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Abstract. Let F =  (F1...Fk) denote k unknown distribution functions 
and /e= (pl...iek) their sample (empirical) functions based on random 
samples from them of sizes nl ..... nk. Let T(F)  be a real functional of F. 
The cumulants of T(F) are expanded in powers of the inverse of n, the 
minimum sample size. The Edgeworth and Cornish-Fisher expansions for 
both the standardized and Studentized forms of T(/0) are then given 
together with confidence intervals for T(F)  of level 1 - a + O(n -j/2) for 
any given a in (0, 1) and any given j. In particular, confidence intervals 
are given for linear combinations and ratios of the means and variances 
of different populations without assuming any parametric form for their 
distributions. 

Key words and phrases: Confidence interval, nonparametric, Cornish- 
Fisher expansions, functional derivatives. 

1. Introduction and summary 

In a previous paper, Withers (1982a), the author gave Edgeworth and 
Cornish-Fisher expansions for the distribution and quantiles of a function 
of a number of unknown parameter estimates t(d~) say, in both its standardized 
and its Studentized forms. This was used in Withers (1983b) to obtain 
confidence interval expansions for t(co). 

In this paper we consider a real functional T ( F )  of a number  of 
unknown distributions F = (FI...Fk). These are estimated by their empirical 
distributions F =  (fl'l'"fl'k) based on independent random samples of sizes 
nl,. . . ,  nk. By identifying (~, &) with (F, F)  it is shown in Section 3 how to 
obtain from the previous parametric results cumulant,  Edgeworth and 
Cornish-Fisher expansions for T(F)  in both standardized and Studentized 
forms as well as confidence interval expansions for T ( F ) .  Putting k = 1 
yields the one-sample results of Withers (1983a). 

The one-sided intervals given are j- th order in the sense that the 
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difference between their true level and nominal  level has magni tude n -j/2 
where j > 0 is any given integer and n is the sample size or m in imum 
sample size. An alternative second order confidence interval is that  obtain- 
able by bootstrap methods (see Hall (1986, 1988)). 

Section 4 gives as examples confidence intervals for linear combi-  
nations and ratios of the means and variances of a number  of populat ions.  
Regularity conditions are discussed in Section 5. 

The results are given in terms of the functional partial derivatives of 
T(F),  defined in Section 2. Example  2.1 allows these results to be stated in 

terms of ordinary partial derivatives when T(F)  has the form H(f f idF1 , . . . ,  
\ 

jfkdFk), where H, f l , . . . ,  fk are known functions. (All of the examples are of 

this form.) Section 2 also defines notat ion used in the other sections. 

2. Functional partial derivatives and notation 

Let ~ s  denote  the space of distr ibution functions on R s. Let x, y, 
xt,.. . ,x~ be points in R s, F e  ~ and T: ~ ~ R. In Withers (1983a) the 
r-th order functional derivative of T(F)  at (x~...xr), T~,...x, = T~)(x~,..., x,), 
was defined. It is characterized by the formal  funct ional  Taylor  series 
expansion: for G e ~ 's ,  

(2.1) 
r 

T(G) - T(F)  ~ Z fr T(Fr)(X1 Xr) jI~= 1 d(G(xj)  - F(xj))/r!  
r = l  " ' ' ~  = 

where f' denote r integral signs, and the constraints 

(2.2) T~,. .... is symmetric in its r a rguments ,  

and 

(2.3) f Tx ...... dF(xl)  = O . 

These imply F(xj) in (2.1) can be replaced by zero. 
In particular, it was shown that  for 0 _< e < 1 

(2.4) Tx = OT(F+ e(C~x - F))/Oe at e = O, 

where fix is the distr ibution funct ion putt ing mass ! at x - - t h a t  is fix(y)= 
1 (x __ y) = 1 if xi <- yi for 1 _< i _< s and 0 otherwise. For example, T(F)  = F(y) 
has first derivative 

(2.5) Tx = TFll)(x)  = c$.(y) - F(y) = F(y). ,  say.  



