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Abstract. Let F=(Fi---Fi) denote k unknown distribution functions
and F = (F\---Fy) their sample (empirical) functions based on random
samples from them of sizes n,..., nx. Let T'(F) be a real functional of F.
The cumulants of T(F) are expanded in powers of the inverse of n, the
minimum sample size. The Edgeworth and Cornish-Fisher expansions for
both the standardized and Studentized forms of T'(F) are then given
together with confidence intervals for T(F) of level 1 — a + O(n”"?) for
any given o in (0, 1) and any given j. In particular, confidence intervals
are given for linear combinations and ratios of the means and variances
of different populations without assuming any parametric form for their
distributions.

Key words and phrases: Confidence interval, nonparametric, Cornish-
Fisher expansions, functional derivatives.

1. Introduction and summary

In a previous paper, Withers (1982a), the author gave Edgeworth and
Cornish-Fisher expansions for the distribution and quantiles of a function
of a number of unknown parameter estimates (@) say, in both its standardized
and its Studentized forms. This was used in Withers (1983b4) to obtain
confidence interval expansions for #{w).

In this paper we consider a real functional T(F) of a number of
unknown distributions F = (F--- Fy). These are estimated by their empirical
distributions £ = (F,---Fy) based on independent random samples of sizes
ni,..., k. By identifying (w, &) with (F, F) it is shown in Section 3 how to
obtain from the previous parametric results cumulant, Edgeworth and
Cornish-Fisher expansions for T(F) in both standardized and Studentized
forms as well as confidence interval expansions for T(F). Putting k=1
yields the one-sample results of Withers (1983aq).

The one-sided intervals given are j-th order in the sense that the
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difference between their true level and nominal level has magnitude n”*
where j >0 is any given integer and n is the sample size or minimum
sample size. An alternative second order confidence interval is that obtain-
able by bootstrap methods (see Hall (1986, 1988)).

Section 4 gives as examples confidence intervals for linear combi-
nations and ratios of the means and variances of a number of populations.
Regularity conditions are discussed in Section S.

The results are given in terms of the functional partial derivatives of
T(F), defined in Section 2. Example 2.1 allows these results to be stated in

terms of ordinary partial derivatives when T'(F) has the form H ( f fidF,...,
f fdek), where H, fi,..., fr are known functions. (All of the examples are of

this form.) Section 2 also defines notation used in the other sections.

2. Functional partial derivatives and notation

Let &, denote the space of distribution functions on R°. Let x, y,
X1,..., X, be points in R’, Fe &, and T: &, — R. In Withers (1983a) the
r-th order functional derivative of T(F) at (x1---x,), Tex = T8 (x1,..., X)),
was defined. It is characterized by the formal functional Taylor series
expansion: for G € Z;,

@D TG) - TF)=E [ THx,.... ) L d(Glx) = Fa)r!,

Y
where f denote r integral signs, and the constraints

(2.2) T...x, is symmetric in its r arguments ,
and
(2.3) [ Tewx. dP(x1) = 0.

These imply F(x;) in (2.1) can be replaced by zero.
In particular, it was shown that for0 <e <1

2.4) T=0T(F+e(d:— F))/de at e=0,
where J; is the distribution function putting mass 1 at x—that is d«(y) =
l(x<y)=1l1if ;< yifor 1 <i<sand O otherwise. For example, T(F) = F(y)

has first derivative

(2.5) Ty = TH(x) = 6:(y) — F(») = F(y)x, say.
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Also, Tx,..., = 01if T(F) is a ‘polynomial in F’ of degree less than r (for
example a moment or cumulant of F of order less than r), so that the
Taylor series in (2.1) consists of only r — 1 terms. (T'(F) 1s a ‘polynomial in
F of degree m’ if for any G in &, T(F + &G — F)) is a polynomial in ¢ of
degree m.)

Suppose now that F = (Fi,..., Fi) consists of & distributions on
R”,...,R*, and that T(F) is a real functional of F.

Then the functional partial derivative of T(F) at (;li i’) )

ey ar -+ a »
;:1...:,:7;( ! ) (xi€ R™, aie{l,2,...k}),
xl LY XI‘

is obtained by treating the lower order functional partial derivatives and
T(F) as functionals of F, alone for a = ai,..., a,. For example, T "%, is the
ordinary functional derivative of S(F,;) = T(F) at (x1---x,), and T AT
the ordinary functional derivative of S(F5) = T at (yi---ys).

