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Abstract. In this paper hierarchical Bayes and empirical Bayes results 
are used to obtain confidence intervals of the population means in the 
case of real problems. This is achieved by approximating the posterior 
distribution with a Pearson distribution. In the first example hierarchical 
Bayes confidence intervals for the Efron and Morris (1975, J. Amer. 
Statist. Assoc., 70, 311-319) baseball data are obtained. The same 
methods are used in the second example to obtain confidence intervals of 
treatment effects as well as the difference between treatment effects in an 
analysis of variance experiment. In the third example hierarchical Bayes 
intervals of treatment effects are obtained and compared with normal 
approximations in the unequal variance case. 

Key words and phrases: Hierarchical Bayes, empirical Bayes estimation, 
Stein estimator, multivariate normal mean, Pearson curves, confidence 
intervals, posterior distribution, unequal variance case, normal approxima- 
tions. 

1. Introduction 

In the Bayesian approach to inference, a posterior distribution of  
unknown parameters is produced as the normalized product of  the like- 
lihood and a prior distribution. Inferences about  the unknown parameters 
are then based on the entire posterior distribution resulting from the one 
specific data  set which has actually occurred. In most hierarchical and 
empirical Bayes cases these posterior distributions are difficult to derive 
and cannot be obtained in closed form. Numerical integration, normal approxi- 
mations (Morris (1977, 1983b) and Berger (1985)) or other asymptotic 
approximations of the posterior distribution are then used to obtain 
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confidence intervals of the unknown parameter values. 
In some special cases, however, it is possible to obtain the exact 

moments of the posterior distribution. By using these moments and Pearson 
curves good approximations of the posterior distributions and the corre- 
sponding confidence intervals can be obtained. In Section 2 the Pearson 
curve approximation is applied to the Efron and Morris (1975) baseball 
data. The same methods are used in the second example to obtain 
confidence intervals between treatment effects in an analysis of variance 
experiment. In Section 3 exact moments of the posterior distribution for 
the unequal variance case are obtained. By using these moments and 
Pearson curves confidence intervals for the effects of high school coaching 
programs are calculated and compared with normal approximations. 

2. The use of Pearson curves to obtain confidence intervals-- the 
equal variance case 

Consider the problem of estimating and obtaining confidence intervals 
of the true means {Oj} of k normal populations having observed the 
independent sample means X1, X2,..., Xk. Each Xj is assumed to have the 
same variance V, which is known. Thus given Oj, 

(2.1) Xjlg ~ N(g, V) j =  1, . . . ,k.  

Suppose further that 

(2.2) Oj in~d N(,U, A) j = 1,..., k .  

The hierarchical Bayes approach assumes second stage priors on the 
hyperparameters. Therefore suppose that A is uniformly distributed on 
[0,oo) and that the distribution of p is a Lebesgue (uniform) measure on 
( -  ~,oo), then it is well-known (Morris (1977)) that the posterior distri- 
bution of O/IX is given by 

(2.3) f ( g l S )  = f ~ f ( g l S ,  B ) f ( B I S ) d B ,  

where 

(2.4) 

(2.5) 

-- --  1 ) 
OjtX, B - - N  X + ( 1 -  B ) ( X j - X ) ,  V ( 1 - B ) + - - ~ B V  , 

f ( B I S ) = K q B ' n - l e x p ( - B S / 2 )  O<_B<_ I ,  

is the posterior density of B, where 
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r l  
(2.6) K=Jo B m-1 exp ( - BS/2)dB , 

V 
(2.7) B - - -  

V + A '  

-- 1 k 
(2.8) X = -k--j£ Xj, 

(2.9) 
1 k 

s--= T E  (x,- 

and 

(2.10) _x' = (x , , . . . ,  xk ) .  

Since it is not possible to obtain the exact distribution of 0jIX, f(0j lX) 
will be approximated by a Pearson density. For the use of Pearson curves, 
the mean, variance, third and fourth central moments of the posterior 
distribution are needed. 

THEOREM 2.1. The mean, variance, third and four th  central 
moments of OjlX__ are given by 

(2.11) E(0jIX) = 0j = .X + (1 -/})(Xj - X ) ,  

(2.12) Var(OjlX)=o-j*2(_X)= g - k - - + - - ( 1 - / } )  + v ( X j - X )  2 
k 

( 1 ) {2 (m+l )  2m / }2} (Xj_~)  
(2.13) f13 = 3 V 1 - T S B gem(S) 

m 2m(m + 2) 2(m + 1)(m + 2) 
+ 2 Sem(S-------~ + S2e,,(S) S 2 B 

Sem(s)3m/} + 3(ms + 1) /}2 _/}3 } (Xj - ~)3 

and 

1 (2.14) p 4 = 3 V 2 { 1 - 2 / } ( 1  -~-) 2m - S e , , , ( S ) ( 1 - k )  2 

2(m+l) B(1-1 ) 2} 
+ S k- 
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+ 6 V  

+/ 
+ 

(4m m+2,(l) 4 m+l, m+2  ( , )  
S2em(S ) 1 - T  - S 2 /9 1 - - T  

4m ( 1 ) 4 ( r e+ l )  / 9 2 ( 1 _ k )  
Sen(S) /9 1 - 7  + S 

( 1 )  2 ( m + l ) ~  2m ~2}(Xj._~-)2 
-- B 3 1 - ~  + S ASem(S) 

