all increasing ~b, ~,. Schriever (1985) defines (U, V) >>A (X, Y) if there 
exist functions Kl(a, b), K2(a, b) such that 

(i) K~,/(2 are monotone in each argument, 
(ii) K1(al,bl) < Kl(a2, b2), K2(az,bl) > K2(a2, b2) imply al < a2, bl > 

b2, and 
(iii) (U, V) has the same distribution as (KI(X, Y), K2(X, Y)). 
Suppose (X, Y)e ,-~,ssoc. Then it is direct to show that (U, V)>>a 

(X, Y) implies (U, V) e ,-~,ssoc, and also (U, V) >>A (X, Y) implies (U, V) e 
~ s s o c  (Schriever (1985), Proposition 4.1.2). However, there are elements 
(X, Y) of._~]ssoc which do not satisfy (X, Y) >>A (XI, YI) (Schriever (1985), 
p. 66) and also elements which do not satisfy (X, Y) >>, (X~, YI), so that 
neither of these orderings fully "generates" .-~,ssoc. Additionally, we note 
that >>a is not a PDO, because as the following example demonstrates, >>a 
violates (P4). 

Example 3.1. Let (X, Y) correspond to the upper Fr6chet bound 
where both marginals are uniform distributions on [0, 1], so that (X, Y) 

+ 
• -~ASSOC. Let A = {(s, t): s _> 2 -1/2 or t _> 2-1/2}. Clearly, A is an upper set, so 
that ~(s, t ) -  ~u(s, t)~ IA(S, t), where IA denotes the indicator function of 
the set A, are both increasing functions. Direct calculation shows 
Cov (O(X, Y), ~u(X, Y)) = .2071 and Cov (O(X~, Yt), ~'(XI, YI)) = .2500, thus 
violating (3.3). 

The issue of how to use a PDO >> to obtain concepts of negative 
dependence is discussed by Kimeldorf and Sampson (1984). 

4. Measures of positive dependence 

The subject of how to measure numerically the association between 
random variables has been addressed extensively in the statistical literature. 
The more specific area of developing measures of positive association for 
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ordinal contingency tables has also been widely examined. Good reviews of 
these areas are given by Goodman and Kruskal (1959) and Agresti (1984). 
Renyi (1959) and Hall (1970) have provided axiomatic frameworks that a 
non-ordinal measure of association or relationship should satisfy. Generali- 
zations of Renyi's axioms have been considered by RSdel (1970) and 
Htischel (1976). No such coherent framework appears generally to exist for 
measures of positive association. Schweizer and Wolff (1981) have provided 
a modification of Renyi's axioms to handle measures of dependence that 
are based upon ranks. In some sense, their axioms begin to approach the 
issue of measures of positive association. Dabrowska (1985) considers 
general properties of asymmetric measures of positive association dealing 
with regression concepts, and Scarsini (1984) deals with some aspects of the 
issue in the context of the >>POD ordering. Underlying the research of these 
authors and others is what we believe to be a fundamental observation: 
that without specifying a corresponding PDO, any discussion of measures 
of positive association is problematic. This is due in part to the obvious 
difficulties in attempting to represent the dependence structure of a bi- 
variate distribution by a single number (see Kowalczyk and Pleszczynska 
(1977)). Also it is often unclear exactly what dependence concept a specific 
measure of positive association is attempting to describe. 

DEFINITION 4.1. Let < be an arbitrary PDO and m be a finite real- 
valued function defined on the set of all bivariate distributions. The 
function m is a measure of positive dependence ( MPD ) concurring with 
if 

(4.1) F ~  G implies m(F) <_ re(G). 

In the specific situation they were considering, other authors have used 
differing terms for this concept. In the context of regression dependence, 
Dabrowska (1981) calls m "monotone with respect to ~ ;" in the context of 
>>A, Sehriever (1985) terms m to "preserve the ordering ~ ;" and Scarsini 

(1984) in dealing with >~PQD calls m "consistent with ~ ." 
If (X, Y) has a c.d.f. F, we sometimes write re(X, Y) instead of m(F). 
Clearly, for each PDO 4 ,  m is not unique, since O(m) is an MPD 

concurring with ~ for any increasing function d~. Moreover, there are 
instances (see Example 4.1) where ml and m2 are both MPD's concurring 
with ~ ,  and yet m~ is not a monotone function of m2. 

In this section, employing the definition of a PDO and the concept of 
a concurring MPD, we discuss various conditions like Renyi's that might 
be meaningful to require for a measure of positive association. We illustrate 
these conditions with various examples and examine some of their inherent 
difficulties. 
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Example  4.1. The following are MPD's  concurring with ~VQD: 
Pearson's correlation, Kendall 's ~, Spearman's p, Blomqvist's q (see Tchen 
(1976), Corollary IV, 1.b), and Kimeldorf et al.'s (1982) CMC (see Schriever 
(1985), Example 4.2.3). Note that, in general, none of these MPD's  are 
monotone functions of any other. 

Example  4.2. Let mw(F)  = 1 if F e ~r÷, _ I if F c ~r_, and 0, other- 
wise. Then mw is an M P D  concurring with >> w. 