Just as 3°f(x, y)/9xdy = 8> f(x, y)/ dydx under mild conditions, swapping
columns of T%.% (for example 7, and ;) will not alter its value.

The partial derivatives may also be characterized by the formal

functional Taylor series expansion: for G = (Gu,..., Gk) € FF;, X -+ X FHy,,
_ ~ o fr a - ar r N .
26) T(G)-T(F)~% f Tr ( X o x, )ﬂ d(Go(x)) — Fo(x))/r!,

with summation of the repeated subscripts a;---a, over their range 1---p
implicit, together with the constraints

2.7 w18 not altered by swapping columns ,
and
(2.8) J 187 dFux) =0

These imply Fu,(x;) in (2.6) can be replaced by zero.
The partial derivatives may be calculated using

(2.9a) Ti=S8, for S(F.)=T(F),

and

s e <-@r\Grs+ L e
(2.9b) VL= (TE)50 + 5 Gua T ar+1>,,
1=, H

1°°* Xr+1
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where 8; = 1 or 0 for i = j or i #j and { : means ‘drop the i-th column’. For
example T2 = (T9% + 0w T5. The proof of (2.9) is as for (2.6) of Withers

(1983a). '
The following notation is used: n = m]in Ri, Va = N/ Na,

[1, 12 = [ | T8(T®) dFu(x1)dFa(x2) ,
[1.2, 3% 123} = | [ [ T T2(T T dFdx1)dFs(x:)dFx3) ,

and so forth, and for S a number of sequences from and including I,
2,1,

k -1 k A1
(210) [S] = aZ:l Vo, - az::l Va, [S]alu-a, 5
where /: is the number of times a; occurs in S. For example,

k
[1]= 2 val 1L,

and
[12, 1233] = a%‘.a Va,Va3Va3[12, 1233]a|a203 .
Also we set
2 k 2r12
(2.11) <1 >=§va[1 ]os
and
k
(2.12) amﬁzgd“ﬁ43

Example 2.1. Let f= (fi,...,fx) be given functions from R’ = (R",..., R")
to R'=(R",...,R"), and let H: R’ — R be a given function. Suppose T(F) =
H(u(F)), where y(F) = (ui(F\),-.., ue(F¥)) and pe(Fo) = (par(Fa),.... s Fa))

=ffa dF, For 1 <pi=<s, set

H[m::m]=3HWN6mwmwmﬁ at = uF).
P Dr
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Then uqp(Fa) has first derivative

(2.13) Yapw, = fop(%a) — | fopd o,

forl<a<k, 1<p<s,x,€R" Also

(2.14) Te%=%H [;ﬁ ;', ] Hawpxr®+Maps »

summed over {1 < p; < sa,..., | <pr<sa},for{l<a<k,xie R*,1<i<r}.
(This follows by induction from (3.15) of Withers (1983a).)

Hence setting pf"* = f Hapix* apod Fo( X), we have

[ll]a=H[ a a]'uﬁlp:,
pip2

b R
[1 23 123]ab€ H[ ]H[ ]H[a C] pin ‘Ilzlu?s’
q:q3 rirrs

[1, 122]ab = H[ a ] [ ] [ 1qm qzrz ,
P a9 nr

and so forth, where summation over repeated suffixes (except for abc) is
implicit.

3. The asymptotic expansions

Let Fi,..., Fr be unknown distribution functions on R”...., R™. In this
section we show how to obtain nonparametric results from parametric
results. This is applied to obtain cumulant, Edgeworth and Cornish-Fisher
expansions for T(F) in its standardized and Studentized forms where T is
a real functional and F = (F,..., Fy) is a set of empirical distributions from
F=(F\,..., F) based on random samples of sizes ni,..., nx. Also given are
expansions for confidence limits for T(F).

