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Abstract. The field of application of a result given by Singh and 
Vasudeva (1984, J. Indian Statist. Assoc., 22, 93-96) which provides a 
way of characterizing the distribution of a random variable X, through 
conditional distributions of a second variable Z, given X, is extended. 
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Singh and Vasudeva (1984) have proved the following result: Let X, Y 
and Z be random variables such that X and Y are non-negative and 

Pr[Z = k l X =  t] = Pr[Z = k[ Y= t] = e-t(1 - e-t) k 

(t > 0; k = 0, 1, 2, . . . ) .  

Then X and Y are identically distributed. 
This result can be used to characterize the distribution of X from the 

conditional distribution of Z. Singh and Vasudeva use this fact to charac- 
terize the exponential distribution with density function 

a e -at (t_>0, a > O ) ,  

by the fact that if P r [ Z = k l X =  t] = e - t ( 1 -  e-t) k and Z has the Yule 
distribution 

Pr[Z = k] = aB(a + 1, k + 1) (k = 0, 1,...), 

then X must have an exponential distribution. 
Singh and Vasudeva's proof  uses the extended Stone-Weierstrass 

theorem (Simmons (1963), p. 166). We present the following extension of 
this result, with a proof using somewhat simpler methods. 
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I f  X and Y have the same support, and 

(1) Pr [Z  = k lX  = t] = Pr [Z  = k] Y= t] = g(t){h(t)} k , 

(g(t), h(t) > O) for  all k = O, 1, 2,.,. and all t in the common support o f  X 
and Y, and h(t) is a strictly monotonic function of  t, then X and Y have 
identical distributions. 

PROOF. We note that  since (1) holds for all k = 0, 1, 2,... we must  
have h(t) < 1 (otherwise Pr [Z  = k l S - -  t] > 1 for sufficiently large k). Since 

(2) P r [ Z =  k] : Ex[Pr[Z= klX]]  = E r [ P r [ Z =  kl r ] ] ,  

In particular, put t ing k = 0, 

f_~ g(t)dFx(t)=f~ g(t)dFr(t), 

and (2) can be written 

(3) f~ f~ { h ( t ) } k d F x ' ( t )  = ~ { h ( t ) } k d F r ' ( t )  , 

where 

g(t)dFx(t) 
(4) dFx,(t) = , dFr'(t) = 

f_~ g(t)dFx(t) 

g( t)dFr( t) 

f~g(t)dF,(t) 

correspond to cumulative distr ibution functions 
random variables X', Y', respectively. 

Equat ion (3) can also be written 

Fx'(x') and Fr ' (y ' )  of 

E[{h(X')} k] : E[ ih(Y')}~]  (k : 0, 1 , . . . ) .  

That  is, the r andom variables h(X') ,  h(Y')  have equal moments  of all 
positive integer orders. Since h(t) is bounded  (0 < h(t) < 1), this means that  
h(X') and h(Y') have identical distributions. Since h(t) is strictly monotonic ,  
it follows that  X '  and Y' have identical distributions,  that  is, dFx,(t)= 
dFr'(t). F r o m  (4) it follows that  X and Y have identical distributions (since 
we cannot  have Fx(t)/Fr(t) = constant  ~ 1 for all t). 

Remarks 
1. Note that  the condi t ion that  h(t) is strictly monoton ic  excludes 
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the possibility that  g(t){h(t)}  k does not  depend on t, which would happen  if 
Z were independent  of both  X and Y. In such a case, a l though we would 
have 

P r [ Z =  k [ X =  t] = P r [ Z =  kl Y= t] ( =  P r [ Z =  k] ) ,  

there would clearly be no restrictions on the distributions of X and Y. 
2. It is in general necessary that  (1) holds for more than a finite set 

of values of k (e.g., k = 0, 1, 2,... ,  K),  because equality of a finite set of 
moments  would not necessarily ensure identity of distributions. 

3. On the other  hand,  it is not  necessary that  Z takes only values 0, 
l, 2, . . . .  In fact, 

Pr[  ~ (Z = k ) l X  = t] = g(t){1 - h(t)} < 
k=O 

can be as small as desired. The remainder  of the distr ibution of Z can be 
quite arbitrary (of course, it is necessary that  g(t) < 1 - h(t)). 

