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Abstract. This paper deals with the problem of estimating the minimum 
lifetime (guarantee time) of the two parameter exponential distribution 
through a three-stage sampling procedure. Several forms of loss functions 
are considered. The regret associated with each loss function is determin- 
ed. The results in this paper generalize the basic results of Hall (1981, 
Ann. Statist., 9, 1229-1238). 
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1. Introduction 

Let Xt, Xa,... be a sequence of independent  and identically distr ibuted 
(i.i.d.) r andom variables with the two parameter  exponential  probability 
density function (p.d.f.) 

(1.1) g(x;lt, a )=a- lexp{ - (X- lO~r-1} I{x>lu} ,  a > O ,  

where I{.  } is the indicator  function.  We assume that  both the location 
parameter  /1 and the scale parameter  tr are unknown.  The exponential  
dis tr ibut ion provides a useful model  for data  f rom reliability and life 
testing experiments for which the assumptions of a constant  failure rate 
(a -1) and of a m in imum lifetime before which no items fail (/t) are 
reasonable (e.g., Grubbs (1971)). Our  emphasis  is on point  est imation of/~. 
For  example,  a good estimate of/~ would be crucial to a manufac turer  of 
electronic components  who wishes to offer a m in imum warranty period for 
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the lifetime of items produced as part of a cost-effective marketing strategy. 
Based on a random sample X1, X2,...,Xn ( n -  2) from the p.d.f, in 

(1.1), we consider 

Xn(1) = min {X1,..., X , }  and 
t2 

6n = (n - 1) -1 i=E1 (Xi -  Xnll)), 

the usual estimators of p and a, respectively. We propose to estimate p by 
Xnll) under a general loss function, say Ln. However, we impose the 
condition that the process of controlling the risk (in a sense to be made 
precise later in specific problems), E(Ln), requires the sample size to be the 
least integer 

(1.2) n >_ aa  = n* (say), 

where a is a given positive constant. 
Since a is unknown, the required sample size n* is indeed unknown. 

Purely sequential sampling procedures were studied by Basu (1971) and 
Mukhopadhyay (1974, 1982) to estimate quantities like n*. Both Hall 
(1981) and Woodroofe (1985) mentioned that triple stage sampling could 
be used in point estimation problems. However, Mukhopadhyay (1985) 
and Mukhopadhyay et al. (1987) indeed explored this area. Here, we resort 
to a three-stage sampling scheme to estimate p via estimation of n*. Such a 
group sampling procedure would appear to provide a feasible framework 
for life testing mass-produced items such as component parts and, since it 
is based on only three sampling operations, it has obvious advantages from 
an implementational standpoint over a one-by-one, purely sequential 
sampling scheme, as noted by Hall (1981). Moreover, as shown by 
Mukhopadhyay (1985) and by Mukhopadhyay et  al. (1987), three-stage 
sampling procedures are competitive with purely sequential schemes on 
theoretical grounds as well. Here, we mention that a closely related 
problem of reducing the number of sampling operations using accelerated 
sequential schemes was discussed by Hall (1983). 

In Section 2 we present a triple stage sampling and point estima- 
tion procedure along the lines of Hall (1981), Mukhopadhyay (1985), 
Mukhopadhyay et al. (1987), and Woodroofe (1987). We derive some 
intermediate results that are useful for determining the positive and nega- 
tive integer moments of any order of the associated stopping variable. 
Also, we stress that results like those in our Theorems 2.1 and 2.2 are not 
available elsewhere in these forms. In Section 3 we give some applications 
corresponding to explicit forms of the loss functions; in particular, 
asymptotic expansions of the associated regret functions are provided. We 
also emphasize that these analyses are simpler and more direct than others 
currently available. We close with a few remarks concerning the moderate 
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sample size performance of the proposed procedures based on a series of 
simulation studies. 