In Withers (19824, 1983b) we considered an estimate & of a parameter
@ in R? with cross-cumulants expandable in the form

Y

oo . . 3
K(Diy. .., i) =~ 21 kiv'm7, r
j=r-

where 7 is known. We also assumed that E& — w as n — o, For ¢: R® = R
a function with partial derivatives
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tii.i, = 8’t(w)/(8w,~.---8wi,) ,

we obtained expansions for the cumulants of #(®) of the form
KA(1(@) ~ % amn’, r=1,
=

where {a,;}, the cumulant coefficients of #(®), are certain functions of the
cumulant coefficients of & and the derivatives of #(w)—for instance, ai; =

I(l)+l (2)/2 Wherel(l):ﬁ tiki, and I (2)=2t“kfj
o otlg) 4 o) = & Lkt otlg = LKy

Set n = max n, and v, = n/n.. Then F has cumulants

1-r 1-r. r—1 .
R - R Ka=n Vv, kK, if a=--=a=a say,
K(Fa(x1),..., Falx zf .
(Fa(x1)s..., Fax:)) 0, otherwise,

where x, = k(1(X2 < x1),..., {Xa < X)) = k(x1--- X% F,) say, and X, is a random
variable from Fv.. i
Hence we may identify w with F and & with F, to obtain

(3.1 K (T(F)) =~ 5'31 amn’,  r>1,

with aio,..., a3 given by p. 59 of Withers (19824) in terms of t(w) = T(F)
and Iz((z)),...,lml((z)(z)(z)) appropriately interpreted. This i1s done by setting
ki""=0if j#r~1 and replacing T by f ty. by T4 and k1" by
ﬁl v l(ar =+ = @) dr(x1x.Fa) .

Thus one obtains /; ((1)) =0 and

In(3) = 2JJ T2 = a)de(amaFa)
k
= az::al Va ff T;xisz(XI.sza) .

For X a random variable with distribution G on R®, the cumulant
function kx..., = k(x1---xG) may be expressed in terms of the central
moment functions

(3.2) fon = u (X1 G) = E,H1 ((X < x)) - G(x))) ,
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according to the usual rule for expressing cross-cumulants in terms of
cross-moments, namely (IL.b) of Leonov and Shiryaev (1959). In particular,

Kx = fxn = G(x1t A x2) — G(x1)G(x2) ,

3 3
Kxioxs = Uxixx = G(X1 N x: A X3) -Z G(X1 A X2)G(X3) +2 II—I G(x,~) .
and

3
Kxi-xs = ,Ux;--‘xla - 2 ,lexz,ux;m s

r r
where x; A - A x, = ( min Xi,..., MIN x,-s) for xi,...,x,in R,
1= =

3
2 fiz3 =fis + fouu + Sz,

and

‘324f12f34=f12f34+f13ﬁ4+f14f23.

Because of (2.8) in calculating expressions such as f f Tsadi(xi1x2 Fy)
above, we may replace fx..x, by G(xi A\ -+~ A x;). Thus 101((2))= 2 Va

ff TodF(xN\y)=% vaff TidF.(x)=[11]. In this way one obtains a0 =
T(F) and aa1,...,as3 in terms of

o9 ) -0
Wfon e
w@-una i)
dfuan wf-un,
T (gg) =11, 122}, B(g) =1 3313,
s@-vnn wEnanon
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1301(3(2)(2)) —[1,2,3,123] .
and hence
(3.4) aw=T(F), an=[1"], au=[11]/2,

an=[1"1+3[1,12,2],

an =[1, 11]+[12°]/2+[1,122] and

ass =[1]= 3%, 1% + 121, 12, 27T + 12[1, 2, 23, 31]
+4[1,2,3,123].

In particular, n"*(T(F) — T(F)) has asymptotic variance
o(F) = an =[17].

Hence the standardized form of T(F), Y. =n"(T(F) - T(F))/o(F)
satisfies (with Y, = Yn)

(3.5) 1Y) =~ n" El Ann™

with A10=0, A1 =1and 4, = a;{fﬂari for (ri) = (10).
In particular, setting [11] (F) =[11], T(F) as an estimator of T(F) has
bias [11]n"/2 + O(n %), while

(3.6) T(F)-[11}(F)n')2,
the ‘infinitesimal jackknife estimator’, has bias O(n ).
Now (3.5) implies that the distribution of Y, has Edgeworth and

Cornish-Fisher expansions in powers of n "> given by (1.5) of Withers
(1984). In particular,

(3.7) P(Y, < x) =~ B(x) - $(x) fvl; h(x, Fyn™™

where hi(-, F) = A1 + As2He,
ha(-, F) = (A2 + AT)He1/2 + (Ass + 4411 An)Hes [ 24 + A} Hes/ 72 ,
He, is the r-th Hermite polynomial, and @ and ¢ are the distribution and

density of a unit normal random variable.
Now consider the Studentized statistic
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(3.8) To(F)=(T(F) - T(F))/a(F) .

