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Abstract. The sequential procedures developed by Starr (1966, Ann.
Math. Statist., 37, 1173-1185) for estimating the mean of a normal
population are further analyzed. Asymptotic properties of the “regret”
and first two moments of the stopping rules are studied and second-order
approximations are derived.
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1. Introduction

Let us consider a sequence Xi, X,... of independent random observa-

tions from a normal population having unknown mean u € ( — o0, o) and
. 2 . .

unknown variance ¢” € (0, ). Given a random sample Xi, X>,..., X, of size

n, let us define X,=n"' Enl Xiand o7 =(n— 1) 2:‘.1 (Xi — X.)". Suppose the
loss-occurred in estimating u by X, be

(1.1 L(C)=A|Xn—pu|°+ CH',

where A, s, C and ¢ are known positive constants. Using the fact that
X~ N(u, o’/n), the risk corresponding to the loss (1.1) comes out to be

2\ Ko
(1.2) v,,(C):(——)L(S/TJr cn',
N n
where K = (s/2) 2" ' ((s + 1)/2)/I'(1/2). The fixed-sample size n = no, which

minimizes v,(C), is given by
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Ko* \ers+21)
1.3 = — )
(1.3) o ( Ct )

But, as we have already assumed, ¢ is unknown, the fixed sample size
procedure fails to minimize v,(C) simultaneously for all o. We adopt a
sequential procedure to obtain sample size “close” to the optimal but
unknown no, and the following stopping rule N is defined in confirmity
with (1.3).

Ko, )2/(s+21)}
bl

(1.4) N:mf{nzm:nz( 1

where m (=2) is the starting sample size. Using the fact that (n — 1)
n-1

oio’ = Zl Z3, with Z;~ N(0,1), we can re-write the stopping rule N as
=

follows;

(1.5) N=inf{n=m: yly<(@mn- 1)(’1&)(”2%} .
0

Following Starr (1966) and Starr and Woodroofe (1969), we define the
“risk-efficiency” and “regret” of the above mentioned sequential procedure
by

(1.6) n(C) =v(C)/vn(C),
and
(1.7 w(C)=9(C)—vu(C),

respectively, where v(C) is the risk associated with the sequential procedure,
Le.,

(1.8) W(C) = (%) Ko*E(N™) + CE(NY),

and v (C) is obtained on substituting n = no in (1.2), i.e.,
2

(1.9) vm,(C)=C(—-S£+l)n6.

Starr (1966) determined a condition on the starting sample size m for
which the above defined sequential procedure is asymptotically (as C — 0)
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risk-efficient. Later on, Starr and Woodroofe (1969) studied the asymptotic
behaviour of the “regret” for C=1t=1, i.e., when the cost of sample is
linear and is unity for each observation. For s =2 and ¢ = 1, Nagao and
Takada (1980) further studied this sequential procedure. They obtained an
upper bound for E(N) and E(Nl), for />0 and C fixed. They also proved

that for all m =3, grgl n(C)=1 and %1151 w(C)=0. A stronger bound for

w(C) is available in Ghosh and Mukhopadhyay (1980).

In the next two sections, we shall derive second-order approximations
for w(C), E(N) and E(N?) for all s and ¢. In the remaining part of this
note, we shall denote by k any generic constant independent of C, [y] will
be used for the integral part of y, and I(S) will stand for the indicator
function defined on the set S.

2. Second-order approximation for w(C)

We first establish few basic results.
LEMMA 2.1. P(N=m)= 0.(C" "), as C— 0.
PROOF. We have from (1.5) that
P(N=m) = P[im1 <kC”],
or,
ke €. CImIE < P(N = m) < kCImVS

and the lemma follows.
LEMMA 2.2. Forany0<6<1,
Pm+1<N<60np)=0C"™ "), asC—-0.

PROOF. We have

Ono s+2t)/s
Pm+1<N<6bny< = P[)(z(,,_l) <(n- 1)( i)< 2:)/]

Ro

Ono

< 2 inf [ exp { h(n — 1)( nﬂ )(s+2t)/s} E(e—h"%"’”) ]
)

T n=m+1 A>0

Ono

= X inf [ exp { h(n — 1)( nl)‘”z’)/‘} a+ Zh)-(n—l)/z] '
0

n=m+1 h>0
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This inequality is also valid for the value Ao of A, which minimizes the
function

f(h) = exp { h(n _ 1)( n )(s+2t)/s}(1 n 2h)—(n—1)/2

o
ie., ho = [(no/m)* " — 1]/2. Setting h = ho, we obtain

P(m+ 1< N<6no)

Ony n \(s+2)/s n \(s+2tys | kn-1)/2
< X — -expy l—| —
n=m+1 o no

- - m+ 1 \s+20ys )m-172
< no(s+2t)(m 1)/2s . [ exp l 1 _ ( )

A

Ho

Hno

Z n(m—l)(s+21)/2s . (éel—é)(n—m)ﬂ

n=m+1

3

where & = (n/no)*"?"* < 1 for all n< 6no, so that, fe' * < 1. Now, using
ratio rule for series convergence, we obtain the lemma.