2. Triple stage sampling procedure 

We start the estimation process with a random pilot sample of size k0 
( > 2) from the p.d.f, in (1.1), say X1,..., Xko. We also choose a real number 
y e (0, 1), to determine the proportion of n* which will be estimated from 
the pilot data. Let S * =  [Ta#k0] + 1, where Ix] denotes the largest integer 
less than or equal to x, and define 

(2.1) N* = max {k0, S*}. 

We terminate the sampling if k0 --- S*; otherwise, we obtain the additional 
observations Xko+l,..., Xs*. Then compute T* = [at~N,*] + 1. The final sample 
size is determined by 

(2.2) N * =  max{N~,T*} .  

If T * >  N1*, we obtain T * - N *  more observations, Xs*+~,..., XT*. Other- 
wise, we stop the sampling at the second stage. When we stop sampling, we 
propose XN*CI) as the point estimator of/~. 

Determination of the large sample properties of our proposed estimator 
will eventually require us to obtain Taylor expansions for the moments of 
N*. This is greatly simplified by employing the following techniques which 
permit us to replace the stopping variable N* by, say, N, which is defined 
similarly but only in terms of sample averages of positive i.i.d, random 
variables. 

Specifically, let Y~, Y2,... be i.i.d, random variables with the p.d.f. 
rt-1 

g(y;O,a). Define Y, = E Yi/(n - 1) and S = [yaYko] + 1, and then take 
i=1 

(2.3) N1 = max {k0, S }, 

and 

(2.4) N = max {N~, T} ,  

whereT= [aYN;] + 1. From the results in Lombard and Swanepoel (1978), 
we conclude that the random variables Nl*and N1 (as well as N* and N) 
are identically distributed. From now on we will use the expressions in 
(2.3) and (2.4) instead of those in (2.1) and (2.2), respectively. 

Throughout the following sections we assume that 
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(2.5) n* = O(k~),  r > 1 , 

and that  

(2.6) l imsup (ko/n*)  < y as k0 --  ~ .  

The main  result of  this sect ion is given in the fol lowing theorem. 

THEOREM 2.1. For every pos i t ive  integer m >_ 1, a n d  as ko ~ ~ ,  we 
have 

E(~'~) = a m + amm(m - 3) /2yn* + o (a  1). 

First  we take the expec ta t ion  condi t ional  on Y1, Y2,..., Yko-~. PROOF. 
We write 

E(Y~)  = E{E(Y~,I Yl,..., Yko-,)} 

/ l(.0 N )m // 
= E ( N 1 -  l)-mE Y~ Yi + ~ Yi Y1,.. Yko l 

i=I i= o "~ 

j : 0  j i:1 Yi i=ko Yi Y1 , . . . ,  Yko-I . 

Given Y~,..., Yko-l, the r a n d o m  sum 

of  f reedom. Therefore,  

Nt- 1 ~ X2 
E 2 a - l E  • with 2(N1 - ko) degrees 

i= ko 

E i=~o Yi YI,..., Yk0-1 = am-J(N1 - k0)m-J{1 + O(NI-~)},  

for  large k0, using factorial  formulas .  After  some algebra  based on repeated  
use of  the b inomial  formula ,  we get 

(2.7) / / k,~l 3 +  , 
E ( F ~ ) = a  m E m E W, ( N 1 -  1) o (a  -1) 

j=0 j i=1 

where  W~= ( Y i -  a)a  -1 are i.i.d, r a n d o m  variables with E(W~)= 0 and 
V(W/) = 1 for  all i. 