This can be identified with 70(®) of Withers (1982q), the Studentized form
of t(®). It follows that

(3.9) k(TP = £ (@n”, rz1,

where (ai0)1-+-(as3)s are given on p. 60 of Withers (19824) in terms of the
expressions given by (3.3) and

22
0, 12(02) ——x1D

(3.10) 13((";%):[13], 12((1)%)

W) o)),
14((2)3(2))=—2<12,12> and

22\ . (222} .
131(010) - 131(001) —[1,12,27.

These are obtained as was demonstrated for 101((2)). Where a derivative of a
cumulant function occurs—as indicated by a 1 or 2 on the bottom row of

an L("') function—one may no longer replace the corresponding fxx by

G(x1 A\ x2). For example, Iz(gg) involves kY i, which becomes dSF(;CJz aj)

where S(F) = z va 'lar = ayk(xixiFa). Set

W (Fa) = k(xixiFa) = Fo(xx N\ x1) — Fa(xi) Fu(x1)

Since V(F,) = Fa(y) has second derivative 0, it follows setting U(F,) =
Fy(xi) Fa(x1) that

WP (x, x)) = — U(xi,x)) = — = Faxw)x Fulx)x,
i

defined by (2.5) where ’ZJ fii=fi; + fi. Thus

lz(("g) = f b S ved(xix, F) b2 ved W(xi, x)1(a = b) T2 T,
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=~ 2vi [ dixix;F) T dFx)s dFx)s THTY

=23 [ diCuix; F)TSTS,  since [ TidFu(x), = T
=23 Vi[1"]a= - 2% (as claimed).
Hence one obtains (ai0) = 0, (az1): = | and
G.11) (aw) = [P711)/2 - [T 2+ 11, 12, 2))
(@s2)s = — [TH2[1°] + 301, 12, 2]) ,
(). = [P (1D - [1, 1] - [12]/2)
- [Py 2 + 11,12, 20) = 20515 + 4[1, 12, 2°]
+2[1,2,23, 311+ 2[1, 2, 3, 123}
+ P[0y 2 + 10, 12, 20
(as3)s = 2[12]‘2(6<12, 1 - [1*1-6[1, 2, 23, 311 - 4[1, 2, 3, 123]
- 12[1, 12, 2])
+ 6[12]‘3([13] +2[1, 12, 2])(2[13] +3[1, 12, 2]) .

Since (aw0)1 = 0 and (a21)2 = 1, Y2 = n'? To(F) satisfies (3.5) with A, =
(@) and so has Edgeworth and Cornish-Fisher expansions given by (1.5)
of Withers (1984) in terms of these {A,:}.

Let H.(x, F) denote h.(x,F) of (3.7) for Y, = Yu, that is with 4,;=
(ar:). Thus H, and H, are specified by (3.7) and (3.11). In particular,

Hi(x, F) = [1*T"[11]/2 - [12]‘3/2{[13](2x2 +1)/6 +[1, 12, 2](x* + 1)/6} .

By (3.7) for Y. = Y, confidence intervals (C.1.s) based on the approxi-
mation Y.~ .#(0,1) have error & of magnitude n'* for one-sided
intervals or n”' for a two-sided equal-tailed interval. This error can be
reduced to magnitude . by the method of second order inference: applying
Withers (1982b) (with 8 = T(F), Yu(8) = — Yn2, h{x) = — H( — x, F)) one-
sided C.1.s for T(F) of level @(x) + O(n’') are given by

(3.12) T(F) — a(En (x + Hi(x, Fyn”"?)y < T(F)

and
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(3.13) T(F) < T(F) + o(F)n "*(x — Hi(x, F)n™"?)
a two-sided C.L of level 2&(x) — 1 + O(n>) is given by
(3.14) TE)-{<T(F)<T(F)+,

where = o(F)n”*(x + Hax, F)n"), and the p-value of the hypothesis Ho:
T(F) = T, is given by

(3.15) (Yoo + Hi( Yoo, EYi ') + Opln™")

where Yo = n'A(To — T(E))] o(F).
Cumulant, Edgeworth and Cornish-Fisher expansions for

T(F) =~ £ To(Fyn

may be obtained similarly from Section 4 of Withers (1983a4). Likewise,
C.IL.s for T(F) may be obtained from Sections 1 and 2 of Withers (19834)
by inserting the expressions given in (3.3), (3.10) and

(3.16) 12(113) -0, 14((2)%?) =[1*] = <1317,

14(3';’) =[] - 304,15,

I”(z)%) 0 and 711(%)21) —[1, 11].

