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Abstract. It is proved that under fairly general von Mises-type condi- 
tions on the underlying distribution, the intermediate order statistics, 
properly standardized, converge uniformly over all Borel sets to the 
standard normal distribution. This closes the gap between central order 
statistics and extremes, where uniform convergence under mild conditions 
is well-known. 
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1. Introduction 

Let X~, . . . ,X ,  be independen t  and identically d is t r ibuted r a n d o m  
variables ( =  iid rvs) with c o m m o n  distribution function ( =  df) F and 
denote by X,:,,..., X,:, the pertaining order statistics. 

If the distribution of c~, 1 (X~:, - d,) tends weakly to some nondegenerate  
limit G for some choice of constants  c, > 0, d~ e R, n ~ ~ ,  then we know 
f rom Gnedenko  (1943) that  this limit G must  be one of the following types 
with a > 0 

al,o(x):= { 

(1.1) G2,a(x) := { 

0 x _ < O ,  

exp ( -  x -a) x >  0 ,  

exp ( -  ( -  x) a) x_< O, 

1 x > O ,  

x e R .  G3(x) := exp ( - e -x) 

In addit ion,  Gnedenko (1943) gave necessary and sufficient condit ions for 
F to belong to the domain  of at tract ion ( = ~ ( G ) )  of each of the above 
limits. 
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Smirnov (1952) extended this result to C-~I(X,,-k+~:,,- d,,) with k e 
fixed (see Theorem 2.8.1 of Galambos (1987). In the case of intermediate 
order statistics X,-k+ ~:,, where 

(1.2) k=  k(n) ~ ~,  k /n  ~ O, 

Chibisov ((1964), Theorem 3) proved that for particular sequences k the set 
of possible limiting distributions of C--,I(X,-k, ~:,, -- d,O consists of distribu- 
tions of one of the following types with a > 0 

(1.3) 

I 1 - ~ ( a l o g ( - x ) )  x < 0 ,  
HI, c/(X) 

1 x > 0 ,  

H2,o(x) := { 0 x<_0, 
1 - ~ ( -  a l o g  (x)) x > 0 ,  

H3(x) := ~(x) x e R ,  

where • denotes the df of the standard normal distribution Nt0,1). Chibisov 
(1964) also stated necessary and sufficient conditions for F such that the 
above weak convergence holds. 

Balkema and de Haan ((1978a) and Theorem 7.1 in (1978b)) proved 
that for particular F (which are dense in the set of df's) X~-k÷l:~ may have 
any limiting distribution if it is suitably standardized and if the sequence k 
is chosen appropriately. 

However, as is pointed out in Smirnov (1967), a (nondegenerate) 
limiting distribution of X,,-k+l:,, different from the normal one can only 
occur if k has an exact preassigned asymptotic behaviour. Assuming only 
(1.2), Smirnov (1967) gave necessary and sufficient conditions for F such 
that X,,-k÷l:, is asymptotically standard normal and he specified the 
appropriate norming constants. For multivariate extensions we refer to 
Cooil (1985). Suppose now that the underlying distribution function F 
satisfies the following condition. 

(1.4) F' = f  exists throughout some left neighborhood of 

og(F) := sup {x e R: F(x) < 1 }. 

There exist sequences a, > 0, b, e R such that (d/dx)F"(a,x + b.) ~ G'(x) 

uniformly in x for all finite subintervals in the support of G, where 
G e {G1, G2, G3}. 

Under these assumptions on F, Cooil ((1985), Theorem 2.3) establish- 
ed weak convergence of C~l(X~-k+l:, -- d,) to N¢0.,~, where d~ = F-'(1 - k/n) 
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/ 1 / 2  and c. = .<./,.>/ ,,, , for any sequence k satisfying (1.2). Here F- l (p ) :=  
inf {t ~ R: F(t) _>p}, p ~ (0, 1), denotes the generalized inverse of F and (x) 
the integral part of x ~ R. 

Sweeting ((1985), Theorem 1) proved that, if F is ultimately increasing, 
condition (1.4) is equivalent to the assumption that F satisfies one of the 
usual von Mises-type conditions stated below. This greatly simplifies the 
result by Cooil (1985). 