Now,  expanding  (N1 - 1) -j as k0 --- oo in a Taylor  series a round  yn*, we 
write 

(2.8) (N1 - 1) -~ = (yn*) -j -j(ya~'ko - yn*)(yn*)-Ii+l) + R ( n * ) .  
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Here, we considered N~ ~ ~'aYk0 for large k0. However, even for moderate  
values of ko, the expected difference between Nt and its continuous version, 
(say) Nit = max {ko, yaYk0}, is less than 0.58 observation. In order to see 
that, we write 

N~ = ([yaYko] + l)I{?aLo > ko} + koI{yctYko < ko} 

= {ya~ko + l - (~,a%o - [~,aLol)}I{~,aL,, > ko} + ko,qya?ko _< ko} 

= 7aYkol{?aYko > ko} + koI{?aYko <-/co} + flI{~,aYko > ]co}, 

where fl = 1 - (TaYk, -- [TaYko]) ~ U(0, 1). Now N1 - Nl, = flI{~aYko > ko}, 
and so 

E(Nt - N~o) <- {E(fl2)P(yaYko >/co)} m -< 0.58, 

where we have used the Cauchy-Schwarz inequality. 
Next, substitution of the standardized i.i.d. Wi's into (2.8) leads to 

(NI - 1) -j = (yn*) - j - j  i--~ W~ (Tn*)J(ko - l) + R(n*) .  

Hence, substitution into (2.7) yields 

E(~'~) = o" Z m (yn,)_jE IV,. 
j=0 j i: 1 

j=o j (yn*)-JjE ~=~ ~'i,. + o ( a - l ) ,  

since E t \  i=1 IV/ R(n  ) -- o(a-1). Finally, we have 

E(Y~,) = & + amm(m - 1)(ko - 1)/2(yn*) 2 - mam/yn * + o(a-1) . 

Now use the fact that ( k o / n * ) ~ y  by (2.6), combine terms, and Theorem 
2.1 is immediate. 

Remark  1. Similar results for m = 1 in the normal case were obtain- 
ed by Hall (1981), Mukhopadhyay  (1985) and Mukhopadhyay et al. (I987). 
We are unaware of any such expansion of E(]Tff,) for m > 1. Theorem 2.1 
will be useful in computing the moments of the stopping variable N (or N*) 
as we shall see in Theorem 2.2 which follows. The following Lemma 2.1 is 
used in the proof of Theorem 2.2 in Appendix. 
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LEMMA 2.1. For the three-stage procedure (2.4), as a --. oo, we have 

- *g  
P ( N  <_ ~n*) = O(a m / ) ,  

for  every posi t ive integer m* and real number  ~ ~ (0, 1). 

PROOF. We consider the events {N_< ~n*} C {a-YN,--< ~n*}, and thus 

P ( N  <_ ~n*) <_ P(a~'N, <-- ~n*) 

--< P(I YN, -- al > (1 -- Oa) 

_<P( max IL-ol >(1-Oo) 
ko~n<_[ ~n *] 

-m* 
= O(ko ) ,  

by the Hajek-Renyi inequality. Hence, (2.5) gives the statement of Lemma 
2.1. 

THEOREM 2.2. For N def ined in (2.4) and integer k, as a --, ~ ,  we 

have 
(i) E ( N / n * )  k = 1 + k ( k  - 3 + 7)/27n* + o(a-1), 

(ii) E(ln N) = (In n*) - (3 - 7)/2yn* + o(a-1). 

The proof of Theorem 2.2 is given in Appendix. 

3. Some applications 

In this section we consider some typical situations in which the process 
of controlling the risk associated with our proposed triple stage procedure 
leads to the same form of n* given in (1.2). As in Robbins (1959), we define 
the regret of the three-stage procedure as og(a) = E(LN(a)) - R,*(a), where 
Rn*(a) is the optimal risk corresponding to the fixed sample size procedure 
based on n* in (1.2). 

3.1 

by 

The bounded  risk problem 
Let the loss function associated with the estimation process be given 

(3.1) L , ( A )  = A(X,I~) - la) t , 

where A is a known positive constant and t is a positive integer. Given W 
( >  0), which is related to the preassigned overhead cost, we require 
E ( L , ( A ) )  <_ W, which provides 
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n* = aa, where a = ( A F ( t  + 1) /W) lit , 

( F ( . )  is the gamma function). The associated optimal risk is then R , , ( A )  -- 
W. 

