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Abstract. Let {X(t), 0 < t < oo} be a compound Poisson process so that 
E{exp ( - sX(t))} = exp ( - t#(s)),  where #(s) = 2(1 - $(s)), 2 is the 
intensity of the Poisson process, and 9(s) is the Laplace transform of the 
distribution of nonnegative jumps. Consider the zero-crossing probability 
0 = P{X(t) - t = 0 for some t, 0 < t < oo}. We show that 0 = #'(eg) where 
o9 is the largest nonnegative root of the equation # ( s ) =  s. It is con- 
jectured that this result holds more generally for any stochastic process 
with stationary independent increments and with sample paths that are 
nondecreasing step functions vanishing at 0. 
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1. The result 

Let {X(t), 0 < t < oo} be a separable stochastic process, with stationary 
independent increments and for which almost all sample paths are non- 
decreasing step functions vanishing at 0. We shall say that X ( t )  crosses the 
line y = t at to if X(to) = to. Since the sample paths of  X ( t )  are nondecreas-  
ing step functions, X ( t )  can only cross the line y = t from above. Consider 
the zero-crossing probabili ty 

0 = P{X( t )  crosses the line y = t for some t, 0 < t < oo}. 

We shall write it alternatively as 

O = P{X( t )  - t = 0 for some t, 0 < t < oo}. 

Let 

E{X( t ) }  = pt, 0 < p <_ oo. 

I f p  < 1, it is known that 0 = p (Takacs (1967)). In this case, the probabil i ty 
that there is no crossing equals the probabil i ty that X ( t )  lies entirely below 
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the line y = t. For,  if X(t) jumps above the line y = t at some point, it must 
eventually cross the line to go below since X(t) / t  ~ p < 1 a.s. as t -  ~o. 
Therefore, 

O = l - P { X ( t ) < t f o r a l l t ,  O < t < n o } .  

The elegant, classical ballot theorem can then be used to show that 

P{X(t) < t for all t, O < t < oo} = 1 - p .  

It appears that similar arguments cannot  be used when p > 1, and we have 
not found the analogous result for this case in the literature. 

Let 

E{exp ( - sX(t))} = exp ( - t~(s)) for s >_ O, 

where 

q~(s) = 0(1 - e-SX)dN(x), 

and N(x), 0 < x < ~ ,  is a nondecreasing function for which l i m N ( x ) =  0 

and 

f~o xdN(x) < ~ . 

By specializing N(x), we obtain different types of processes {X(t), 0 < t < ~}. 
For  example, for a compound Poisson process 

(1.1) N(x) = - 2[1 - H ( x ) ] ,  

where 2 is the intensity of the Poisson process and H(x) is the distribution 
of jumps.  Then 

q)(s) = 211 - 9(s ) ] ,  (1.2) 

where 

~(s) =f:e-SXdH(x), 

is the Laplace transform of H(x). 
In this paper, we establish the following result. 
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THEOREM 1.1. Let  {X(t), 0 < t < oo} be a compound Poisson process 
with ~(s) given by (1.2). Then 

o = ¢>'(60), 

where co is the largest nonnegative root o f  the equation 

(1.3) ¢ ( s )  = s .  

The p roof  is deferred to the next  section. 

Remark 1. Note  tha t  zero is always a roo t  of  the equa t ion  (1.3), and 
• '(0) = p where  E{X(t)} = pt. I f p  < 1, zero is the only  nonnega t ive  roo t  of  
the equa t ion  (1.3), and if p > 1, there are two nonnegat ive  roots  (Takacs  
(1967), Theo r e m 4, p. 42). 

Let us consider  some examples.  

Example 1. H(x) = 0 for  x < a, = 1 for  x > a so that  X(t) is a scaled 
Poisson process. Then  E{X(t)} = a2t, ~(s )  = 4(1 - e -a~) and ~ ' (s )  = a2e -~. 
So if a2 < 1, 0 = a2 and if a2 > 1, (7 = a2e -~°' where 0 < 09 = 4(1 - e-~'°). 
Alternat ively, /7  can be expressed as the smallest nonnegat ive  root  (in t) of  
the equa t ion  

(1.4) te -t= a2e -a~ . 

For  the Poisson process where  a = 1, this result was obtained by a different  
me thod  in Nair  et al. (1986). 

Example 2. H(x) is geometric,  i.e., H(x) = E hn where hn = pn( l  - p ) ,  
tl_<x 

n = 0, 1,2 . . . . .  Then  E{X(t)} = 2pt/(1 - p ) ,  ~(s )  = 2p( l  - e-S)/(1 - p e  -~) and 
• '(s) = 2p(1 -p)e-~/( l  - p e - ' )  2. So i f2p  < (1 - p ) ,  (7 = 2_p/(1 - p )  and i f2p  > 
(1 - p ) ,  0 = 2/9(1 -p)e-°' /(1 -pe-°')  2 where  0 < 60 = 2p(1 - e-~')/(1 -pe-°').  