NONPARAMETRIC CONFIDENCE INTERVALS 729 

Also, Tx,...~, = 0 if T ( F )  is a 'polynomial  in F '  of degree less than r (for 
example  a m o m e n t  or cumulan t  of F of order  less than r), so that  the 
Taylor  series in (2.1) consists of only r - 1 terms. ( T ( F )  is a 'polynomial  in 
F of degree m'  if for any G in ~ ,  T ( F +  e(G - F ) )  is a po lynomia l  in e of 
degree m.) 

Suppose  now tha t  F =  ( F h . . . , F k )  consists  of k d i s t r ibu t ions  on 
R s', .... R ~', and that  T ( F )  is a real functional of F. (ar) Then t h e f u n c t i o n a l p a r t i a l  derivative of T ( F )  at a~ 

X1 Xr ' 

..... a, ( al "" a, ) Txl...x. = T F  (Xi ~ R s°', a~ ~ {1, 2,..., k}) 
X !  " ' "  X r  ' 

is obtained by treating the lower order funct ional  partial derivatives and 
T ( F )  as functionals  of Fa alone for a = ah. . . ,  ar. For  example,  Tx~;::.~x, is the 

T a . . . a b . . . b  ordinary funct ional  derivative of S(Fa) = T ( F )  at (Xl...x,), and ........ y,...,, is 
the ordinary functional derivative of S(Fb) = Ta;::.~, at (yl '"ys).  

Just as 02f (x ,  y) /Oxay -- oZf (x ,  y ) /ayOx under  mild conditions, swapping 
columns of ar.,a, a~ T~,...~, (for example ~, and ~) will not alter its value. 

The partial derivatives may also be characterized by the formal  
functional  Taylor series expansion: for G = (G1,..., Gk) ~ ~ ,  x ... × o-~, 

a,) (2.6) T ( G )  - T ( F )  ~. TF f i  d(Ga,(Xj) - F~,(xj))/r! 
- X l  " ' "  X r  j=l 

with summat ion  of the repeated subscripts a~...a, over their range 1...p 
implicit, together with the constraints 

(2.7) al...a, Tx,...x. is not altered by swapping co lumns ,  

and 

(2.8) f al...at TL..x, dF, , (xO = O . 

These imply Fa,(xj) in (2.6) can be replaced by zero. 
The partial derivatives may be calculated using 

(2.9a) T a  x -  Sx for S(F~) = T ( F )  

and 

Txl...xr+l (2.9b) ......... a,. .... a,., = (T~ ...... ) .... + Z ,~ ,r/al '"ar+l\  
i=l . . . . . . . .  ~ l ' ' ' X r + l / i  ' 
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where flu = I or  0 for  i = j  or  i C j  and ( )~ means  'drop the i-th column' .  F o r  
example  T~y b = (T~)~ + c~,~bT~. The p roof  of (2.9) is as for  (2.6) of  Withers  

(1983a). 
The following nota t ion  is used: n = min n~, v~ = n~ n,,, 

1 

[1,123]~e = f f Tg,( T~b,~,)3dF~(x,)dFb(x2) , 

f f f  ° ~ ~= ~ F, , [1, 2, 3-, 123]~b~ = T.~,T;,(Tx,) T., .... dF~(xOdFb(x2)d ~(x3) 

and so forth,  and for S a number  of  sequences f rom and including l, 

29ooo~ r~ 

k k 2 - 1  
(2.10) [ s ]  = o ~ ,  ~2-'  ... z vo: IS]o, ~ 

= ar=l ' 

where  )L~ is the number  of  times a~ occurs in S. Fo r  example,  

[14] = ~; v~[14]~, 
a = l  

and 

[12, 1233] = Z V~,Va~V~,[12, 1233]o,, .... 
gt~a2a3 

Also we set 

(2.11) <12> ~ 2 2 = v~[1 ]o 
1 

and 

(2.12) 

Example 2.1. 