COROLLARY 2.1. Forany0<0<1,
P(N < 6np)=0(C"™ "), asC—0.
PROOF. We can write
P(N<0no))=P(N=m)+ P(m+1<N<0no),
and the proof follows on applying Lemmas 2.1 and 2.2.
LEMMA 23. As C—0,

N():(nio)”2 (N —no) <= N, 1).

PROOF. The proof follows from Theorem 3 of Ghosh and Mukhopadhyay
(1979).

LEMMA 24. For all m> 1+ 2s/(s + 2t), N& is uniformly integrable
in C < Co, for some Co > 0.

PROOF. Denoting by F(x), the c.d.f. of X = | No|, we have, for some
a>0,
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2.1) ELXIX > )] =-] x*d(1 - F(x))

=a’P(X>a)+2] xP(X>x)dx

=T+ 72+ T3+ e,

where
m =a' P(N < no— a(nog)'?) ,
2 = a P(N > no + a(ng)'?)
ns=2[" xP(N<no— x(no)")dx ,
and

s = 2f;m xP(N > ng + x(no)*)dx .

Let us choose a > 2(no) /* for C < Ci. Denoting by L = [no + x(no) ]
one has for x>gand C< (),

() L—12no+ x(no)* -2
> o+ a(no)’” = 2
>Ho.

(ii) L= no+ x(no)* — 1

1 1
=no+ > x(no)'” + 5 a(ne)”” — 1

1
= no+ 3‘ x(no)l/2

L s B,
= (;_)(Hzt/)z 1+ kx(no) .
0

From (i), (ii) and Markov’s inequality, we obtain, for g > 1,

(2.2) P(N > ng + x(no)'?)
<P(N=L+1)

< P[X%H) —(L-1)=(L- 1){(;1‘0-)“””” ~1 ”



774 AJIT CHATURVEDI
< Plxie-uy— (L= 1) = kx(no)'"*]
< kx no? E{ytr — (L— DY
= kx4 ng? (L~ 1)*

=kx Y <ka®.
Thus,
(2.3) m < ka''"?
and
(2.4) ms < kf:° x' Mdx .

Now, choose C; such that a > (n)*/2 for all C < C,. Hence, for x> a

()12 1
(2.5) n;SZ[L x{P(NS—z—no)

1
+ P( 5 ne< N<no— x(no)l/z)] dx

[ xp[ Nt m)d
+ ()12 X =% nol dx| .
We have proved in Corollary 2.1 that, for C < G,
1 -1)/s
P|N<—no < kCE

so that, for C < Cs = min (2, G3),

iz

1 —(m-
XP( N= 7 o ) dx < klIZ{l m=1s+20)/25) .

(2.6) J "

)2

Let us write L; = [no/2], L> = [no — x(n0)"*]. We note that

|- ( _li)(lnt/s) >1-(1- x(no)—l/z)(nzz/s)
no

> kx(no) "> .

Now, we have
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1
P(; nn< N<no— x(no)l/z)

=p [ LLj [XZ(N—X) - (N-D=-(N—- 1)(1 - (nﬂ)“mm)}]

| N=L+1 0
[ L 2 3 B B 2 (1+2t/s)
SP_N:%H[X(N_” (N-D< Ll(l—( 7o )

<p| & v-n—-(N—-1)<— kx(no)m}] .

i N=Li+1

Since {y{n-1— (N —1): N=2} is a stationary martingale sequence, using
Kolmogorov’s inequality for martingales, one gets, for g > 1,

1

2.7 P ( S <N<n- x(no)‘”)
< kx_zq(no)_q E{XZ(LZ—A—I) —(L,— L — 1)}2q
= kx4,

Substituting from (2.6) and (2.7) in (2.5), we obtain
(2.8) T3 < k[ g D21/} +f(n°)m/2 x4 dx] .

A similar inequality can also be obtained for 7.
Utilizing the inequalities (2.3), (2.4) and (2.8), we obtain from (2.1), for
g>1and C< Co=min (C), Cy),

(2.9) E[XZI(X> A<k [ 219 +f:> 17 gy

. (m)?j2
+ G- tmm D252} +fa e dx].