2m 4m(m+ 3) 8m(m+ 2)(m+ 3) 
Sen(S) S2em(S) S3em(S) 

8m 16m(m + 2) 8(m + 1)(m + 2)(m + 3) /~ + _ _ / 9  + /9 
S 3 Sem(S) S2em(S) 

16(m+ 1)(m+ 2)/92 12m ~2 + 12(m+ 1) /93 
S 2 Sem(S) S 

-- 3/~ 4} (Xj - y ) 4 ,  

where 

k - 3  
(2.15) m - - -  

2 ' 

(2.16) 

(2.17) 

(2.18) 

f •  o m-I era(S) -- m exp (S/2) exp ( - BS/2)dB , 

l) 
;~= E ( B I S ) -  ~ -  1 em(S) ' 

o = Var (BIS) = 2{/~ - (1 - ]~)m/em(S)}/S. 

PROOF. By making use of equation (2.5) and integration by parts, 
the first four moments of B I S are obtained as 

(2.19) E(BIS)  = /9 ,  

2 m 2(m + 1) t9 
(2.20) E ( B 2 [ S ) - -  S era(S) ÷ S ' 

- 2m 4m(m + 2) 
(2.21) E(B3]S) - - -  

Sen(S) S2em( S) 

4(m + 1)(m + 2) 
+ $2 B, 

and 
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(2.22) E(B4IS) - - -  
- 2m 4m(m + 3) 

Sere(S) S2em( S) 
8m(m + 2)(m + 3) 

S3em( S) 

8(m + 1)(m + 2)(m + 3) 
+ S 3 /~. 

Calculating E(OjIX, A), E(O2jIX__,A), E(O3IX, A), E(O~IX__,A) and using 
(2.19)-(2.22), E(OjIX__), E(0}I__X), E(0}IX) and E(0~IX) can be obtained. 

By using the relationships between moments about the origin and 
central moments and after some algebraic manipulations (2.11)-(2.14) 
follow. 

In our first example it will be shown that by using Pearson curves 
good approximations of the true Bayesian intervals can be obtained. 

Example 2.1 Efron and Morris (1975) baseball data 
The observations Xj in the second column of Table 1 are the batting 

averages (after transformations) of k = 18 batters in 1970 after 45 attempts. 
The variance of each Xj is known to be V = (0.0659) 2. The batting averages 
for these players during the remainder of the season, considered to be the 
true values 0j, are presented in the last column of Table 2. The estimator t)i 
as well as normal approximations of the confidence intervals was calculated 
by Morris (1977, 1983b). Not only was the estimator_0' = (01,..., 018) about 
three times as efficient as the sample mean vector X'= (X1,..., X18) but the 
intervals were 37% shorter while containing the true values with greater 
frequency than nominally claimed. 

It will now be shown that by using Pearson curves good approxim- 
ations of the exact confidence intervals can be obtained. For the use of 
Pearson curves; 

/-14 fll(fl2 + 3) 2 #32 f l2=-7  and K= 
#3 ,  /-~4, # I  - -  ] . /~ ,  ~ L/2 4 ( 4 f l 2  - -  3 f l , ) (2 f12  - -  3 i l l  - -  6 )  ' 

were calculated and are given in Table 1. The value of ~¢ determines the 
type of Pearson curve that should be used. It is also known that m -- 7.5, 

= 0.265667, S = 18.932467, em(S) = 6.77428 and B = 0.675334. 
From Table 1 it is also clear that the posterior distributions for the 

first eight baseball players are positively skew and those for the remaining 
players are negatively skew. The posterior distributions for batters 7, 8, 9 
and 10 are more or less symmetric. The kurtosis f12 for all eighteen players 
are greater than three. The deviations of the skewness and kurtosis values 
from 0 and 3, respectively, are indications that improvements in confidence 
intervals can be obtained by using Pearson curves instead of normal 
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Table 2. The 90% Pearson curve intervals (PCIS) and corresponding exact intervals (EXIS) for the 
eighteen baseball players. 

Player 90% PCIS 90% EXIS 0~ 

1 0.240~0.390 0.235--0.382 0.346 
2 0.235~0.380 0.238--0.383 0.300 
3 0.230~0.370 0.227~0.365 0.279 
4 0.222--0.360 0.222~0.357 0.223 
5 0.218~0.350 0.215--0.348 0.276 
6 0.218~0.350 0.215~0.348 0.273 
7 0.210--0.340 0.209~0.340 0.266 
8 0.202~0.332 0.201~0.332 0.211 
9 0.194--0.323 0.194~0.324 0.271 

10 0.194--0.323 0.194~0.324 0.232 
I1 0.184~0.315 0.185--0.317 0.266 
12 0.184~0.315 0.185--0.317 0.258 
13 0.184~0.315 0.185~0.317 0.306 
14 0.184--0.315 0.185~0.317 0.267 
15 0.184--0.315 0.185~0.317 0.228 
16 0.173--0.308 0.174--0.309 0.288 
17 0.161--0.301 0.160--0.300 0.318 
18 0.147~0.294 0.150--0.295 0.200 

approximations. 
For details of how to determine the parameters of a Pearson curve, 

given the values of its moments,  see for example Elderton (1953) or 
Elderton and Johnson (1969). By using a computer program which makes 
use of four point Lagrangean interpolation in tables of significance points 
of Pearson curves (see Johnson et al. (1963)), the 90% approximated 
confidence intervals for the eighteen baseball players were calculated and 
are given in column two of Table 2. The exact intervals were also obtained, 
using numerical integration and are given in column three. 