Under these von Mises-type conditions on F a much stronger result 
actually holds. In particular we will prove in the present paper that in this 
case with c. > 0, b. E R, 

P{c. (X.-k+l:. -- d.) ~ B} - N(0,,)(B)I ~ 0 ,  sup l -1 

where . ~  denotes the Borel-cr-algebra of R, if and only if 

(1.5) f imc . /a .  = 1 and lim (d. - b.)/a.  = O, 

where b. := F - l ( 1 -  k /n) ,  a,, :--km/(nf(b,,)). Thus, the yon Mises-type 
conditions on F do not only entail asymptotic normality of X.-,+I:. 
uniformly over all Borel sets for any intermediate sequence k, but they also 
provide unified and easily wieldable norming constants a. and b.. 

Respective uniform results for central order statistics were established 
by Weiss (1969), Ikeda and Matsunawa (1972) and Reiss (1976), whereas 
the case of extremes was investigated by Pickands (1967), Weiss (1971), 
Ikeda and Matsunawa (1976), Reiss (1981), de Haan and Resnick (1982), 
Sweeting (1985) and Falk (1985), among others. 

Finally, we mention that the respective results for the lower inter- 
mediate order statistics Xk:. with k satisfying (1.2), can easily be deduced 
from our results in the usual way by the equality Xk:, = - Y~-,÷I:,, where 
YI:,,,..., Y,,:n are the order statistics pertaining to the sample - XI,..., - X,. 

2. Main results 

First we state the von Mises-type conditions on F which we will deal 
with in the following. We begin with the case G3 which occupies the 
preeminent position. 

As mentioned in the introduction, Gnedenko (1943) gave necessary 
and sufficient conditions for F to belong to ~ (G3)  (see Section 2.4 in de 
Haan (1975) for further details). These conditions are somewhat complex 
whereas the following sufficient condition, due to von Mises (1936), is 
often easily wieldable. 

Suppose that there exists x0 < co(F) such that F is twice differentiable 
for all x ~ (Xo, co(F)) with f ' (x)  > 0, where f =  F'. Then, von Mises' (1936) 
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condit ion is as follows: 

(2.1) lim ( d / d x ) [ ( 1  - F ( x ) ) / f ( x ) ]  = O .  
.r~ ~(F) 

This condi t ion implies the following one which we will deal with in the 
following (see Theorems 2.7.3 and 2.7.4 in de Haan (1975)). Note that,  
a l though a result by Balkema and de Haan (1972) indicates that  von Mises' 
condi t ion (2.1) is already a rather weak one, it is easy to find distributions 
which satisfy (2.2) below but  not (2.1). 

Suppose  that  F has a positive derivative f for all x e (x0, og(F)) such 
that  

(2.2) lim u(x)= 1 
x~co(FI 

where 

(2.3) u ( x )  := f ( x )  f~(F)(1 -- F ( t ) )  d t / ( 1  - F(x)) 2 , 

x e (x0, to(F)).  Then  F e ~ ( G 3 ) .  Moreover ,  if f is nonincreasing near to(F)  
and F e ~ ( G 3 ) ,  then (2.2) holds (see Theorem 2.7.3 in de Haan  (1975)). 

Next we turn to the case Gt. Gnedenko (1943) proved that  F e ~ ( G ~ , ~ )  

if and only if a~(F) = w and for any t > 0 

(2.4) l ! m  [ 1 - F ( x ) ] / [  1 - F ( t x ) ]  = t ~ . 

If we assume that  F has a positive derivative f near  infinity such that  for 
some a > 0 

(2.5) lim x f ( x ) / ( 1  - F ( x ) ) =  a ,  
X ~ e X ~  

then it is easy to verify that  F satisfies (2.4) (see Galambos (1987), p. 102). 
Fur thermore ,  i f f  is ult imately nonincreasing and F e ~(GI ,~) ,  then (2.5) 
holds (see Theorem 2.7.1 in de Haan (1975)). 

Finally, consider the case G2. It is proved in Gnedenko (1943) that  
F e  ~ ( G z ~ )  if and only if to(F)  < ~ and for any t > 0 

(2.6) lira[1 - F ( t o ( F )  - t x ) ] / [ 1  - F ( t o ( F )  - x)] = t ~ . 