The expression on the r.h.s. of (2.9) tends to zero as a — o for all
m > 1+ 2s/(s + 2¢), implying that N3 is uniformly integrable in C < Co.
The main resuits of this section are stated in the next two theorems.

THEOREM 2.1. Forallm> 1+ 2s/(s + 2t), as C— 0,
1 _ e
o(C) = - Cis+ 20n8”" + o(CHTNry

PROOF. From (1.8) and (1.9), substituting the values of V(C) and
vn(C) in (1.7), and using Taylor series expansion, we obtain for | W — ng| <
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IN — nol ,

t _ _
(2.10) w(C)= Z—S—- n§ % L E[N** — ng”"] + CE[N' — ni]

2Ct s -
— __s_n(()s+21)/2 . E _ _2_n0(s/2+1) . (NV n(])

S| N2 pis2+2)
+4(2+1)(N no)- W ]

_ 1 )
+ CE[tné ‘-(N—n0)+7z(z— (N — no)* W
=L+5L (say),

where

1 _ {s/2+2)
I =7 Ct(s+2)n . E[(N—no)z(’;—;) ]

and

_L . -2 . 2 E’_Z
Iz—ZCt(t 1)ne E[(N no)(no) ]

Denoting by P, the c.d.f. of N, we can write

L=I+1n,
where
_ 1 (2 2 [ no (s/2+2)
111~Z-Ct(s+2)no fNSm/Z (N — no) (W) dpP
and
_ 1 -2 5 [ Ro \5/2+2)
112——4-Ct(s+2)no me/z (N — ng) (—u;) dP
Since, on the event “N < ng/2”, no/ W < 2,
@1 hi<kCni™[ _  (N-ny dP
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1
SkCnéP(NS'z_no)
= fClm=Vistslis+2)

_ O(C(s+2)/(s+2t)) ,

as C— 0, for all m>1+s/(s+ 2¢). It is to be noted that the second last
expression on the r.h.s. of (2.11) is obtained on using Corollary 2.1. On the
event “N > ny/2”, no/ W< 2. Moreover, since W/no— 1 w.p. 1 as C— 0,
we obtain on using Lemmas 2.3 and 2.4 that, for all m > 1 + 2s/(s + 21), as
Cc—0,

1 _
(2.12) Io =~ Ci(s + Dné'.

In order to tackle the term /,, we consider the following two cases.

Case 1. (When ¢t <2) Proceeding as for I, we can prove that for all
m>1+2s/(s+2t),as C—0,

(2.13) L= —;— Ct(t - l)né—l + O(C(s+2)/(s+2t)) .

Case 2. (Whent=2) We can write

1 _ Wt-2
L= > Ct(t — Dng™? [st,m,z ( n_o) - (N - no)’ dP

+f1v>no/2 ( V_V)H - (N = noy’ dP] .

no

Since on the event “N<no/2”, W/no<1/2, on the event “N > ny/2”,
Wino<3/2,and W/no— 1 w.p. 1 as C — 0, I, converges to the same limit
as in Case 1.

The theorem now follows on making substitutions from (2.11), (2.12)
and (2.13) in (2.10).

Remark 1. For t =1, we conclude that w(C) = (s +2)/4 + o(C) for
all m>1+2s/(s+2). In this case, Starr and Woodroofe (1969) proved
that w(C)= 0O(1) iff m=s+ 1. Thus, our bounds for w(C) are sharper
than that achieved by Starr and Woodroofe (1969).
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Remark 2. For s=2, t=1, we obtain o(C)=C+ o(C) as C—0,
for all m = 3, which is the result obtained by Ghosh and Mukhopadhyay
(1980). Moreover, the result lcllrol w(C) =0, for all m=> 3, obtained by

Nagao and Takada (1980) also follows immediately.

The following theorem provides second-order approximations for the
first two moments of N.

THEOREM 2.2. Forallm>1+2s/(s+2t),as C—0,

(2.14) E(N)=no+(v—1)(l+%) +o(l),

(2.15) E(N) =i+ 2no ( 1+ %) (v =1+ o(Cy

where v is specified.