A comparison of columns two and three shows that the Pearson curve 
intervals approximate the exact intervals quite well. In only one of the 
cases (player 17) the true parameter value falls outside the range of the 
confidence intervals. 

If B is estimated by/~s -- (k - 3)/S instead of/~ as defined in equation 
(2.17), then equation (2.11) becomes the Stein (empirical Bayes) estimator 
which means that B in (2.5) goes from 0 to oo and the risk estimates, 
posterior distributions, and all other quantities computed for (2.11) can be 
computed for the Stein estimator. These results are obtained by replacing 
era(S) by infinity (implying 1/era(S) = 0) in all formulas. 

Example 2.2 Ten reaction time experiments (Efron (1975)) 
The second example has to do with an analysis of variance experiment 

conducted by Dr. R. Angel of the Stanford Medical School. Each of ten 
subjects was asked to perform a certain task under seven different condi- 
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tions. Let yj; indicate the (natural) log reaction time of subject j under 
condition l ; j= 1, 2,..., 10; l-- 1,...,7. 

A two way analysis of variance model 

(2.23) yj; = ~ + g + a; + ej;, 

where 

10 7 

z ¢ = z a , - - o  
j = l  = ' 

was used to analyze the data. Here ,/7 is the overall mean, Oj the main effect 
for subject j, 3; the main effect for condition l, and ej; the random 
experimental error, which is assumed to be independently normally dis- 
tributed with mean zero and variance a 2. 

The idea is to use hierarchical Bayes techniques to estimate the patient 
main effects Oj from the data and to obtain confidence intervals for these 
main effects. These estimates and confidence intervals will also be compared 
with the usual ones. 

An unbiased estimator of Oj is 

7 10 7 

(2.24) Xj = ;__E :v);- Y. Z yj;/70 
= j = l  /=1 ' 

where Xj -- N(Oj, V), j  = 1,..., 10, and 

(2.25) V = (9/70)0 .2 . 

Suppose further that 

(2.26) 0j ~ N(0, A) j = 1 ..... 10. 

The reason for taking/.t = 0 is that the Oj like the Xj must sum to zero. By 
assuming that A is uniformly distributed on [0, ~) ,  the posterior mean as 
well as the moments around the mean are given by equations (2.11)-(2.14) 
with X = 0. 

For  practical and comparison purposes, V can be taken as known 
because its estimate is based on a chi-square random variable with 54 
degrees of freedom. 

This whole experiment was repeated 10 times, yielding a total of 700 
observations--10 subjects, 7 conditions, 10 experiments. These repetitions 
can be used as a check on how a given estimator performed in any given 
experiment analyzed separately from the others. In Table 3 the upper 
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number in each box is Xj the maximum likelihood estimate of  0j for the 
experiment. For example, experiment 1 has X3 = -  0.16, indicating that 
subject 1 reacted about 16% faster than the average of the 10 subjects for 
that experiment. The lower number in each box is tgj, the mean of the 
posterior distribution defined in (2.11). V is given at the bottom of each 
column, along with the shrinkage factor (1 - / ~ ) .  

Efron (1975) averages the values of Xj over the l0 experiments to 
obtain a much more accurate unbiased estimate of 0j. These are taken to be 
the true 0j values even though they still have some sampling variability in 
them. They are listed in the second last column. The last column of Table 3 
compares Xj. with 0j over the 10 experiments. The two values given in each 

10 10 
box X ( X ~  - 0~) 2 and Z (00 - 0j) 2 are the sum of squared error risk values 

i=1 i=1 

for the max imum likelihood and hierarchical Bayes estimators, respec- 
tively. 

The first of these is greater than the second for eight out of the 10 
subjects. Overall one computes 

Table 4. Ten reaction-time experiments. Upper interval is the 95% maximum likelihood interval-- 

Experiment 
Subject 

1 2 3 4 5 

- 0 . 2 4 - - 0 . 1 8  0 . 2 2 - - 0 . 3 4  - 0 . 3 0 - - 0 . 1 4  - 0 . 2 7 ~ 0 . 1 9  - 0 . 2 6 - - 0 . 1 6  
1 

- 0 . 1 7 - - 0 . 1 3  - 0 . 1 6 - - 0 . 2 l  0 . 2 3 - - 0 . 1 2  - 0 . 2 2 - - 0 . 1 6  - 0 . 2 1 - - 0 . 1 4  

- 0 . 1 3 - - 0 . 2 9  - 0 . 0 4 - - 0 . 5 2  - 0 . 0 5 - - 0 . 3 9  - 0 . 0 9 - - 0 . 3 7  - 0 . 2 7 - - 0 . 1 5  
2 