Thus for j = 1 as n — o one-sided C.L.s of level &(x) + O(n?) are given by

(3.17) Vil F,x) < T(F),
and
(3.18) T(F)< Viu(F, — x),

while a two-sided C.I. of level 2&(x) — 1 + O(n™"?), (J=j+ 1 for j odd,
J =jforjeven, x > 0) is given by

(3.19) Vi(E, x) < T(F) < Vin(F, — x),

where
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(3.20) Vu(F.x)= T(F)+ £ g{F,xn ",
qu(F,x)=—[1"]"x |
@:(F, x) =~ [11/2+ [UT'{[1P)2x" + 1)/6 +[1, 12, 2](x" + /2},
and
g F, x) = [12]"/2{ — B2+ [0, 1] +[127)/4 +1, 122]/2}x
+ [T, Y 2+ %) = [1113%° + 5x)/ 12
—[1, 12, 212" + 5x)/2 — (3[1, 2,23, 31]
+[1,2,3, 123])(x’ + 3x)/6}
+ [PT{IPT(16x° + 23x) + 48{1°][1, 12, 2](x° + 2x)
+18[1, 12, 272%" + 5x)}[72..

Note that since ¢:(F, x) = — [1’]"* Hi(x, F), (3.12) and (3.13) are just (3.17)
and (3.18) with j= 1. However, (3.14) is a simpler C.I. than (3.19) with
j =3, though both have error of magnitude »~.

In the one sample case (1) = [1°] and (1%, 17) = [1*], so that except for
(3.6), (3.14) and (3.15), the results of this section specialize to those of
Withers (1983a). The errors in these approximate C.1.s satisfy Theorem 3
of Withers (19834) and Theorem 3.2 of Withers (1980) with [12] and
gj+1(F, x) as redefined here.

The results of this section were initially found by generalizing the
technique of Withers (1983a). However, the present method is more
instructive and probably less prone to error. It may be useful—for example
to apply Theorem 3.2 of Withers (1980)—to include the following version
of (@21)101 of Section 5 of Withers (1983a):

(@ = — [T'([1. 1]+ {1, 122])
+IPTAIK 2+ ([1°]/3 = A2 1 + 1, 12, 277)2x7 + 1)
+(201, 2,23, 311+ 2[1, 12, 2] +[1, 2, 3, 123])(x + 1)}

- [PP{I1R + 1)+ 3{1, 12, 28 + D}K/2,

where K =[1'] + 2[1, 12, 2].
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4. Examples

The expansions of Section 3 were given in terms of the [-] and ()
functions defined in Section 2. Here we obtain their values for some simple

cases. We use uq = U Fa) = f f«dF, to denote the mean of the a-th distri-
bution after a given transformation f;: R* — R has been applied, and
Uaj = Haj(Fg) :f(fa — uay'dF, to denote the j-th central moment of the

transformed distribution. Typically s, =1 and f,(x) = x; however, log and
power transformations are also commonly used.
For S a series of sequences from 1, 2,... set

[S1(Tiw) = [S)e = [STea-- ,

of Section 2 with (7, F) = (T(a), Fo).
k
Example 4.1. Linear combinations: T'(F)= % Ta(Fo):

since  To =la=b=-)T& .,
we have
[Sk.= 1@ = b =-)[S),
so that

[0, 11 == v 117,
[1,12,21=2vi' 1, 12, 2.,
[127]= = vi[12%].,
[1,122] = = vi[1, 122].,
[1,2,23,311=2v[1, 2,23, 31].,
[1,2,3,123]==v)[1, 2, 3, 123].,
A=y’ and 1% 1=V,
Example 4.1.1. A linear combination of means: T(F)=X caiia:

Ha(Fo) has first derivative uax = fa(x) — uo and higher derivatives vanish; the
non-zero terms are

[lj] =X Vfld/laj, (12> =2 Vtzzc(zz,uaz and (12, 12> =X vf,cg,uﬁz .
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C.L.s are given by (3.12)—(3.14) with

Hi(x, F)=—[1"T[1’12x" + 1)/6  and
Ho(x, F) = [T 05x/ 2+ [P0, Y - /2 - [14(x° - 3x)/ 12}
+[PTIPPE + 2x° - 3x)/ 18,

and by (3.17)-(3.20) with

q(F,x)= =[x,  q(F, 0 =[PT'['J2x" + 1)/6 and
gy(F,x) = = [PTX0%x/2 + [T, 1512 + %) = [193x° + 5x)/ 12}
+ [T PT6x° + 23x)/72 .