For  a corrected proof  we refer to Theorem 2.3.2 in de Haan (1975). 
The following sufficient condi t ion for F to belong to ~(G2.~) is stated 

in Theorem 2.7.2 of de Haan (1975). 
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Suppose that co(F) < oo and that F'(x)  exists for all x c (x0, co(F)) with 
f ( x )  = F'(x)  > 0. If for some a > 0 

(2.7) lim (co(F) - x ) f ( x ) / ( l  - F(x))  = a 
x T co(F) 

then F e  ~(G2,a). Moreover, if f is non-increasing and F e  ~ (Gza) ,  then 
(2.7) holds. Now we are ready to state our main result. 

THEOREM 2.1. Suppose that F satisfies one o f  the von Mises-type 
conditions (2.2), (2.5) or (2.7) and let k =  k(n)  ~ {l,..,,n}, n ~ ~,  satisfy 
k - - - ' ~ ,  k / n  "----'0. Then 

n~N n o n  

sup IP{c-~I(x~-k.I : . -  d~) ~ B}  - N(o,l)(B)l ~ O, 
Bc.~ 

f o r  any sequences c~ > 0, d~ ~ R which satisfy (1.5). 

Remarks.  (i) It is immediate from the symmetry of the standard 
normal distribution that the above result also holds for negative cn with 
lim cd  a~ = - 1. 
n o n  

(ii) Theorem 1 of Smirnov (1967) shows that the distribution of 
c~,l(Xn-a+l:, - d,) converges weakly to N~0.1) for some choice of constants 
c~ > 0, d, ~ R, if and only if for any x ~ 

(2.8) lim[k + n(F(c~x + d~) - 1)]/k 1/2 = x .  
n~N 

Consequently, it follows from Theorem 2.1 and Lemma 2.2.3 of Galambos 
(1987) that if F satisfies one of the von Mises-type conditions (2.2), (2.5) 
or (2.7), sequences c~ > 0, d, ~ R satisfy (1.5) if and only if they satisfy (2.8). 

Examples.  (i) The standard normal distribution satisfies (2.1) and 
hence (2.2). This is immediate from 1 -  ~ ( x ) x " ~  ~ (x ) / x ,  where ~ (x )=  

(2r0 -m exp ( -x2 /2 ) .  Thus, by Theorem 2.1 with F =  ~ and k satisfying 
(1.2) 

sup lP{nk-1/2~(~-l(1 - k/n))(X~-k+~:, - ~-1(I - k /n ) )  e B} 
B c ~  

- N(o,I)(B)I ,~,~ O. 

Moreover, choose d, as the solution of the equation 

(2.9) 9 ( d , ) / &  = k / n ,  
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and put cn = 1/(kl/2dn). Note that these norming constants are completely 
analogous to the appropriate norming constants for X~:n (see, for example, 
Hall 0979)). Then it is easy to see that c~, d~ satisfy (2.8) if 

(2.10) l i m  kl/2/log (n) = 0 .  
ncN 

Consequently, if (1.2) and (2.10) are satisfied 

(2.11) sup I p{kl/2dn(Xn-k+l:~ - am) ~ B}  - N(0,0(B)l ~--~ 0 .  
a c , ~  

Note that condition (2.10) coincides nearly exactly with the rate of uniform 
approximation of the joint distribution of the k upper extremes, equally 
standardized, from a normal distribution by its appropriate limit as estab- 
lished in Falk ((1986), Example 2.33). This indicates that condition (2.10) is 
essential for the asymptotic normality of kl/2d,,(X,,-k÷ ~:,, - d,,). 

(ii) The standard Exponential  distr ibution with df F ( x ) =  1 -  
exp ( - x), x > 0, obviously satisfies (2.1). Consequently, we obtain in this 
case 

(2.12) sup Ip{kl/2(Xn-k÷l:n -- log ( n / k ) )  ~ B}  - N(0,~)(B)I ---- 0 .  
Bc..~ n~ N 

(iii) The standard Pareto distribution with df F~,(x) = 1 - x -a, x > 1, 
a > 0, satisfies (2.5). Thus, if F = F~ 

D f ~ - I / a l . l / 2  + 1/a i v (2.13) sup , ~ , , t  ,~ WX,-k+I:~-- a ( n / k )  1/') ~ B}  - N(0.1)(B)I ----0. 
B~.~ n~N 

(iv) The triangular distribution on the interval ( - 1, 1) with Lebesgue 
density f l ( x ) =  1 - I x l ,  x ~ ( -  1, 1), satisfies (2.7) with a =  2. In this case 
we obtain 

(2.14) sup IP{(2n)t/E(x,,-k+l:,, - 1 + ( 2 k / n )  1/2) ~ B}  - N(0,~)(B)I n,---~ 0 .  