0 . 1 1 - - 0 . 2 0  - 0 . 1 2 - - 0 . 3 0  - 0 . 0 7 - - 0 . 2 9  - 0 . 1 0 ~ 0 . 2 9  - 0 . 2 2 - - 0 . 1 3 "  

- 0 . 3 7 - - 0 . 0 5  - 0 . 2 1 - - 0 . 3 5  - 0 . 5 4 - -  - 0 . 1 1  - 0 . 5 3 - -  - 0 . 0 7  - 0 . 4 9 - -  - 0 . 0 7  
3 

- 0 . 2 5 - - 0 . 0 8  - 0 . 1 5 - - 0 . 2 2 "  - 0 . 4 1  - - 0 . 0 2  - 0 . 4 1 - - 0 . 0 3  0 . 3 9 - - 0 . 0 0  

- 0 . 2 5 ~ 0 . 1 7  - 0 . 2 6 - - 0 . 3 0  - 0 . 2 0 - - 0 . 2 4  - 0 . 1 9 - - 0 . 2 7  - 0 . 2 6 - - 0 . 1 6  
4 

- 0 . 1 7 - - 0 . 1 3  - 0 . 1 7 - - 0 . 1 9  - 0 . 1 6 - - 0 . 1 9  - 0 . 1 6 - - 0 . 2 2  - 0 . 2 1 - - 0 . 1 4  

- 0 . 1 3 - - 0 . 2 9  - 0 . 2 7 - - 0 . 2 9  - 0 . 1 9 - - 0 . 2 5  - 0 . 2 3 - - 0 . 2 3  - 0 . 0 7 - - 0 . 3 5  
5 

- 0 . 1 1 - - 0 . 2 0  - 0 . 1 8 - - 0 . 1 9  0 . 1 5 - - 0 . 1 9  0 . 1 9 - - 0 . 1 9  - 0 . 0 8 - - 0 . 2 8  

0 . 0 4 - - 0 . 4 6  - 0 . 1 3 - - 0 . 4 3  - 0 . 0 5 - - 0 . 3 9  0 . 1 2 - - 0 . 5 8  0 . 0 0 - - 0 . 4 2  
6 

- 0 . 0 7 - - 0 . 3 0  - 0 . 1 3 ~ 0 . 2 6  - 0 . 0 7 ~ 0 . 2 9  - 0 . 0 1 - - 0 . 4 6  - 0 . 0 4 ~ 0 . 3 4  

- 0 . 1 2 - - 0 . 3 0  0 . 3 8 - - 0 . 1 8  - 0 . 2 8 ~ 0 . 1 6  - 0 . 1 4 ~ 0 . 3 2  - 0 . 0 9 ~ 0 . 5 1  
7 

- 0 . 1 0 - - 0 . 2 1  - 0 . 2 3 - - 0 . 1 4  - 0 . 2 1 - - 0 . 1 3  - 0 . 1 3 - - 0 . 2 5  - 0 . 0 1 - - 0 . 4 1  

0 . 3 4 - - 0 . 0 8  - 0 . 4 2 - - 0 . 1 4  - 0 . 3 8 - - 0 . 0 6  - 0 . 4 6 ~ 0 . 0 0  - 0 . 4 4 - -  0 . 0 2  
8 

- 0 . 2 3 - - 0 . 0 9  - 0 . 2 5 - - 0 . 1 3  - 0 . 2 9 - - 0 . 0 8  - 0 . 3 6 - - 0 . 0 6  - 0 . 3 5 - - 0 . 0 3  

- 0 . 3 0 ~ 0 . 1 2  - 0 . 4 1 - - 0 . 1 5  - 0 . 0 5 - - 0 . 3 9  - 0 . 2 6 - - 0 . 2 0  - 0 . 1 7 - - 0 . 2 5  
9 

- 0 . 2 0 - - 0 . 1 l  - 0 . 2 5 - - 0 . 1 4  - 0 . 0 7 - - 0 . 2 9  - 0 . 2 1 - - 0 . 1 7  0 . 1 5 - - 0 . 2 0  

- 0 . 2 5 - - 0 . 1 7  - 0 . 4 4 - - 0 . 1 2  - 0 . 1 5 - - 0 . 2 9  - 0 . 2 5 - - 0 . 2 1  0 . 2 4 - - 0 . 1 8  
l 0  

- 0 . 1 7 - - 0 . 1 3  - 0 . 2 5 - - 0 . 1 4  0 . 1 3 - - 0 . 2 2  - 0 . 2 0 - - 0 . 1 7  - 0 . 2 0 - - 0 . 1 5  
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(2 .27)  

10 10 

:c 2 oj) = t.o25, 
i---1 j = l  

10 1o 

Z Z (00 - 0J) 2 = 0 . 7 0 5 7  
i=1  j = l  

indicating that 0j is about 31% more accurate than Xj over all 10 experi- 
ments. Efron obtained an improvement of 25% using Stein's positive rule 
estimator but did not calculate any confidence intervals of the parameter 
values. 