If one knew a priori that the populations were not skew, i.e., that
[1’1=0, then instead of (3.12), (3.13) one would use (2.3) of Withers
(1982b).

In the case of T(F)=p, the mean of a single population with
variance ¢ = u1,, these simplify: putting A; = ¢ ‘u, the standardized j-th
moment, we have

Hi(x, F) == 0 'q:(F,x) = — 12x* + 1)/6,

Ha(x, F) = x]2 = Aa(x® = 3x)/ 12 + 23(x° + 2x° — 3x)/18,

o 'gi(F,x) = (X" + x)/2 — A(3x* + 5x)/ 12 + A3(16x* + 23x)/72 ,
while from Section 5 of Withers (1983a), a_1q4(F, x)=As(— 19— 19x% +
36xY)/12 + A5(27 + 86x” + 24x*)/ 120 — A:A4(14 + 55x% + 18x%)/36 + A3(110 +
529x* + 192x%)/648.

These C.I.s provide nonparametric alternatives to the C.I. derived
from the k-sample r-statistic

tr=f"(N(F)- N(F))/o(F) where f=Z(n.—1),
N(F)=2 cata  and 6 (F) = (T cina') T noptar .

The latter C.1. is only exact for normal populations with equal
variances; if the variances are not equal, its a-level is not even asymptotically
correct unless

4.1 (Z &) TV thar = (Zv2") T cavaptar

which is true if |c.|/n. does not depend on a. (In the general case, an
expansion for the distribution of # is obtainable by applying Section 3 to
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T(F)=f""1; c.f. Subsections 2(b) and (c) of Geary (1947) as corrected on
p. 403 of Gayen (1950), and Example 2 of Withers (19834); an alternative
expansion when k£ =2 and cumulants beyond the fourth are zero is given
by Tan (1982), but the magnitude of the error of this approximation when
cumulants are non-zero is not given.)

Example 4.1.2. A linear combination of variances: T(F) =X colla:
Ua has first and second derivatives pax = tlx — paz and Hazzy = — 2Waxflay,
where fax = fao(X) — pa, while higher derivatives vanish. Hence

[1°]= = vacalpta = )
where (is — 43)a = Mas — Haa. Similarly,

[1°] =X vica(us — 3papiz + 248)a
(1] = Z vacd us — dpspt + 6ptats = 3183)a ,
A = T vica(pa — 1)a
(1% = = vica{(ua — pd)a}’
[11]=-2Z vacaliaz ,
[1,12,2]= - 2 S vicius,
[1, 11]= = 2 % vi&cX(ps — ti3)a,
[122] =4 = viciuh,
[1, 12,25 =~ 2 Z vica(psps — 243 2)e
[1,2,23,31]=4 S viciulspm and
[1,122]=[1,2,3,123]=0.

Example 4.2. Products and quotients: T(F) = Tu(F)Tp(F) = T T,

11202
say: Tx vy = Tya-x T2y, 80 that

(1] = v{ [V T3 + vi VLT = Svi {1174,
where
ﬁf(Tm, Ti2), v1, v2) = f (T, Ty, v1, v2) + f(Ty, Ty, v2, V1)
[11]=Sv[lILD,  [1, 11]= £v[1, 1L T2,

[1, 12, 2] = = {{*'[1, 12, 2014 + v THPL B[V 'L
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[129] = EVi[122 T2 + 2w H[1%]:
[1, 122 = P31, 122073 + v PLLTS)
[1,2,23, 31]= é{v?[l, 2,23, 30 T+ vin[PLTH([I°T + 271, 12, 211},
[1,2,3,123] = ﬁ{vi[l, 2,3, 123,73 + 3vin T\ T3[1, 12, 2]1[12]2} ,
A= SA[ILTE and (I 1B = SRS,
The coefficients for a quotient may be obtained by applying this to

