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Abstract. A characterization of the normal distribution by a statistical 
independence on a linear transformation of two mutually independent 
random variables is proved by using the convolution inequality for the 
Fisher information. 
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1. Introduction 

Normal distribution is characterized by an independence of two vari- 
ables obtained by a linear transformation of two mutually independent 
random variables. The theorem has a long history going back to Maxwell's 
investigation, and has been studied by M. Kac, S. Bernstein, and others, as 
mentioned in the book by Feller (1971). Itoh (1970) gave a proof by using 
Linnik's (1959) information assuming a stronger condition. Murata and 
Tanaka (1974) gave a proof using another functional, which is not based 
on information. Here we give another proof using a convolution inequality 
for the Fisher information discussed by Stam (1959), Blachman (1965), 
Brown (1982), Barron (1986) and other authors, which makes the proof 
clearer than the previous one by Itoh (1970). 

The Fisher information is defined as 

(1.l) I ( Y )  = E(g ' ( r ) l g (Y ) )  2 , 

for a random variable Y with density g(y). Obviously, 

(1.2) 
l 

I ( r ) =  f ~ ( g ' ( y ) ) ~ d y  . 

Anytime we use this quantity, it will be understood that g satisfies the 



10 YOSHIAKI ITOH 

conditions 
(i) g > 0 f o r - ~ < x < ~ ,  

(ii) g' exists, 
(iii) the integral (1.2) exists, i.e., g' --- 0 rapidly enough for x --, + ~ ,  

as given by Stam (1959). 
The Fisher information is translation invariant 

(1.3) I ( Y  + c) = I ( Y ) ,  

and is not scale invariant 

(1.4) I(c Y) = I( Y ) / c  2 . 

Let a~, a2 > 0, al + a2 = 1. Then the Fisher information satisfies 

(1.5) I(Y~ + Y2) -< a~I( t t )  + a2I(Y2) 

with equality only if Y~ and Y2 are independent normal random variables, 
as given by Stam (1959). By replacing II,- with ~ Y, the following result is 
obtained from properties (1.3), (1.4) and (1.5). If al, a2 > 0, al + a2 = 1, 
then the Fisher information satisfies 

(1.6) / (X /~  Y, + x/-~2 Y2) <- a,I(Y,) + a2I(Y2), 

with equality if and only if Y~ and Y2 are independent normal  random 
variables with the same variance, as mentioned by Barron (1984). 

2. A proof by the convolution inequality 

We give a proof of the following well-known theorem, which is given 
in the book by Feller (1971) in a slightly different form. 

THEOREM 2.1. Suppose that the random variables X1 and X2 are 
independent o f  each other and that the same is true o f  the pair Y1, Y2, 
where a is not a multiple o f  ~z / 2, then all four  variables are normal 

I11 = X~ cos a + X2 sin a ,  

Yz = -  X~ sin a + X2 cos a .  

PROOF. First suppose that the distributions for X1 and )(2 have 
densities which satisfy (i), (ii) and (iii). Making use of equations (1.3), (1.4) 
and inequality (1.5), we have 
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I(X1 cos a + X2 sin a) <_ I(XO cos2a + I(X2) sinZa, 

I(  - Xl sin a + X2 cos a) <_ I(XO sin2a + I(X2) cosZa. 

Hence, we have 

I(Y1) + I(Y2) < I(XO + I(X2). 

Since 

X~ = Y~ cos a - Y2 sin a ,  

Xz = }11 sin a + Y2 cos a ,  

we have 

I(XO + I(X2) -< I(]I1) + I(Y2). 

Hence, 

I ( x , )  + I (x2)  : I(}'1) + [ (Y2) ,  

which implies that the four variables X1, )(2, YI and Y2 are normal. To 
avoid the smoothness conditions imposed on X1 and X2, let Z~ and Z2 be 
independent standard normal random variables and set Xf = X~ + flZ1 and 
X~ = X2 + flZ2. The independence property assumed for the linear trans- 
formation of (XI,)(2) continues to hold for the transformation of (Xf, X~), 
so by the above proof Xf and X~ are independent normal random variables. 
Taking the limit in distribution as fl --- 0, it is seen that X~ and X2 must also 
be normal. 

Remark. The convolution inequalities for the Shannon entropy and 
the Fisher information have been used in Brown (1982) and Barron (1984, 
1986) to prove the central limit theorem. The inequality for the Shannon 
entropy will also give a proof  for our theorem which is simpler than the 
previous one by Itoh (1970). 
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