Based upon an examination of Renyi's (1959) and Schweizer and 
Wolff's (1981) conditions, it would seem that the following conditions 
should be included in any specification of conditions for a measure of 
positive association. 

(4.2) - 1 _< r e ( F )  < 1 .  

(4.3) If Y= th(X) 

(4.4) If Y =  ~b(X) 

(4.5) m ( F )  = 0 if and only if 

a.s. for some increasing ~b, 

then m ( F )  = 1 . 

a.s. for some decreasing ~, 

then m ( F )  = - 1 . 

F ~ - .  

In the context of conditions (4.2), (4.3) and (4.4), which can be viewed as 
norming conditions, we argue that condition (4.5) is inappropriate in that a 
natural continuity condition is violated (see Lemma 4.2). 

By property (P4), every M P D  m concurring with ~ satisfies 

(4.6) m(F-)  < m ( F )  < m(F÷).  

Thus, there is no apparent loss of generality if we were to require 

(4.7) m(F+) -- 1 for all F÷ e 

and 

(4.8) m(F-)  = - 1 for all F- c .~r_. 

LEMMA 4.1. I f  m is an M P D  concurring with ~ and satisfying (4.7) 
and (4.8), then m satisfies (4.2), (4.3) and (4.4). 

PROOF. Obvious. 
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In addition, we could require the following continuity condition. If 
{F,} is a sequence of distributions such that F,  ~ F or F ~ Fn for all n, then 

(4.9) Fn - ~  F implies m(Fn) ~ m ( F ) .  

Consider a PDO, such as >~PQD, which satisfies the following mixture 

property 

(4.10) F ~ G implies F ~ a F  + (1 - a) G ~ G,  

for 0 <_ a < 1. For  such PDO's we now show that if (4.7) and (4.8) hold, 
both (4.5) and (4.9) cannot hold. 

LEMMA 4.2. Suppose  ~ is a P D O  satisfying (4.10) and m is an 
M P D  concurring with ~ and satisfying (4.7) and (4.8). I f  m satisfies (4.9), 
then m cannot satisfy (4.5). 

PROOF. Fix a, 0 -< a < 1. Let F~ = ctF+ + (1 - a)F- and let an ~ a. 
Then by (4.10), Fo ~ F~, = (1 - a,)/(1 - ct)F~ + [1 - (1 - a,)/(1 - a)]F+ -- 
F~, and by (4.9), m(F~,) I re(F,,). Thus, m(F~) is continuous in a from the 
right, and a similar argument  shows it to be continuous from the left. By 
(4.7) and (4.8), we also have m(FO = m(F÷) = 1 and m(Fo) = m(F-)  = - 1. 
By the intermediate value theorem, there exists a0 such that m(F,o)= O. 

However, F~o ~ J .  

Renyi (1959) and Schweizer and Wolff (1981) individually require 
additional properties. Two versions of such properties are 

(4.11) m ( X ,  Y)  = m(ob(X) ,y )  , 

for all increasing ~b, and 

(4.12) m (Np) = p ,  

where Np denotes the standardized bivariate normal distributions with 
correlation p. 

The condition (4.12) is related to and in some sense generated by the 
normal-agreeing property for PDO's (Definition 3.3 of Kimeldorf  and 
Sampson (1987)), namely 

N(pO ~ N(p2) if and only if pt -< p2. 

If ~ has this property,  and m is an M P D  concurring with ~ and 
satisfying the continuity condition (4.9), then m(Np) is a continuous, 
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increasing function r/(p) in p. Thus r/-~(m) is an MPD concurring with 
and satisfying (4.12). 

While measures of association, in general, do not fully describe the 
degree of positive dependence, it can be fully described on subsets of c.d.f.'s 
which are totally ordered by a PDO. For ,~¢/+, p fully determines which 
distributions are more positive dependent than others. Let ,_~ be a collec- 
tion of distributions for which F, G e ._~ implies either F ~ G or G ~ F. 
Then it becomes feasible to require a measure of association to agree 
totally with ~ on ,_~. In such special cases, one may want to modify the 
concept of an MPD to require that F ¢  G if and only if m(F)  <_ m(G). It 
would then follow that m(F)  = m(G) if and only if F = G. 

We conclude this section by presenting a conceptual approach to 
generating MPD's that concur with a given PDO. This approach has been 
considered by Nguyen and Sampson (1987) for contingency tables using 
the PDQ PDO. Let/z be a positive measure suitably defined on the set of 
all bivariate c.d.f.'s. Relative to/~, define a measure of association m by 

(4.13) m ( F ) = B { G : G ¢ F } .  

Intuitively, m gives an indication of the "size" of the set of all c.d.f.'s less 
extreme than F. If m is relatively large, F should be "close" to F÷; and if m 
is relatively small, F should be close to F-. 

THEOREM 4.1. I f  m(F)  is defined by (4.13), then m is an M P D  
concurring with ~ . 

PROOF. Let F~ ~ F2. Then by property (P2) {G: G ~ F~} _c {G: G ~ F2}, 
so that m(F~) = p{G: G ~ F~} _</t{G: G ~ F2} = m(F2). 

Finally, note that m(F÷) is the measure of all bivariate c.d.f.'s with the 
same marginals as F÷, and m(F-) =/z{F-}. 
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