PROOF OF THEOREM 2.1. Our proof is based on the uniform 
approximation of the distribution of the k-th largest order statistic from 
the uniform distribution by the normal distribution and the probability 
integral transformation theorem (e.g., Proposition 2.10 of Reiss (1981)). 

Denote by U~:n,..., Un:n the order statistics pertaining to a sample of 
independent and uniformly on (0, 1) distributed rvs. The proof of Proposi- 
tion 2.10 of Reiss (1981) shows that hk, n ( x ) ~  9~(x), x ~ R,  where hk.n 

denotes the Lebesgue density of the df Hk,~ of (n /k l /2)(U~-k  + l:n -- (1 -- k~ n)).  
Let now X~-k÷ ~:~ be the k-th largest order statistic in an iid sample of 
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size n generated according to F. We may assume the particular representa- 
tion Xn-k+1:, = F-I(U,,-k+I:,,). 

Suppose that for any x c R 

(2.15) a . x  + b .  ~ c o ( F ) ,  

from below (denoted by t) and 

(2.16) f ( b , ,  + Oa, ,x ) / f (b . )  ~ 1 ,  

uniformly for 0 ~ (0, 1) where an, b. are defined in (1.5) and f =  F '  (in the 
upper tail of F). The df Fk,. of (F-I(u.-k+I:.) - b . ) / a ,  is given by 

Fk, . (x)  = P{U.-k+l: .  < F(a, ,x  + b.)} 

= Hk , , , { (n / km) (F(a , , x  + b,O - (1 - k / n ) ) }  

= H k , . { ( n / k m ) ( F ( a . x  + b . )  - F(b.))}, 

if n is large. By (2.15) we may differentiate F~,.(x), and by using a Taylor 
expansion and (2.16) we obtain 

F'k..(X) = h k , . { ( n / k l / 2 ) ( F ( a . x  + bn) - F ( b . ) ) } f ( a n x  + b . ) / f ( b . )  

= h k . . { x f ( b .  + O a . x ) / f ( b , , ) } f ( a . x  + b, ,) / f(b, ,)  

- - -  

n o n  

Scheff6's lemma now implies the assertion of Theorem 2.1 for the particu- 
lar choice of constants an and bn. For general cn > 0, d, ~ R satisfying (1.5), 
the assertion of Theorem 2.1 follows from the representation 

c . x  + d .  = a . x  + b .  + a . x { ( c . /  a.  - 1) + (d .  - b . ) /  an} 

= a . x (1  + o(1)) + bn ,  

and the above arguments. 
Consequently, it remains to show that the von Mises-type conditions 

(2.2), (2.5) and (2.7) imply (2.15) and (2.16). This will be verified in the 
following. 

(A) First we consider the case that F satisfies (2.2). If co(F) = ~ ,  then 
(2.15) is clearly true whenever an/b,, ,,---~ O. If, however, co(F) < ~,  then the 

convergence an/bn --'- '0 is not sufficient to ensure that anx + b,, converges to 

co(F) from below. Therefore, we need an extra argument for the case 
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co(F) < ~ .  As a first step we prove  

(2.17) l ima~ / ( co (F)  - b.) = 0 
n e N  

PROOF. W e  have 

MICHAEL FALK 

if co(F)  < ~ .  

Then,  by (2.2), 
----* O. Now,  
X~aO 

a . / (og (F)  - bn) 

= kU2/{n f (b . ) ( co (F)  - b.)} 

= (I - F(b . ) ) / { k ' / 2 f (b . ) ( co (F)  - b.)} 

= [ fS ' (1  - F ( t ) ) d t / { k m ( c o ( F ) - b . ) ( l  - F(b.))} ] 

• [ (1 - F ( b . ) ) 2 / { f ( b . ) f ~  (1 - F( t ) )d t }  ] 
to{F) 

< 1 / ( k m u ( b . ) )  ~ O,  

by (2.2). 
As a consequence  we ob ta in  in the ease co(F)  < oo f rom (2.17) and the 

equal i ty  a,,x + b,  = co(F)  - (co(F) - b,){1 - a, ,x / (co(F)  - b,)} that  for  any 
x ~ R  

(2.18) a . x  + b . . ! ~  co(F) if co(F) < ~ .  

