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Abstract. The field of application of a result given by Singh and
Vasudeva (1984, J. Indian Statist. Assoc., 22, 93-96) which provides a
way of characterizing the distribution of a random variable X, through
conditional distributions of a second variable Z, given X, is extended.
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Singh and Vasudeva (1984) have proved the following result: Let X, ¥
and Z be random variables such that X and Y are non-negative and

Pr[Z=k|X=1]=Pr[Z=k|Y=1]=e"(1-¢)
t=0,k=0,1,2,..).
Then X and Y are identically distributed.
This result can be used to characterize the distribution of X from the

conditional distribution of Z. Singh and Vasudeva use this fact to charac-
terize the exponential distribution with density function

ae” (t=0,a>0),

by the fact that if Pr[Z=k|X=t]=¢"(l —€")* and Z has the Yule
distribution

Pr[Z=k]=aB(a+1,k+1) (k=0,1,...),
then X must have an exponential distribution.
Singh and Vasudeva’s proof uses the extended Stone-Weierstrass

theorem (Simmons (1963), p. 166). We present the following extension of
this result, with a proof using somewhat simpler methods.
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If X and Y have the same support, and
(1) Pr[Z=k|X=1]=Pr[Z=k|Y=1]=g(0{h(D}",
(g(0), h(t)>0) for all k =0, 1, 2,... and all t in the common support of X
and Y, and h(?) is a strictly monotonic function of t, then X and Y have

identical distributions.

PROOF. We note that since (1) holds for all k=0, 1, 2,... we must
have h(t) < | (otherwise Pr[Z = k| X = ¢] > | for sufficiently large k). Since

) Pr{Z = k] = Ex[Pt[Z = k| X]] = Ex[Pr[Z = k| Y]],
| sthoyarey =] gohoydFu).

In particular, putting k£ = 0,

I stnarx =" goaFx(s),

and (2) can be written

3) [~ tmwyarem =" toyaryo,

where

4) dFx (1) = MQ— ,  dFy ()= f.;gglfiﬂf)——
f_w g()dFx(1) f‘w g(t)dFy(t)

correspond to cumulative distribution functions Fx(x’) and Fy()’) of
random variables X', Y’, respectively.
Equation (3) can also be written

E[A(X)Y = E[h(YH)]  (k=0,1,...).

That is, the random variables A(X"), A(Y’) have equal moments of all
positive integer orders. Since A(?) is bounded (0 < A(#) < 1), this means that
h(X’) and A(Y’) have identical distributions. Since A(?) is strictly monotonic,
it follows that X’ and Y’ have identical distributions, that is, dFx(¢) =
dFy(1). From (4) it follows that X and Y have identical distributions (since
we cannot have Fx(¢)/ Fy(¢) = constant # 1 for all ¢).

Remarks
1. Note that the condition that A(¢) is strictly monotonic excludes
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the possibility that g(t){h(t)}k does not depend on ¢, which would happen if
Z were independent of both X and Y. In such a case, although we would
have

Pr[Z=k|X=1f]=Pr[Z=k|Y=1] (=Pi[Z=k]),

there would clearly be no restrictions on the distributions of X and Y.

2. It is in general necessary that (1) holds for more than a finite set
of values of k (e.g., k=0, 1, 2,..., K), because equality of a finite set of
moments would not necessarily ensure identity of distributions.

3. On the other hand, it is not necessary that Z takes only values 0,
1, 2,.... In fact,

Pr{ U (Z= k)X == gl - h)}"

can be as small as desired. The remainder of the distribution of Z can be
quite arbitrary (of course, it is necessary that g(¢) < 1 — A(?)).

4. The result still holds, even if (1) is true only for k=0, r,
2r,... where r is a positive integer. The proof is exactly the same, except
that A(?) is replaced by {h(¢)}".

5. The range of values of 7 (i.e., the support of X and Y) need not
be restricted to = 0.

6. The result will still hold if the ({(1)}*) are replaced by some other
set of functions {A(7)}, such that the expected values of Ax(X) determine
the distribution of X uniquely.

7. If (1) is valid, and X has a mixture distribution of form

Fx(1) :,;1 wiFi(t) (0= wf;j; wi=1),

where the Fj(-)’s are proper cumulative distribution functions, then the
overall distribution of Z is a mixture of the corresponding distributions in
the same proportions. From our result it follows that, conversely, if Z has a
mixture distribution over 0, 1, 2,... and (1) is valid, then X has a unique
corresponding mixture distribution.

8. If Z takes only the values 0, 1, 2,...,then g(#) =1 — A(z). In this
case the conditional distribution of (Z+ 1), given X =¢, is that of the
number of independent trials needed to observe an event which has
probability {1 — A(r)} of occuring at any one trial.

9. In the situation just described, if A(f) is a strictly increasing
proper cumulative distribution function over the relevant range of values of
t, the conditions of (1) are satisfied and the overall distribution of (Z + 1) 1s
that of the number of observed values of independent random variables
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W:, Wa,...,each having cumulative distribution function A(r) needed to
obtain one exceeding a random observed value of X.
In particular, if X has the same distribution as each of the W, then

) PriZ=kl=]_ {1 - ht)}{h(i)}dh()
= [(k + D7'{ROF ~ (k + 2 (Y1
=+ —(k+2)7".
Using (1), we see that if (5) holds, then X must have the same distribution

as each of the W’s.
10. Taking A(f) = t/(1 + 1), and the density function of X as

(6) fx(t) = B(ot,ﬂ) " f;;,,w 0<ta,f>0),
we obtain
Pr[Z=k]= B ; 3 f: A+ 07"+ 0+ P
_ ————————B(“;(:I:g; B k=0,1,.).

If =1 we obtain
Pr[Z=k]=B(a+ 1,k+1)/B(a,1) = aBla+ 1,k + 1),

as Singh and Vasudeva (1984) obtained with A(¢) = 1 — ¢ and fx(¢t) = a e™
(t>0; a>0) (this shows, incidentally, that the distribution of Z, and
conditional geometric distributions given X = ¢, do not determine A(f) and
the distribution of X).

If we take A(¢) =[¢/(1 + DY (y > 0; t > 0) with X still having the same
density function, we obtain

Pr[Z=k] = {B(a, ky + ) — B(a, (k + D)y + )}/ B(a,f) (k=0,1,...).

This may be regarded as a “generalized” Yule distribution.
11. The result also applies if X has a discrete distribution. For
example if
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Pr[Z=klX=f=e"(1-€¢) (=20;k=0,1,2,.)

and
o % [k -1
Pr[Z=k]=e¢ jg(— 1y j)exp(ﬂe’ ),
then X must have a Poisson distribution with expected value 6.
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