X - l  - 

Example 3. H(x) is g a m m a ,  i.e., H(x)=fo ffy~ e #Ydy/F(y). Then  

E{X(t)} = 2yt/fl, ¢( s )  = 2{1 - [fl/(fl + s)] r} and ¢ ' ( s )  = 2yflr/(fl + s) r÷~. So 
if 2y<fl ,  0=2y/fl and if 2y>/~, O=2yff / ( f l+60) r where 0 < 6 o = 2 { 1  - 
[f l /( f l+ 60)]~}. Alternat ively,  0 is the smallest  nonnegat ive  roo t  of  the 
equa t ion  

(2~,lt)~i~+" 13~lCy +" 
(1.5) (2 + 2ylt) - (4 + i7-----) " 
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The special case y = 1 corresponds to the exponential  distribution. Then 
O(s) = 2 s l ( t  + s) and we get 0 = ;tiff if ;t < t and 0 = t l ; t  if ;t > t .  

Theorem 1.1 provides a general way to compute  0 for the c o m p o u n d  
Poisson process both  when p < 1 and when p > 1. As remarked earlier, it is 
known that  when p < I, the result in Theorem 1.1 holds for general 
processes with stationary independent  increments and with sample paths 
that  are nondecreasing step functions vanishing at 0. We conjecture that  
Theorem 1.1 holds for such general processes even when p > 1. In the 
following examples, we obtain 0 assuming this conjecture holds. 

Example  4. {X(t ) ,0  < t < oo} is a G a m m a  process ,  i.e., N ( x ) =  
fo oO - I  - 

-J~ y e Then E{X(t)} = t / t ,  ¢(s)  = log (1 + s / t )  and ¢ '(s)  = ( t  + #Y dy. $)-1. 

So i f t  > 1, 0 = t -1 and if t < 1, 0 = ( t  + o9) -1 where 0 < o9 = log (1 + og/t). 
Alternatively, 0 is the smallest nonnegative root  of the equation 

(1.6) t-le-lit = te-~.  

Note the similarity between (1.6) and (1.4). 

Example 5. {X(t) ,0 < t < oo} is a generalized stable process,  i.e., 

f; N(x) = - p  y-P-le-PYdy/F(1 + p ) ,  0 < p  < 1. Then  E{X(O} =ppp- i  and 

• (s) = (s + t )  p - tiP. So 0 = p t  p-1 i f p t  p-1 < 1 and =p(f lP  + o9)tp- wp where 
0 < co = (co + t )  - p -  t p if p t p - l >  1. Alternatively, 0 is the smallest non- 
negative root  of the equat ion 

(1.7) (tlp)p/Ip-l) _ (tlp)l/Ip-II = tip _ f t .  

The  case fl  = 0 co r r e sponds  to the  stable process.  In  this case, 
E{X(t)} =-- oo, O(s) = s p and 0 = p is the only solution. 

Remark 2. For  Example  2, we have not  found a convenient  expres- 
sion for 0, analogous to equations (1.4)-(1.7). 

2. Proof 

To prove Theorem 1.1, we need the following version of Bttrmann's  
theorem (see Whit taker  and Watson (1927), p. 128). 

THEOREM 2.1. (Btirmann): Suppose f ( z )  and g(z) are infinitely 
differentiable at z = O, g(O) ~ 0 and let o = u/ g(u). Then 
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oo  0 j 

f(u) =f(0) 

where D~( f )  = dJf/ dx  :. 

COROLLARY 2.1. 
we get 

(2.1) 

By differentiating f (u )  with respect to o = u/g(u) 

o~ o j 
0f/3o =f'(O)g(O) + j__X ~-. {D~[f'(x)g(x)gJ(x)]}lx=o. 

PROOF OF THEOREM 1.1 FOR THE LATTICE CASE. We first consider 
the case where the distr ibution H(x) in (1.1) is supported on the lattice 
{a, 2a,...  } for some a > 0. Let K be distr ibuted as H(x),  K~, K2,... be i.i.d. 
copies of K, 

h, = P{K = na}, n = 1,2,... and 
(2.2) 

h(,, j) = P{K1 + . . .  + Kj = na}, n = j , j  + 1, . . . .  

Note that  X(t) can equal t only at the values t = na, n = 1, 2 , . . . .  Now if 

c o  

(2.3) U(1) = 1 + E=IP{X(na ) = na},  

then f rom Feller ((1968), Chapter  13), 

(2.4) 0 =- P{X(t) = t for some t > O} = 1 - 1 /U(1) .  

So from (2.2) and (2.3) 

U(1) = 1 + ~. ~ (na2)J e-naaht~Jl 
n=lj=l j !  