= Toy(F) = Te(F) ' = T3, say:

from
Too=— T3 T, Toy=— T3 T + 2T T Ty
and
oo = = T3 Ty + 2T5 S ToxToye — 6T5 Tss Ty T
where
S fige = fore + e+ fory
we have

VL=~ T}z)j[lj]g, [11]a=— T5[11]s + 2T3[1°s,

[1, 11}, = T51, 11 — 2T5°[1)s

[1,12, 2] = (- T340, 12, 2] - 2T3' [P

[12°) = T5'[12° - 47571, 12, 2] + 451

[1, 122], = T51, 122); — 2T§5{[12]3[11]3 + 21, 12, 1]3} + 6T ('R,

[1,2,23, 31 = 731, 2, 23, 31%: — 4T [1)[1, 12, 1] + 4T3[ 1°R,
and

[1,2,3,123h = T3'[1, 2, 3, 123); — 6 T5[1°1s[ 1, 12, 115 + 675" [1°F5 .

Example 4.2.1. The ratio of two means: T(F)=m/pu= T, say:
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setting G1 = viga ptr2, Ga = voptz una T2, Hy = vipa s, Ha = vips’ yn T°, the
coefficients needed for H; and g- are
[171= G+ Ga, [11]1=2G.T,
[Pl=H.—H, and [1,12,2]=[1"11];
the coefficients needed for H, and g3 are
A =G -G, < 1H=wnGi+wnG, [1,11]1=-2H, T,
[ =vig e + Vit uaa T, [12°]=11, 12,2177,
[1,12,21=- HAG +2G)T™", [1,2,23,31]1= GAG, + 4G[111T,
[1,2,3,123]=6GH1*]T and [I,122]=2G:«G: +3G)T*.
In particular,
(@i =—[T7GT" - [I'T"[)/2,
(an)s = — 6['T "G, T = 21T [ 1],
(@) =—-3G, T+ [12]“(<12> +6H,T™" + 6(‘;%7‘2)
+ PTG T (ISH  — 11H) + X1%, 1)) + 71PT[1°)/4,
(as)s=— 12G. T+ 12171 (7G3T* + 2H,T ™)
+ I[P 1 - [171/6 = 3G2 T + GoT7\(TH, - SH))
+ 2011,
and
Hi(x, F)=—[I'T?G,T7'%* ~ [1'T[1°)2x" + 1)/6 .

Note that if it is known that u; # 0, then the test of u = u, derived
from the confidence interval for ui/u, provides an alternative to the test of
u1 = uy derived from the confidence interval for g, — w2 given in Example
4.1.1; a third alternative for a test that x4, = g is that derived from the
confidence interval for u;/u;. Their AREs are one. A similar remark
applies to the tests of a1 = 03 derivable from Example 4.1.2 and the next
example.

Example 4.2.2. The ratio of two variances: T(F) = ui2/t2: the
required coefficients are given by the first part of Example 4.2 in terms of
T = 2, Tr = paa,
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[ = pa — pta,  [P]i= pis — Bpaapa + 241t

[1': = pis — 4z + 6piaptts — 3t

[1) = = 2, [1, 12,20 = = 2uis, [, 1] = = 2(s — pha) |
[12°] = 4pds,  [1,12, 27T = = 2(pispns — 2pispnn)

[1,2,23, 31 = dutspnn,  [1,12210=101,2,3,1231, =0,

and the second part of Example 4.2 with T3 = u; and [-]s = [-]1 with {uu}
replaced by {u2}. In particular, T(F) has asymptotic variance

2
[171/n = (2] 122)" E (ptas] 2 = 1)/ 1
=2ni' + " YT(F) for (Fi, F») normal .

The associated confidence interval for a variance ratio and the associated
test for equality of variances are important as they provide alternatives to
the confidence interval and test based on the usual assumption that

mny — D'y = 1) T(F)] T(F) ~ Fa11 -

The latter are not even consistent unless s/ (a2 = 3, as for normal popula-
tions. In short, procedures based on the F-distribution are notoriously
inconsistent for non-normal populations. The ‘correction terms’ g F, x),
etc., are NOT zero even for normal populations: in fact, if (Fi, F2) are
normal, then

g F, x) = {5(vi = v2) + 2x°(2v1 + W)}T(F)/3 ,

while T(F) has bias ~ann"' = (—ni' + 3m ) T(F) (negligible only if n, =~
3n1) and skewness (13) = ason > = 8(mi' + ma')ni' + 2n” ) T(F)’.