THEOREM 3.1. In the con tex t  o f  the loss f u n c t i o n  (3.1), the regret o f  
the triple stage procedure  (2.4) is given by 

~o(A) = Wt ( t  + 3 - 7)/27n* + o ( h  -a/t) as 

PROOF. 

Z ---~ oo  

The risk of the triple stage procedure is 

E ( L u ( A ) )  = Acr'F(t + 1)n*-'E(n* / N) '  , 

3.2 The m i n i m u m  risk p r o b l e m  
Here we consider two examples with different loss functions. The 

estimation cost is assumed to be similar in both cases, while the sampling 
costs are different. 

First, suppose the loss incurred in estimating/z by Sn(1) takes the form 

(3.2) L. (c )  = Aam(x. i1)  - I.t) t + cn m , 

where A and c are known positive constants and m and t are positive 
integers. A loss function similar to (3.2) was studied by Chow and 
Martinsek (1982) for the normal case. The risk associated with (3.2) is 

(3.3) E(L . ( c ) )  = (Aam+tF(t + 1) /n  t) + cn m 

Treating n as a continuous variable, we differentiate (3.3) with respect to n 
to obtain the optimal sample size 

n* = aa, where a = ( t A F ( t  + 1) /cm)  1lIra+t) . 

The optimal risk is therefore R.*(c) = c n * ' ( m  + t)/ t. 

THEOREM 3.2. In the con tex t  o f  the loss f u n c t i o n  (3.2), the regret o f  
the triple stage procedure  (2.4) is given by  

o9(c) = cmn*m- l ( t  + m ) / 2 7  + o(c  "+O/Im+tl) as c --* O . 

PROOF. If we write 

and by (i) of Theorem 2.2 with k = - t the proof is completed. 
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Table 1. Moderate sample size performance of triple stage procedure: Bounded risk +. 

),= 0,30 y = 0.50 y = 0.70 

ko n* fi s0~ N s0~ o5 fi s0j~ /V s0~ ~5 fi s0~ N sO~ d~ 

l0 .183 .006 6 0.1 2.58 .134 .005 9 0.1 1.52 .137 .005 9 0.1 0.95 
25 .085 .004 21 0.3 6.71 .059 .003 23 0.3 2.33 .044 .002 25 0.3 0.95 
50 .029 .002 47 0.5 4.22 .024 .001 47 0.4 1.72 .021 .001 50 0.4 0.60 

I00 .012 .001 97 0.7 1.94 .011 .000 99 0.6 0.64 .011 .000 103 0.7 0.27 
150 .008 .000 146 0.9 2.01 .007 .000 149 0.6 0.08 .007 .000 157 1 . 0 - . 0 0  
200 .005 .000 197 0.9 0.16 .005 .000 200 0.8 1.65 .005 .000 209 1.2 0.03 
250 .004 .000 246 1.0 0.10 .004 .000 249 0.9 0.05 .004 .000 262 1 . 4 - . 0 3  
500 .002 .000 496 1.5 0.05 .002 .000 502 1.3 0.01 .002 .000 522 2.6 - . 0 4  

1000 .00l .000 1002 2.1 0.01 .001 .000 1007 2.6 0.00 .001 .000 1054 5 . 4 - . 0 6  

10 

10 .100 .003 10 0.0 0.00 .096 .003 I0 0.0 - .01 .098 .003 11 0.1 - . 0 6  
25 .086 .003 14 0.3 4.32 .056 .002 22 0.3 1.61 .045 .002 24 0.2 0.57 
50 .031 .002 45 0.5 3.44 .022 .001 48 0.3 0.58 .021 .001 49 0.3 0.25 

100 .011 .000 97 0.6 0.38 .010 .000 99 0.5 0.10 .010 .000 101 0.4 0.05 
150 .007 .000 147 0.8 0.16 .006 .000 148 0.6 0.11 .007 .000 151 0.6 0.03 
200 .005 .000 196 0.9 0.14 .005 .000 200 0.7 0.04 .005 .000 203 0.7 0.01 
250 .004 .000 248 0.9 0.06 .004 .000 248 0.8 0.05 .004 .000 252 0.7 0.01 
500 .002 .000 496 1.4 0.04 .002 .000 498 1.1 0.02 .002 .000 507 1 . 4 - . 0 1  