PROOF. Let us consider the difference

(s+2t)/s
(2.16) Re=(N- 1)( ;]!) " sy,
0

N-1
where Sy = % Z?, with Z;~ N(0, 1) .
p-

The mean v of the asymptotic distribution of Rc can be obtained from
Theorem 2.2 of Woodroofe (1977). By (2.16), Wald’s lemma for cumulative
sums, and Taylor series expansion, we obtain for | W~ no| < |N — nol,

E(Sn)=E(N-1)

1
_ (2+2t)/s {1+2t)/s
= nbr s E[N - N 1-v

:E[{no+(2+‘2—)(N ”°)+_;_(2+£)(1+%£)

.(V_V)h/s,@’_—@_]_{u(u%),u

o no Ro

IR by o Rl I
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Proceeding exactly along the lines of proof of Theorem 2.1, it can be

shown that as C— 0, forallm> 1+ 2s/(s + 2¢)
2t
E(N - 1)=E[{no+(2+?)(N—no)+(l +o(l))}

—{1+(1+—2s—’).—(u°l}]-v,

no

or,

(1+L)E{N—no}=v(1+%)_1—(1+%)_1+0(1),

no

and (2.14) follows.
To obtain second-order approximations for E(N?), let us write

E(N?) =n} + E{N* - n}
(N — no)? ]

No

= nt + 2noE{N — no} + noE[
Utilizing (2.14), we obtain
2 2 2t -1
E(N)=no+ 2no 1-+-—S— (v—1D+o(1) { +nfl + o(1)},
and (2.15) holds.

3. Estimation of y under log-cost function

In this section, we consider a different loss function. Let us take

3.1 L(C)=A|X.—ul’+ Clogn.

This loss function was considered by Starr (1966) under Section 4, and it
implies that the cost of sampling »n observations is proportional to log n,
when C is the known cost per unit observation. The risk corresponding to

the loss (3.1) is
2
3.2) vi(C) = —Si% +Clogn.

The value n* of n, which minimizes (3.2) is
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(3.3) n* = ( % )z/s ey

and setting n = n*, the minimum risk is
2C
(3.4) v (C) = N + Clogn™.
In the ignorance of g, the following stopping rule N is suggested:
K

(3.5) N:inf{an:nZ(E)maf,}.

The risk associated with the sequential procedure (3.5) is

(3.6) E[Lx(C)] = va(C)
2C [ n* \»
- —S—E(%)/ + CE(log N).

As usual, we define the “risk-efficiency” and “regret” by

(3.7) n(C) =vn(C)/var(C),
and

(3.8) o(C) =ww(C) - v (C),
respectively.

Starr (1966) proved that ?E)l n(C)=1for all m = s + 1. Here, we shall

study the asymptotic behaviours of “regret” and first two moments of the
stopping time N. We shall repeatedly use the notation Result A[B] to
indicate that the proof of result A is similar to that of B, where the result

may be in the form of a lemma, corollary or theorem.
LEMMA 3.1[2.1]. As C— 0,
P(N =m) = O(C"™ M5y
LEMMA 3.2[2.2]. Forany0<0<l1,as C—0,

P(m+ 1< N<6n*)=0O(C™ "5y .
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COROLLARY 3.1[2.1}. Forany0<f<l1,as C—0,
P(N < 6n*) = O(C™ ") .
LEMMA 3.3[2.3]. As C—0,

N*z(zl*‘)l/z (N —n*) 2= N, 1) .

LEMMA 3.4[2.4]. Forallm> 1+ 2/s, N*¥* is uniformly integrable in
C < G for some Co > 0.

The following theorem provides second-order approximation for the
regret w(C).

THEOREM 3.1. As C—0,

Cs
4n*

w(C)= +o(C',

forallm>1+2/s.

PROOF. From (3.4) and (3.6), substituting the values of v»*(C) and
vww(C) in (3.8) and using Taylor series expansion, we get after some
algebraic manipulations, for | W — n*| < |N — n*|,

(39 (€)= —2S£ n*? E[N™ = n***] + CE[log N — log n*]
=L—-L (say),
where

_C s n* \is2+2) .2
Il—2n*2(1+2)E[(W) '(N—n)],

and

12=T(;;2E[(%)2 . (N—n*)z].

Proceeding along the lines of proofs of various steps in Theorem 2.1, we
can show that, forallm> 1+ 2/s,as C— 0,
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__Q S 1+2/s
h= 37 ( 2 +1)+O(C )

and

L= —C;k— +o(C ).
2n

The proof now follows on substituting the values of I and I in (3.9).

In the next theorem, we shall establish second-order approximations
for E(N) and E(N?).

THEOREM 3.2. As C—0,

(3.10) E(NY=n*+vi—1+o0(),
(3.11) E(NY =n* + 2n*v, — n* + o(C™¥),

forallm> 1+ 2/s, where v, is specified.
PROOF. It follows from the definition of N that

N:inf{nzm:SNS(N— 1)(—’1”?)}

where Sy is the same as defined in Section 2. Let v; be the mean of the
asymptotic distribution of

R%=(N—1)(—nN7)—SN.

The proofs of (3.10) and (3.11) are now similar to that of (2.14) and (2.15),
respectively, with necessary modifications at various places.
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