/ 

Since 

- [ ~. e -  sna hn(J) = 
n=j  

where ~(s) = Ee -sK, we see that  

J j  e'n hn] = , , , ,  
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(2.5) U(1) = 1 + { (a2)j J:~ 7 .  {O{[9/(~ - x/a)]}lx=o • 

Equat ing (2.5) with (2.1) by setting o = a2, f ' ( x ) =  1/g(x) and g ( x ) =  
~ ( 2  - x/a) and observing from Btirmann's theorem that 

a2 = u/q~(2 - u/a) , (2.6) 

we get 

U(1) = 1 + Of/a(a2) -f ' (O)g(O) = Of/O(a2), 

s incef ' (x)g(x)  =-- 1. So 

of/au 
U(1) - 

O(a2)/Ou 

= {1 + [u~0'(2 - u/a)]/[aq~(2 - u/a)]} -l 

= [1 + 2~0'(2 - u/a)] -1 , 

where the last equality follows from (2.6). F rom (2.4) we now get 

(2.7) 0 = - , W ( 2  - u / a ) .  

Making  a change of  variable s = 2 -  u/a  and observing that  ~ ( s ) =  
3.(I -~0(s)), we can reexpress (2.7) as 0 = ~ ' ( s )  and (2.6) as ~ ( s ) =  s as 
stated in Theorem 1.1. 

To complete the proof  for the lattice case, note from Remark  1 that  if 
p < 1, o9 = 0 is the only nonnegative solution of the equation q~(s) = s. If 
p > 1, the equation has two nonnegative roots, but q i ' ( 0 ) = p  > 1, so that 
the only admissible root  is o9 > 0. 

Remark  3. It has been brought to our attention that the result for 
the general lattice case can be proved alternatively, and perhaps more 
elegantly, using the method of so-called associated random walks. 

Remark 4. In the above, we have assumed that P{K = 0} = 0. This 
presents no loss of generality since the result for the case P{K = 0 }  = a > 0 

can be obtained by considering {X*(t),0 < t < oo} with intensity 2" = 2(1 - ct) 
and jump distribution H*(x) = [H(x) - H(0)]/(1 - a). 

PROOF FOR THE NONLATFICE CASE. The idea is to approximate X(t) 
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by X. ( t )  = ([nX(t)] + 1)/n where [ .  ] is the greatest  integer funct ion.  
Firs t  we show tha t  we can restrict a t ten t ion  to the crossings o f  X( t )  

and t in the interval  (0, c.) where c. --  ~ with c. = o(n) as n --- ~ .  We show 
this for  the case p > 1; the p r o o f  for  p < I is similar. Let  r satisfy 1 < ~ < p. 

l i m P { X ( t )  <_ t for  some t > c.} 

<_ l i m P { X ( c . )  < c.r} 
n ~ a o  

+ ! i m P { X ( t )  - X(c . )  < (t - c.) + on(1 - r) for  some t _ c .} .  

It fol lows f rom the law of  large numbers  tha t  the first t e rm equals  0 
since X ( c . ) / c .  --- p > r a.s. as n --  ¢¢. The second te rm also equals  0 since: 
(i) { X ( t ) -  X(c . ) ,  t > c.} has the same d i s t r ibu t ion  as {X(t), t > 0}, (ii) 
oinf=(X(t) - t) is a.s. finite for  p > 1 and (iii) c . ( l  - r) --. - ~ as n ~ ~ .  

Now let M = number  of  t imes X( t )  equals t for  0 < t < c. and  let 
M .  = number  of  times X. ( t )  equals t for  0 < t <  c.. We show l i m P { M S  

n ~ o o  

3/.} -- 0. Let  0 < T~ < ,.. < Tj be the points at which the jumps  of  X( t )  (and 
X.( t ) )  occur for t e (0, c.). Then  

(2.9) { ' } p { M ~ s M . } <  P X(Tj) < T j < X ( 7 ) ) + - - , / =  l , . . . , J  
n 

{ ' / + P  X ( / ~ - ) < T j < X ( T f ) + - - , j = I  .. . .  , J  . 
n 

Since X(Tj) = K1 + ... +/(1. where the Kj's are independent ly  dis t r ibuted as 
H and  Tj = ~1 + ... + ~j where the ~j's are independent  exponent ia l  r a n d o m  
variables with mean  1/2, and the Kj's and ~i's are independent ,  it can be 
shown f rom (2.9) tha t  

p { M v s  31.} < 2(I - e-~/")E(J) = 22c.(1 - e-~/"), 

which -'* 0 as n --* ~ since c. = o (n). Therefore,  0. = P { M .  >_ 1 } ~ P { M  >_ 1 } 
= O as n --  ~ .  

Finally,  let E{exp ( - sX.( t ) )}  = exp ( - t~ . (s)) .  F r o m  the p r o o f  for  the 
lattice case, 0. = q~'(og.) where co. is the root  of  the equat ion  ~ . ( s )  = s. The 
result now follows f rom the fact  tha t  4i. (s) --- ~ (s) and 4~,;(s)---~'(s) as 
n --* ~ since sup I Xn (0  - X(t) l --" 0 everywhere as n --. ~ .  

0<t<at~ 
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