4. The result still holds, even if (1) is true only for k = 0 ,  r, 
2r,... where r is a positive integer. The p roof  is exactly the same, except 
that  h(t) is replaced by {h(t)} r. 

5. The range of values of t (i.e., the suppor t  of X and Y) need not  
be restricted to t _ 0. 

6. The result will still hold if the ({h(t)} k) are replaced by some other 
set of functions {&(t)}, such that  the expected values of h k ( X )  determine 
the distribution of X uniquely. 

7. If (1) is valid, and X has a mixture distr ibution of form 

Fx(t)  = wjFj(t) (O <_ wj; wj= l) 
j= l  j=  ' 

where the Fj(.)'s are proper  cumulative distr ibution functions, then the 
overall distr ibution of Z is a mixture of the corresponding distributions in 
the same proport ions.  F rom our result it follows that, conversely, if Z has a 
mixture distr ibution over 0, 1, 2,... and (I) is valid, then X has a unique 
corresponding mixture distribution. 

8. If Z takes only the values 0, l, 2,..., then g(t) = 1 - h(t).  In this 
case the condit ional  dis tr ibut ion of (Z + 1), given X = t, is that  of the 
number  of independent  trials needed to observe an event which has 
probability {1 - h(t)} of occuring at any one trial. 

9. In the si tuation just  described, if h(t) is a strictly increasing 
proper  cumulative distribution function over the relevant range of values of 
t, the condit ions of (1) are satisfied and the overall distribution of (Z + 1) is 
that  of the number  of observed values of independent  r andom variables 
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Wz, W2,..., each having cumulative distr ibution function h(t) needed to 
obtain one exceeding a r andom observed value of X. 

In particular, if X has the same distribution as each of the W's, then 

(5) P r [ Z =  k] =f?~o {1 - h(t)}{h(t)}kdh(t) 

2 - 1 h t  k+2Z=® =[ (k+ l ) - l {h ( t ) }  k ÷ l - ( k +  ) { ( )}  ],:_~ 

= ( k +  1) -1 - (k + 2) -1 . 

Using (I), we see that  if (5) holds, then X must  have the same distribution 
as each of the W's. 

10. Taking h(t) -- t/(1 + t), and the density function of X as 

1 t ~-1 
(6) f x ( t )  - B(a, fl-------~ (1 + t) a÷~ (0 < t; a, fl > 0) ,  

we obtain 

P r [Z  = k] - - -  
1 

f~o (1 + t)-'tk(1 + t)-kt~-'(1 + t)-"-#dt 
B(a,,6) 

1 ~ t)_(.+ l)_ip+k~dt tiP÷k)-1(1 + 
B(a, fl) 

B(a + + k) 
(k=O, 

B(a, fl) 

If fl = 1 we obtain 

P r [ Z = k ] =  B ( a +  t , k  + 1 ) /B(a , l )  = a B ( a +  1 , k +  1), 

as Singh and Vasudeva (1984) obtained with h(t) = 1 - e-' and f x ( t )  = a e -az 
(t > 0; a > 0) (this shows, incidentally, that  the distr ibution of Z, and 
condit ional  geometric distr ibutions given X = t, do not determine h(t) and 
the distr ibution of X). 

If we take h(t) = It/(1 + t)] r (? > 0; t > 0) with X still having the same 
density function,  we obtain 

P r [Z  = k] = {B(a, k? + fl) - B(a, (k + 1)9, + fl)}/ B(a, fl) (k = O, 1, . . . ) .  

This may be regarded as a "generalized" Yule distribution. 
1 I. The result also applies if X has a discrete distribution. For  

example if 
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Pr[Z  = k l X =  t] = e- ' (1  - e- ' )  k ( t  > 0; k = 0, 1, 2 , . . . )  

k (k) 
P r [ Z  = k] = e -° Y~ ( - 1) j exp (Oe -j-l) j=l) j ' 

then X must  have a Poisson dis t r ibut ion with expected value 0. 
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