1000 .001 .000 998 1.9 0.02 .001 .000 I000 1.5 0.01 .001 .000 1014 2 . 3 - . 0 2  

20 

10 .048 .002 20 0.0 - .75  .055 .002 20 0.0 - . 75  .051 .002 20 0.0 - . 75  
25 .047 .002 20 0.0 0.56 .047 .002 20 0.1 0.55 .046 .002 23 0.2 0.33 
50 .047 .002 25 0.5 4.73 .026 .001 45 0.5 1.19 .022 .001 49 0.3 0.21 

100 .013 .001 95 0.8 1.28 .011 .000 98 0.4 0.12 .011 .000 99 0.4 0.07 
150 .007 .000 146 0.7 0.19 .007 .000 149 0.6 0.07 .006 .000 150 0.5 0.04 
200 .005 .000 196 0.8 0.10 .005 .000 198 0.7 0.06 .005 .000 200 0.6 0.03 
250 .004 .000 248 1.0 0.08 .004 .000 247 0.7 0.05 .004 .000 249 0.7 0.03 
500 .002 .000 496 1.3 0.04 .002 .000 500 1.0 0.01 .002 .000 501 0.9 0.01 

1000 .001 .000 997 1.9 0.02 .001 .000 1001 1.5 0.01 .001 .000 999 1.4 0.01 

*Loss function (3.1) with t = 2,/t  = 0, a = 1, W =  1. Each entry based on 1000 simulations. 

E(LN(c)) = A F ( t  + 1)am+tn*-'E(n*/ N)t + n ' racE(N/n*)  m , 

and recall (i) of  Theorem 2.2 with k = - t, and k = m, then the statement of  
Theorem 3.2 is immediate.  

The second example  assumes the loss function 

(3.4) Ln(c)  = A ( X ,  I1) - p ) t  + c In (n) .  

Thus the cost of  sampling increases at a s lower rate than n, which is likely 
when bulk sampling rates apply. The optimal sample size is 

n* = aa, where a = ( t A F ( t  + 1 ) / c )  v' , 

and the corresponding optimal risk is R , * ( c )  = c In (n*te) .  
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Table 2. Moderate sample size performance of triple stage procedure: Minimum risk '~. 

7 = 0.30 7 = 0.50 7 = 0.70 

k0 n* /~ s~a /~/ s ~  03 fi sk~ N s ~  03 /~ sO~ N sOo 03 

10 .189 .006 6 0.1 0.04 .154 .006 8 0.1 0.03 .134 .005 9 0.1 0.02 
25 .078 .004 21 0.3 0.02 .055 .002 23 0.3 0.01 .052 .002 24 0.3 0.00 
50 .034 .002 46 0.5 0.00 .024 .001 48 0.4 0.00 .021 .001 51 0.4 0.00 

100 .013 .001 95 0.7 0.00 .011 .000 97 0.6 0.00 .010 .000 103 0.7 0.00 
150 .007 .000 146 0.9 0.00 .007 .000 149 0.6 0.00 .006 .000 156 0.9 0.00 
200 .005 .000 196 1.0 0.00 .005 .000 198 0.8 0.00 .005 .000 207 1.1 0.00 
250 .004 .000 245 1.1 0.00 .004 .000 251 1.0 0.00 .004 .000 262 1.4 0.00 
500 .002 .000 497 1.5 0.00 .002 .000 501 1.4 0.00 .002 .000 517 2.2 0.00 

1000 .001 .000 997 2.1 0.00 .001 .000 1005 2.3 0.00 .001 .000 1056 5.3 0.00 

10 

10 .097 .003 10 0.0 0.00 .104 .003 10 0.0 0.00 .097 .003 11 0.1 0.00 
25 .083 .003 15 0.3 0.01 .054 .002 23 0.3 0.00 .050 ,002 24 0,2 0.00 
50 .035 .002 45 0.5 0.00 .023 .001 48 0.3 0.00 .021 .001 49 0.3 0.00 