By calculating the second, third and fourth central moments of the 
posterior distribution and by using Pearson curves, the 95% approximated 
hierarchical Bayes confidence intervals can be obtained. These intervals are 
the lower values in each box in Table 4. The upper values are the usual 
maximum likelihood intervals, i.e. Xu + 1 .96V~i ,  i = 1,..., 10, j -- 1,..., 10. 
From the table it can also be seen that the hierarchical Bayes intervals are 
substantially shorter than the usual intervals. They are in fact 19% shorter 
while containing the true values with the same frequency as the ordinary 
intervals. 

l o w e r  i n t e r v a l  is t h e  9 5 %  h i e r a r c h i c a l  B a y e s  interva l .  

E x p e r i m e n t  

6 7 8 9 10 Oj 

- 0 . 0 1 ~ 0 . 3 1  - 0 . 1 5 ~ 0 . 2 5  - 0 . 1 7 ~ 0 . 2 3  - 0 . 3 1 ~ 0 . 1 1  - 0 . 3 1 ~ 0 . 1 9  
0 . 0 0  

- 0 . 0 3 ~ 0 . 2 9  - 0 . 1 3 ~ 0 . 2 1  - 0 . 1 3 ~ 0 . 1 6  - 0 . 2 5 ~ 0 . 1 0  - 0 . 2 1 - - 0 . 1 5  

0 . 2 1 - - 0 . 5 3 *  0 . 0 0 - - 0 . 4 0  - 0 . 0 9 - - 0 . 3 1  - 0 . 0 5 ~ 0 . 4 7  - 0 . 3 2 - - 0 . 1 8  
0 . 1 4  

0 . 1 6 - - 0 . 4 8 "  - 0 . 0 3 - - 0 . 3 2  - 0 . 0 9 - - 0 . 2 2  - 0 . 0 1 - - 0 . 3 8  - 0 . 2 2 - - 0 . 1 4 1  

- 0 . 3 4 - -  - 0 . 0 2  - 0 . 3 9 - - 0 . 0 1  - 0 . 4 5 - -  - 0 . 0 5  - 0 . 2 9 - - 0 . 1 3  - 0 . 3 4 ~ 0 . 1 6  
- 0 . 1 8  

- 0 . 3 1 - - 0 . 0 0  - 0 . 3 2 - - 0 . 0 4  - 0 . 3 0 - - 0 . 0 6  - 0 . 2 4 ~ 0 . 1 2  - 0 . 2 3 ~ 0 . 1 3  

- 0 . 2 1 - - 0 . 1 1  - 0 . 3 6 - - 0 . 0 4  - 0 . 2 2 - - 0 . 1 8  - 0 . 0 8 ~ 0 . 3 4  - 0 . 3 7 - - 0 . 1 3  
- 0 . 0 3  

- 0 . 2 0 - - 0 . 1 1  - 0 . 2 9 - - 0 . 0 6  - 0 . 1 6 - - 0 . 1 3  - 0 . 0 8 ~ 0 . 2 8  - 0 . 2 5 - - 0 . 1 2  

- 0 . 1 0 - - 0 . 2 2  - 0 . 4 2 - -  - 0 . 0 2 4 *  - 0 . 2 0 - - 0 . 2 0  - 0 . 4 4 - -  - 0 . 0 2 4 *  - 0 . 3 5 ~ 0 . 1 5  
- 0 . 0 2  

- 0 . 1 0 - - 0 . 2 1  - 0 . 3 4 - - 0 . 0 2  - 0 . 1 4 - - 0 . 1 5  - 0 . 3 5 ~ 0 . 0 2  - 0 . 2 4 - - 0 . 1 3  

0 . 0 8 - - 0 . 4 0  0 . 0 9 ~ 0 . 4 9  - 0 . 1 8 - - 0 . 2 1 6 "  0 . 0 7 - - 0 . 4 9  - 0 . 0 3 ~ 0 . 5 7  
0 . 2 2  

0 . 0 5 - - 0 . 3 7  0 . 0 2 ~ 0 . 4 0  - 0 . 1 3 - - 0 . 1 6 "  0 . 0 0 - - 0 . 4 0  - 0 .  I 0 ~ 0 . 3 1  

- 0 . 0 7 - - 0 . 2 5  - 0 . 1 1  ~ 0 . 2 9  - 0 . 0 9 ~ 0 . 3 1  - 0 . 1 4 - - 0 . 2 8  0 . 0 4 ~ 0 . 5 4  
0 . 1 0  

- 0 . 0 8 - - 0 . 2 3  - 0 . 1 0 ~ 0 . 2 4  - 0 . 0 9 ~ 0 . 2 2  - 0 . 1 2 - - 0 . 2 3  - 0 . 0 9 ~ 0 . 3 5  

- 0 . 5 0 - -  - 0 . 1 7 6  - 0 . 3 8 - - 0 . 0 2  - 0 . 2 8 ~ 0 . 1 2  - 0 . 3 6 - - 0 . 0 6  - 0 . 3 5 - - 0 . 1 5  
- 0 . 1 8  

0 . 4 5 - -  0 . 1 3  - 0 . 3 1 - - 0 . 0 5  - 0 . 1 9 - - 0 . 1 0  - 0 . 2 9 - - 0 . 0 7  - 0 . 2 4 - - 0 . 1 3  