Note. 1f ¢ is a one to one increasing function on the range of T'(F),

J
an alternative to a C.1. for qo = T(F) based on V= ZO‘. n g, is to use a

J
C.1. for g6 = ¢(T(F)) based on Vjz = 2 n"*q;, where ¢; is the coefficient of

n " in e(Vin) forj=r:

G =caq, GgG=aqgptaq2, g=ag+aqgt+ g6,

and
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gi = c1qs + c{qqs + g5/2) + ¢3qiqa) 2 + caga/24

where ¢; = (T (F)). In particular, the C.Ls for ui/u> (if known to be
positive) and pi2/u2, derived in this way from Examples 4.2.1 and 4.2.2
with ¢(T)=1log T are likely to be more robust than the original C.Ls.
(These ¥j» could also be derived directly from Example 4.1.)

5. Regularity conditions
For k=1 these are given in Withers (1983a), based on the results of
Bhattacharya and Ghosh (1978) for T'(F) = H(fde). Extension of their
results to k-samples—that is, to
5.1 F=(F,...,F),
T(F)= H(ffldFl,...,ffdek) = H(u,..., ) say,

should be straightforward. We note here an alternative approach which is
available for (5.1) when

(5.2) n.=m,N for my,..., mx bounded integers and N an integer .

Set flan, = f fdF,. Then fisn, may be considered as the mean of a random
N o e
sample of size N, say fan= N §1 Xia, where Xj; has the same distribution

as fam, say Fam(x), the mg-fold convolution of P(fi(X.) < x), where
Xa -~ Fa.
Thus writing 4 = (u1,..., ) and 4 = (du,..., fix) we have

M=

A=N"'32 X%, where X,=(Xa...,X).

i=1

1l

Hence the results of Bhattacharya and Ghosh (1978) may be applied or the
results of Withers (19834a), where now

(5.3) F(x)= lfI Fam.(xa) ,

N ~
with empirical distribution Fy(x)= N 2 1(X. = x).



746 C.S. WITHERS

REFERENCES

Bhattacharya, R. N. and Ghosh, J. K. (1978). On the validity of the formal Edgeworth
expansion, Ann. Statist., 6, 434-451.

Gayen, A. K. (1950). Significance of difference between the means of two non-normal
samples, Biometrika, 37, 399-408.

Geary, R. C. (1947). Testing for normality, Biometrika, 34, 109-242.

Hall, P. (1986). On the bootstrap and confidence intervals, Ann. Statist., 14, 1431-1452,

Hall, P. (1988). Theoretical comparisons of bootstrap confidence intervals, Ann. Statist., (10
appear).

Leonov, V. P. and Shiryaev, A. N. (1959). On a method for calculating semi-invariants,
Theory Probab. Appl., 4, 319-329.

Tan, W. Y. (1982). Sampling distributions and robustness of ¢, F and variance-ratio in two
samples and ANOVA models with respect to departure from normality, Comm. Statist.
A—Theory Methods, 11 (22), 2485-2511.

Welch, B. L. (1947). The generalisation of ‘Student’s’ problem when several different
population variances are involved, Biometrika, 34, 28-35.

Withers, C. S. (1980). Accurate nonparametric inference—the one sample case, Tech.
Report 97, Applied Mathematics Division, DSIR, Wellington, New Zealand.

Withers, C. S. {1982a). The distribution and quantiles of a function of parameter estimates,
Ann. Inst. Statist. Math., 34, 55-68.

Withers, C. S. (1982b). Second order inference for asymptotically normal random variables,
Sankhya Ser. B, 44, 19-27.

Withers, C. S. (19834). Expansions for the distribution and quantiles of a regular functional
of the empirical distribution with applications to nonparametric confidence intervals,
Ann. Statist., 11, 577-587.

Withers, C. S. (1983b). Accurate confidence intervals when nuisance parameters are present,
(submitted).

Withers, C. S. (1984). Asymptotic expansions for distributions and quantiles with power
series cumulants, J. Roy. Statist. Soc. Ser. B, 46, 389-396.