100 .011 .000 96 0.6 0.00 .010 .000 98 0.5 0.00 .010 .000 100 0.4 0.00 
150 .007 .000 146 0.8 0.00 .007 .000 148 0.6 0.00 .007 .000 152 0.6 0.00 
200 .005 .000 197 0.9 0.00 .005 .000 198 0.7 0.00 .005 .000 202 0.7 0.00 
250 .004 .000 247 0.9 0.00 .004 .000 248 0.7 0.00 .004 .000 252 0.8 0.00 
500 .002 .000 498 1.4 0.00 .002 .000 499 1.1 0.00 .002 .000 507 1.3 0.00 

1000 .001 .000 996 1.9 0.00 .001 .000 997 1.5 0.00 .001 .000 1014 2.4 0.00 

20 

10 .050 .002 20 0.0 0.03 .050 .002 20 0.0 0.03 ,050 .002 20 0.0 0.03 
25 .050 .002 20 0.0 0.00 .049 .002 20 0.1 0.00 .046 .002 23 0.2 0.00 
50 .045 .002 24 0.4 0.00 .027 .001 46 0.5 0.00 .021 .001 49 0.3 0.00 

100 .013 .001 95 0.8 0.00 .010 .000 98 0.5 0.00 .010 .000 I00 0.4 0.00 
150 .007 .000 146 0.7 0.00 .007 .000 149 0.6 0.00 .007 .000 149 0.5 0.00 
200 .005 .000 197 0.9 0.00 .005 .000 197 0.7 0.00 .005 .000 200 0.6 0.00 
250 .004 .000 247 1.0 0.00 .004 .000 248 0.7 0.00 .004 .000 250 0.6 0.00 
500 .002 .000 497 1.4 0.00 .002 ,000 500 1.0 0.00 .002 .000 500 0.9 0.00 

1000 .001 .000 998 1.9 0.00 .001 .000 999 1.5 0.00 .001 .000 999 1.3 0.00 

t~Loss function (3.2) with t = 2, m = 1,/x = 0, a = 1, A = 1. Each entry based on 1000 simulations. 

THEOREM 3.3. In the context o f  the loss func t ion  (3.4), the regret o f  

the triple stage procedure (2.4) is given by 

o9(c) = ct/27n* + o(c I'+l~/t) as c --. O . 

PROOF. The proof is based on (ii) of Theorem 2.2 and is similar to 
those of Theorems 3.1 and 3.2. Further details are omitted. 

4. The performance of the triple stage procedures 

Since the results in Sections 2 and 3 are asymptotic in nature, it is of 
interest to examine the performance of the triple stage procedures for the 
case of moderate n*. We conducted simulations with ko--5,  10, 20 and 
n*--  10, 25, 50(50)250, 500, 1000 under squared error loss (i.e., t - -2 )  in 
(3.1), (3.2) and (3.4) with W= 1 in (3.1) and m = 1 in (3.2) and A--  1 in 
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both (3.2) and (3.4). We set ¢t = 0 and tr-- 1 in all cases and did 1000 
repetitions in each study. We considered the values of 7 -- 0.3, 0.5 and 0.7. 
We note that the numerical results for the loss function in (3.4) had very 
similar patterns to those for the loss function in (3.2). For brevity, 
however, we report numerical findings only for the loss functions in (3.1) 
and (3.2). 

Detailed findings from the numerical studies are presented in Tables 1 
and 2. For each row of our tables we give summary measures including the 
estimates/~ of/z and its estimated standard error s0,, the estimate N of N 
and its estimated standard error s0~, and the observed regret o3 associated 
with the triple sampling procedure. 