- 0 . 3 6 - -  - 0 . 0 3 6  - 0 . 1 7 ~ 0 . 2 3  - 0 . 2 8 - - 0 . 1 2  - 0 . 3 8 ~ 0 . 0 4  - 0 . 2 0 ~ 0 . 3 0  
- 0 . 0 4  

- 0 . 3 3 - - - 0 . 0 2  - 0 . 1 5 - - 0 . 1 9  - 0 . 1 9 ~ 0 . 1 0  - 0 . 3 1 - - 0 . 0 6  - 0 . 1 5 ~ 0 . 2 1  

- 0 . 3 0 - - 0 . 0 2  - 0 . I  1 ~ 0 . 2 9  - 0 . 0 3 - - 0 . 3 7  - 0 . 2 1  ~ 0 . 2 1  - 0 . 2 7 - - 0 . 2 3  
- 0 . 0 1  

- 0 . 2 8 - - 0 . 0 3  - 0 . 1 0 - - 0 . 2 4  - 0 . 0 7 - - 0 , 2 6  - 0 . 1 8 - - 0 . 1 8  - 0 . 1 9 ~ 0 . 1 7  
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Both procedures were successful 96 out of 100 times. The four 
unsuccessful cases for each procedure i.e., the intervals that do not contain 
the parameter values are denoted by asterisks in Table 4. 

For some of the posterior distributions the kurtosis coefficients (fl2- 
values) were as large as 11.997, 13.960, 15.680 and 22.815, while the largest 
skewness coefficients (ill-values) were 0.1994, 0.2110, 0.2042 and 0.3097. 
This shows that the Pearson curve approach should be more appropriate 
to obtain confidence intervals than the normal approximations 00-+ 
1.96V~-*2(X) where Oi/ and ,2 ao (X) are the mean and variance of the 
posterior distribution. 

If we are also interested in obtaining confidence intervals of (Oj - Os'), 
the difference between two treatment effects, then the posterior distribution 
of (Os- 0/,)I__X is needed. We can again approximate this distribution by a 
Pearson distribution. By using the same arguments as in Theorem 2.1, it 
can be shown that the mean, variance, third and fourth central moments of 
(0/-  O/)I__X are given by 

(2.28) 

(2.29) 

m ;  = ( l  - B ) ( X j  - x j , ) ,  

{ =m} m 2 = 2 V ( 1 - / / ) -  /~= 2(m+ 1) / ~ + ~  (X/-Xj,) 2 
S Sem(S) ' 

(2.30) m3=6V{ 2 ( r e + l ) / ~ _  2m /~2}(Xj_Xj,) 
S Sem(S) 

{ m  2m(m + 2) 2(m + 1)(m + 2) /~3 
+ 2 Se,,(S) + S2em(S) S 2 JB- 

+ 
3(m + 1) /~= 3m } 

S Sem(S------~ j~ (Xj - X j ' )  3 , 

and 

2m 2(m + 1) ~ } 
(2.31) m4 = 12V 2 1 - 2/~ Sen(S) + S 

+ 12V 
4m(m + 2) 4(m + 1)(m + 2) 2(m + 1) /~ + S= /~ 

S S2em(S) 

_ B2 4 r n ~ +  
Sem(S) 

4(rn + 1) ~2 _/~3 / (X/ -  Xg,) 2 
S / 

2m 
+ Sem(S) 

4m(m + 3) 8m(m + 2)(m + 3) 
S2em( S) S3em( S) 
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+ 8m 8(m + 1)(m + 2)(m + 3) B + - - / ~  
g3 gem(S) 

16m(m + 2) /~_ 16(m + 1)(m + 2)/~2 
+ S2em(S) S 2 + 

12m 
--  3J~ 4 } ( S j  - S j , )  4 

Sem(S) ] 

12(m + 1) /~3 

S 

where j = 1,..., k, j '  = 1,..., k, j ~ j ' .  
Suppose for example we want to obtain a hierarchical Bayes confi- 

dence interval of (04 - 010). Using only the data in experiment 1, we find 
that S = 10.7642, em(S) = 5.9502939, m; = 0, m 2  = 0.0100976, m3 = 0, m4 = 
0.00037901, fl~ = 0 and f12 = m4/m~ = 3.7170883. The 95% empirical Bayes 
confidence interval is given by -0.196954_< (04-  0~0) _< 0.196954 which 
includes the real difference -0 .02  and is substantially shorter than the 
usual interval - 0.2907 -- 0.2907. 

It is perhaps not surprising that the hierarchical Bayes intervals given 
in Examples 2.1 and 2.2 have such good frequentist properties because as 
mentioned by Morris (1983) and Berger ((1985), p. 172, the last paragraph), 
hierarchical Bayes procedures (or related procedures) have frequentist risks 
(for sum of squares-error loss) and coverage probability comparable to or 
better than those of the corresponding classical procedures (unless k is very 
small). 

For the unknown variance case corresponding results can be derived 
as given in (2.1)-(2.18) and (2.28)-(2.31). Instead of the normal distribution 
obtained in equation (2.4), a t-distribution will be derived and the distri- 
bution defined in (2.5) will become a Beta-Type II distribution on the 
interval 0 to 1. 