Next  we show that  (2.18) also holds in the case c o ( F ) =  ~ .  This will be 
immedia te  f rom 

(2.19) f i m a . / b .  = 0 if co(F)  = ~ .  

Note  that  in the case co(F) < ~ this convergence fol lows f rom (2.17). 

PROOF OF (2.19). Put  for  x ~ R,  U(x)  := fTte)( l  - F ( t ) ) d t / ( 1  - F(x)) .  

U(x)  is dif ferent iable  if x is large with U'(x)  = u (x )  - 1 

a~/b~ = (1 - F(b , ) ) / ( kV2b , , f (b , ) )  

-- (1 / u(bn)) U(bn)/ (kl/Zbn) . 

Fix Xl large. Then,  by Taylor ' s  fo rmula  
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U(b.)/(kVZb.) = (U(b.) - U(xO)/(k'/2b.) + U(xt) / (kmb.)  

= U'(x~ + O(b. - xl))(b. - x1) / (k l /2bn)  

+ U(Xl)/(kl/Zb.) ~ O, 

0 e (0, 1), which completes the proof of (2.19). 

Next we show the validity of (2.16) for arbitrary ~(F) ,  i.e., for any 
x ~ R  

l~mf(b .  + Oa.x)/f(b.) = 1 uniformly for 0 ~ (0, 1). 

PROOF. Put again U(x) =f;(F)(l -- F(t))dt / ( l  - F(x)). Then, 

f ( b .  + Oa.x)/f(b.) = {u(b. + Oa.x)/u(b.)}{U(b.)/ U(b. + Oa.x)} 

• {(1 - F ( b .  + Oa .x ) ) / ( l  - F ( b . ) ) } .  

Now, by (2.17) and (2.19), b . +  Oa.x converges to ~o(F) from below 
uniformly for 0 e (0, 1). Thus, by Taylor's formula if n is large 

U(b. + Oa.x)/ U(b.) = 1 + U'(b. + Oa.x)Oa.x/ U(b.) 

-~-~ 1, ~e (0 ,1 ) ,  

uniformly for 0 ~ (0, 1), since U'(x) xT~(r) 0 and a./ U(b.) = u(b . ) /k  I/2 . ~  O. 

Moreover, by Theorem 2.4.3 in Galambos (1987) 

(1 - F ( b .  + Oa.x)) / (1  - F (b . ) )  

= [1 - F(b.  + (Oxu(b.)/kl/2)U(b.))]/(1 - F(b.)) 

- ' ~ 1 ~  
n~N 

uniformly for 0 ~ (0, 1). This completes the proof of (2.16). 

Next we consider the ease that F satisfies (2.5). First note that in 

(2.20) lim kma,/b, ,  = 1 / a 
nEN 

i.e., we have in particular that l ima, /  b,, = O. 
n~N 
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(2.21) 

if  c.,d,,~oo, 
(2.21). 
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Moreover,  (2.4) and (2.5) imply 

f i m  f ( c , ) / f ( d , )  = 1 ,  

c , / d ,  ~ 1. (2.15) and (2.16) now follow f rom (2.20) and 

(C) Finally, suppose that  F satisfies (2.7). Recall that  in this case in 
particular to(F)  < oo. Moreover,  (2.7) immediately implies 

(2.22) lim a . /  ( c o ( F )  - b . )  = O . 
n~N 

Consequently,  we obtain f rom the equality a . x  + b .  = c o ( F )  - ( c o ( F )  - b . )  

• {1 - a . x / ( ~ o ( F )  - b.)}, x ~ R, that  

a . x  + b . . ~  t o ( F ) .  

It remains to show (2.16). 

Define the df  F* by F * ( x )  -= F ( t o ( F )  - x-~), x > 0. Then  F* satisfies 
the von Mises-type condi t ion (2.5) with f * ( t )  := ( F * ) ' ( t )  = f ( c o ( F )  - t-t)t -2 
for t large enough. Thus,  for any x e R 

f ( b .  + O a . x ) / f ( b . )  : {f*(og(F) - b .  - O a . x ) / f * ( t o ( F )  - b.)} 

• {(to(F) - b . ) / ( t o ( F )  - b .  - Oa .x ) }  2 . 

(2.16) now follows f rom (2.21) and (2.22). This completes the case that  F 
satisfies (2.7). 
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