Overall, for y < 1/2 the three-stage procedure tends to undersample 
for the smaller values of n*, which generally results in bad estimates of/z. 
On the contrary, for 7 > 1/2 substantial oversampling for the larger values 
of n* occurs. It appears that k0 = 10 or 20 represents a reasonable pilot 
sample size in applications. The numerical results agree well with the large 
sample theory; the approach to the asymptotics occurs remarkably quickly 
and the goal of controlling the risk associated with each loss function is 
always met. For practical implementations we strongly recommend using 
the triple sampling procedure with y -- 1/2. This recommendation essential- 
ly follows from general patterns in Tables 1 and 2. 
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Appendix 

P R O O F  OF THEOREM 2.2. To prove (i), first consider the case k = m, 
say where m is a positive integer. We notice that N-- Texcept perhaps on a 
set 

~u = {S < ko} t._J {aYu, < TaYko + 1}, 

where 

fv Nmdp  = o(a m-l) , 

Therefore, 
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E ( N " )  = E ( T " )  + o(a  ''-1) 

= E([aY'N,] + 1)" + o(a  m-l) 

= E ( a Y N , -  (aYN~- [aYN~]) + 1) m + o(am-1). 

It follows from Hall  (1981) that  Ju, = aYN, -  [aYN,] is asymptotically 
U(0, 1). Let fiN, = 1 -- Ju,, also asymptotically -- U(0, 1). Thus, 

E ( N  m) = E(aYN, + fiN,)" + o(a  ''-~) 

= z ( m ) E{(aYN,)m-JfJ,} + o(am-1) 
j=0 j 

(A.1) = ct~E(Y~) + ma"-IE(Y~, - I fN, )  + o(am-l) .  

To estimate the quantity E(Y~-lfN,), we write fiN, = I /2  + (fiN, -- 1/2), and 
then 

E(Y~,-lflN,) = 1/2.E(Y~1-1) + E{Y~,-'(flN,- 1/2)} 

= 1/2-a m-1 + E{Y~- t ( f lN, -  1/2)}.  

To evaluate the expression E({Y~, - t ( f lN, -  1/2)}, first we recall Theorem 2.1 
to obtain 

(A.2) Var (~p - l )  = (m - 1)2a21m-tl/2?n * + o(a-1) . 

On the other hand, the well known Cauchy-Schwarz inequality provides 

Coy 2 (Y~- ' ,  (flU,- 1/2)) _< Var ( ~ - 1 )  Var (fiN,) = O(1), 

by (A.2) as n* ~ oo. It follows that Y~-~ and ( f iN, -  1/2) are asymptotically 
uncorrelated. Thus, 

E{?~',-t(fl~,- I/2)} = o(I). 

Hence, 

E ( N ' )  = o~E(} '~)  + 1/2.mam-la m-1 + o(am-1) , 

and by Theorem 2.1, (A.2) yields 

(A.3) E ( N  m) = n *m + 1/2.mn*m(m - 3 + y)/?n* + o(am-l) . 

Next, if k is a negative integer, say k = - m, where m is a positive 
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integer, we need to prove that E ( n * / N )  m= 1 + m ( m  + 3 - 7  )/27n* + 
o(a-l). Write 

N -m = El *-m - -  m ( N -  n*)n *-Ira+l) + l / 2 .m(m + 1 ) ( N -  /'/*)21 )-(m+2) , 

for a suitable random variable v between N and n*. Consequently, (A,3) 
with m = 1 gives 

E(N -m) = n *-m - m(1/2 - y + o(1))n *-Ira+l) 

+ 1/2.m(m + 1)n*-Im+l)E(Q), 

where Q = n*m+l(N- n*)2v -Ira+z). Let U= ( N -  n*)2/n *. We conclude from 
the results of Anscombe (1952) (see also Ghosh and Mukhopadhyay 
(1975)) that U ~ ~-Iz]I ). Also, E ( U ) =  ~-~+ o(1), which can be obtained 
from (A.3) with m = 1 and 2, hence U is uniformly integrable. 