3. Hierarchical Bayes and empirical Bayes confidence intervals--the 
unequal variance case 

In this section the variances are considered known and unequal in 
contrast with the previous section where they were considered known and 
equal. Suppose that 

(3.1) XjIOj ~ N(O/, Vj) j =  1 , . . . , k ,  

and 

(3.2) Oj ~ N(p ,  A) j = 1,..., k ,  

then it is well'known that 
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(3.3) 

where 

A. J. VAN DER MERWE ET AL. 

gl__X,/t, A -- N(/.t + (1 - Bj) (Xj -/z); Vj(1 - Bj)), 

(3.4) Bj - - -  
Vj+A 

By assuming that the distribution of p is a Lebesgue uniform measure on 
( - oo, oo) and independent of A, we have 

(3.5) 

where 

(3.6) /?z = l[ ~ Bs ~ £ 8jXj 
j=l Vj ] j : l  Vj 

From equations (3.3) and (3.5) it follows that given A and __X, g will be 
normally distributed with mean. 

U(O~t x ,  A) = a + (I - g ) ( g  - /~ ) ,  (3.7) 

and variance 

(3.8) Var (OjlX, A) = Vj(1 - Bj) + Bj ~ . 

The posterior distribution of A can be obtained by assuming that A is 
uniformly distributed on the interval [0,o~) (Rubin (1981)). Using the 
transformation (3.4) the posterior density of Bj is then given by 

(3.9) f (Bj lX)  = Kj 

~-k 1 }1/2 

V,Bj + Vj(1 - Bj) VjB}k_s)/2 
k 1 

?=' V~Sj + Vj(1 - 8j) 

Wj[ k Xi 2 
• exp - -~-  ~1 ViBj+ Vj(1-Bj)  
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k Xi )2 

x__, v,.a,. + 5(1 - g )  
k 1 

£ 
i=1 WiBj + V j ( 1  - -  B j )  

=Kjg(Bg) ,  O_<Bj_< 1,  

where 

(3.10) 

In the unequal  variance case it is not possible to obtain exact closed 
form statistics like those in the preceding sections. It is, however, possible 
to calculate the exact moments  of OjIX numerically. Let 

and 

k Xi 
E 
i=l [ / / B j  7 t- ~/)(1 - -  B j )  

g = a j  k 1 + (1 - B:)Xj, 
Z 
i--~ v /Bj  + 5 ( 1  - B,) 

B, 
Rj-~ b ( 1 - B j ) +  

k 1 
E 
i=1 FiBs- + Vj(1 - Bs) 

Mlj  = f~ P j f ( B j l X ) d B s  = E(Pj) . 

Also, 

M2j = E(Rj) ,  

M~j = e(R]) ,  

M,j = E(P/), 

M .  = E ( R j P f ) ,  

M4j = E(RjP]), 

M~j = E(  P:) . 

Then the moments  about  zero are given by 

(3.11) 

(3.12) 

(3.13) 

E(OjlX__) = M l j  = Oj , 

E(0~I__X) = M2i + M3:,  

E(0:I__X) = 3M4s + Ms j ,  

M.= E(5~), 
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and 

(3.14) E(O 4 IX) = 3M6j + 6M7j + M8j j = 1 .... , k .  

By making use of the relationship between moments about zero and central 
moments, Var (0jI__X), the coefficients of skewness ~ = E{(O~-0 j )3 IX} /  
{Var (0~IX)} 3/2 and kurtosis f12 = E{(Oj - 0j)41_X}/{Var (01IX)} 2 can be calcu- 
lated. By using Pearson curves good approximations of the hierarchical 
Bayes confidence intervals can be obtained. 

Since numerical integration and simulation studies can be time 
consuming, it will be helpful if closed form approximations of certain 
expected values can be derived. Approximations of E(0jI__X) and Var (0jI__X) 
can be obtained by approximating E(Bjl__X). This can be achieved by 
deriving an approximately unbiased estimate of A and substituting it into 
(3.4). An unbiased estimate of A, relative to the marginal distributions of 

k 
X:. and the grand mean X = ( l /k) jZ ~ ,  is given by 

k ( N _ y ) 2  k - 2  i - 
(3.15) AJ= k _  ! k ~  Vj k -  I V j =  l , . . . , k ,  

with variance 

(3.16) Ts-i-  1 = )2 Var(Aj)=2  k - 2  V ~ + k 2 - - (  V + A j =  l , . . . , k ,  

k 
where V = (1 / k) ~1 Vj. 

The final estimator ~{p, for A, based on all the data, is then the 
weighted mean of all the A/s with weights inversely proportional to their 
standard deviations (from (3.16)). Notice that the weights themselves must 
be estimated by finding an initial estimate for A. To avoid iteration 
without losing too much accuracy, A is estimated by the unweighted mean 
of the A;s. So 

xwj 

where 

k - I  

~ =  (k -  1) b +  F + ( k -  1)3 +' 
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and 

A -  1 k 
k -  1 j~l ( : ~ -  ~ ) 2 _  V ,  

with 

+ 

y = max (O,y). 

The estimator Ap is not the maximum likelihood estimator for A, but 
is similar to the one given by Morris (1983b). Other related estimates 
appear in Carter and Rolph (1974), Dempster et  al. (1977) and Fay and 
Herriot (1979). 

The estimator for E(BjIX) is then given by 

(3.17) /~j_ k -  3 Vj k-s-i-~ b+A~ j= l , . . . , k ,  

where the constant ( k - 3 ) / ( k - 1 )  helps to correct for the non-linear 
dependence of Bj on A. 

Approximations of E(0sI__X) and Var (0~IX) are given by 

(3.18) ~(oA_x) = A + (l - ~j)(xj - A), 

(where/~ is/~ in (3.6) with Bi replaced by/~s) and 

(3.19) ~/ar (Oj[X) = Vj(1 - /~j)  + ~j2 fi + oj[~ + (Xj. - /2)2] ,  

where 

and 

(321) 
2 ( k - 2 )  /~j4( 1 k )2 k - 1  -- ) 

(v -v +T:S 

approximates the variance of/~j. The derivations of the approximations 
((3.15)-(3.21)) are quite lengthy and are given in Groenewald and van der 
Merwe (1985). An advantage of these approximations is that Ap will only 
be zero if all the component estimates of A, Aj, j = 1,..., k, are zero. It is 
therefore less likely that an (unrealistic) zero estimate of A will be obtained. 
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By assuming that 0j[__X is approximately normal the ( 1 -  a)100% 
empirical Bayes confidence intervals can be obtained. As mentioned by 
Morris (1977) it is not precisely true that 0jIX, j = 1,..., k, has the normal 
distribution. But 0j does have a normal distribution for fixed A and if A is 
estimated by .alp without large variance, then the normal distribution 
should hold approximately. On the other hand if the posterior variance of 
A is large in comparison with Vj, j = 1,...,k, then large skewness and 
kurtosis values will occur. 

Example 3.1 Hierarchical Bayes and empirical Bayes confidence intervals 
in the unequal variance case 

Alderman and Powers (1979) studied the effects of high school 
coaching programs on SAT-V (Scholastic Aptitute Test-Verbal) scores in 
eight schools, each school conducting a separate randomized experiment. 
Rubin (1981) analyzed these data with the purpose of illustrating hierar- 
chical Bayesian techniques that can be used to help summarize the evidence 
in such data about differences among treatments, thereby obtaining 
improved estimates of the treatment effect in each experiment. Here Xj, 
] = 1,..., 8, is the unbiased estimate of the j-th treatment. By using equations 
(3.9)-(3.21), E(0j[__X), Var (0A__X), x /~ ,  fl=, E(0jIX) and ~?ar (0jIX) were 
calculated. These values as well as Xj and Vj obtained from Rubin (1981) 
are given in Table 5. 

From Table 5 it can be seen that /~(0jI__X) and 'qar (0jIX) are good 
approximations of the true parameter values. The kurtosis f12 for all eight 
schools are greater than three. The deviations of the skewness and kurtosis 
values from 0 and 3, respectively, are indications that improvements in 
confidence intervals can be obtained by using Pearson curves. In Table 6 
the following intervals are given: 

PHBCIS: The Pearson curve approximations to the exact hierarchical 
Bayes confidence intervals. 

EBCIS: The empirical Bayes confidence intervals with normal approx- 
imation from (3.18) and (3.19);/~(0slS ) +_ 1.96 ('Car (0j[__X)) 1/2. 

Table 5. Xj, ~, exact and estimated moments of 0jIX. 

School A B C D E F G H 

28.4 8.0 - 2.8 6.8 - 0.6 0.6 18.0 12.2 
222.01 104.04 265.69 121 .00  88.36 129.96 108.16 309.76 

E(0j[X) 14.94 8.00 4.86 7.52 3,71 4.90 12.66 9.32 
Var (0jIX) 110 .17  5 7 . 7 3  101 .17  63.24 5 6 , 4 1  6 8 . 8 1  66.28 104.00 

0.610 0.018 - 0.371 - 0.025 - 0.261 - 0.250 0.325 0.166 
f12 3.741 3.408 3.990 3.484 3.284 3.504 3.305 4.090 

/)(0jlX) 15.10 7.98 4.36 7.54 4,34 5.15 12.04 9.38 
"Car (0jlX) 108 .69  56.24 107 .09  61.32 64.13 69.19 70.30 116.62 
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SHBCIS: Simulated Bayes confidence intervals conducted by Rubin 
(1981). 

MLCIS:  Usual maximum likelihood confidence intervals, ~ + 1.96 
(Var (Xj)) 1/2. 

A comparison of the PHBCIS and the SHBCIS shows that the latter 
is not very accurate. This is not surprising because these intervals were 
obtained from only 200 simulations. It is also clear that the empirical Bayes 
intervals (EBCIS) are good approximations of the true intervals (PHBCIS). 
In other experiments with larger skewness and kurtosis values these 
approximations will, however, be less good. Both the PHBCIS and EBCIS 
are much shorter than the usual intervals (MLCIS) which have an average 
length of 49.6. In fact the average hierarchical Bayes confidence interval 
(PHBCI) is 30.34% shorter while the average empirical Bayes confidence 
interval is 29.3% shorter than the maximum likelihood intervals. 
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