We write 

Q = QI{N> 1/2.n*} + QI{N<_ 1/2.n*}. (A.4) 

N o w ,  

QI{N> 1/2.n*} < 2m+2(N - n*)Z/n * , 

and hence QI{N > 1 / 2.n*} is uniformly integrable. Thus, 

E ( Q I { N >  1/2.n*}) = ~ 1 + o(1) .  

Also, 

Thus, 

QI{N < 1/2.n*} _< (n*m+~/ Nm)(1 + n*Z/ NZ)I{N < - 1/2.n*} 

<_ (n*m+~/k'~)(l + n*2/k2o)I{N <_ 1/2.n*}. 

E(QI{N <_ 1/2.n*}) <_ (n*m+l/k~)(1 + n*2/k2o)P(N < 1/2.n*),  

and by Lemma 2.1 this can be made o(1) if we make m* large enough. 
Hence, 

E(QI{N<_ 1/2.n*})= o(1).  

So, (A.4) leads to 
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E(Q) : ~)-1 _}_ 0 ( 1 ) ,  

which completes the proof of part (i). 

To prove (ii) of Theorem 2.2, first write (In n) in Taylor series 
expansion 

E ln  (N) = L,(n*) + E ( N -  n*)n *-1-  n*-IE(QI) , 

where Q1 = n*(N - / , / . )2(-2  for a suitable random variable ( between N and 
n*. Then E(QO = y-1 + o(1) by arguments similar to those leading to (A.1). 
Further arguments similar to those above lead to (ii) of Theorem 2.2, and 
the proof of Theorem 2.2 is now complete. 

REFERENCES 

Anscombe, F. J. (1952). Large sample theory of sequential estimation, Proc. Cambridge 
Philos. Soc., 48, 600-607. 

Basu, A. P. (1971). On a sequential rule for estimating the location parameter of an 
exponential distribution, Naval Res. Logist. Quart., 18, 329-337. 

Chow, Y. S. and Martinsek, A. T. (1982). Bounded regret of a sequential procedure for 
estimation of the mean, Ann. Statist., 10, 909-9t4. 

Ghosh, M. and Mukhopadhyay, N. (1975). Asymptotic normality of stopping times in 
sequential analysis (unpublished manuscript). 

Grubbs, F. E. (1971). Approximate fiducial bounds on reliability for the two parameter 
negative exponential distribution, Technometrics, 13, 873-876. 

Hall, P. (198t). Asymptotic theory of triple sampling for sequential estimation of a mean, 
Ann. Statist., 9, 1229-1238. 

Hall, P. (1983). Sequential estimation saving sampling operations, J. Roy. Statist. Soc. Ser. 
B, 45, 219-223. 

Lombard, F. and Swanepoel, J. W. H. (1978). On finite and infinite confidence sequences, 
South African. Statist. J., 12, 1-24. 

Mukhopadhyay, N. (1974). Sequential estimation of location parameter in exponential 
distributions, Calcutta Statist. Assoc. Bull., 23, 85-95. 

Mukhopadhyay, N. (1982). On the asymptotic regret while estimating the location para- 
meter of an exponential distribution, Calcutta Statist. Assoc. Bull., 31,207-213. 

Mukhopadbyay, N. (1985). A note on three-stage and sequential point estimation proce- 
dures for a normal mean, Sequential AnaL, 4, 311-319. 

Mukhopadhyay, N., Hamdy, H. I., A1-Mahmeed, M. and Costanza, M. C. (1987). Three- 
stage point estimation procedures for a normal mean, Sequential AnaL, 6, 21-36. 

Robbins, H. (1959). Sequential estimation of the mean of a normal population, Probability 
and Statistics, (ed. H. Cramer), 235-245, Almquist and Wiksell, Uppsala. 

Woodroofe, M. (1985). Asymptotic local minimaxity in sequential point estimation, Ann. 
Statist., 13, 676-688. 

Woodroofe, M. (1987). Asymptotically optimal sequential point estimation in three stages, 
New Perspectives in Theoretical and Applied Statistics, 397-411, Wiley, New York. 