<,2,  = v (L , Io; 
Let./ '= (jq,...,J~) be given functions f rom R s = (R~',..., R ~) 

to R t = (R",. . . ,  R"), and let H: R z --  R be a given function. Suppose T(F)  = 
H(lt(F)),  where B(F)  = (/~l(F,),...,kt~(Fk)) and/~o(F~) = (pMF~), . . . ,p ,~(F~))  

= ff~ dF~. For  1 < p~ _< sa, set 

H[  al "'" a, ]=O,H(p)/(O~a,p...Olc,.pr) pl p, 
at /~ = p ( F ) .  
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Then pap(Fa) has first derivative 

(2.13) /Zapxo = f,p(X~) - f fapdFa , 

for 1 <_ a <_ k,  1 <_ p <_ Sa, Xa E R ~°. Also 

.°° ] 
T;  ...... = E H /la,ptx,'''pa,prX,, (2.14) ., ..., a l  a, 

pl "" p~ 

summed over {1 ~ p l  ~ Sa,,..., 1 < pk <-- S~,}, for {1 < ai <- k,  x i  E R "°', 1 < i <_ r}. 
(This follows by induction from (3.15) of Withers (1983a).) 

Hence setting it p'p" =fpop,x...p~prxdFa(x), we have 

[l l]a = H [  a a]flPa,m, 
p ip2  

/~a /~b /~c , 
p l q2q3 rlr2r3 

, = /Za  /-/b , 
pl  ql q2 r~r2 

and so forth, where summation over repeated suffixes (except for abc) is 
implicit. 

3. The asymptotic expansions 

Let F~,..., Fk be unknown distribution functions on RS', . . . ,  RsL In this 
section we show how to obtain nonparametr ic  results f rom parametric 
results. This is applied to obtain cumulant,  Edgeworth and Cornish-Fisher 
expansions for T(F)  in its standardized and Studentized forms where T is 
a real functional and P = (Pl,. . . ,  Fk) is a set of empirical distributions from 
F =  (F1 .... , Fk) based on random samples of sizes hi,...,  nk. Also given are 
expansions for confidence limits for T ( F ) .  

In Withers (1982a, 1983b) we considered an estimate 03 of a parameter  
co in R p with cross-cumulants expandable in the form 

K(&i,,..., &i,) ~ E Kj" i'"'i'n -j, r >- l , 
j=r-1 

where n is known. We also assumed that E& ~ co as n -- oo. For  t: R p ~ R 
a function with partial derivatives 
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ti,...ir = O'  , 

we obtained expansions for the cumulants of t(&) of the form 

K~(t(&)) ~ Z, a~jn -j, r >_ 1 
r-1 

where {arj}, the cumulant coefficients of t(&), are certain functions of the 
cumulant  coefficients of (5 and the derivatives of t(o))--for instance, a~ = 

I1(0) + Io1(~)/2, where I1(~) = i=I ~ t ik[ ,  and lo1( 2)0 = Z.ts tijk~J" 

Set n : max n a  and va = n / n o .  Then F h a s  cumulants 

1-r 1-r r-I  
n a  Ka = n Ya Ka 

. . . .  , P o , ( X r ) )  = o ,  
if a l = " "  = ar = a 

otherwise, 
say,  

where K~ = K(l(Sa <-- X l ) , . . . ,  I(X~ ~ Xr))  = X(XI"" . X r F a )  say, and X, is a random 
variable from F~. 

Hence we may identify co with F and & with F, to obtain 

(3.1) 
oo 

x ~ ( T ( P ) )  .~ Z arjn -j, r >_ 1 
r-1 

with at0,..., a43 given by p. 59 of Withers (1982a) in terms of t(co) = T ( F )  

and I2 (~) , . . , I  /222] • 30t[000 ] appropriately interpreted. This is done by setting 

k j  i~ir 0 if j ~ r 1 and replacing Y. by f, tij.., by ~'"~ ~,...ir = - Tx, x~... and kr- 1 by 
k 

Z v~[ 11(al . . . . .  a r ) d x ( x l . . . x r F ~ 3  . 
al=l 

Thus one obtains Ilia] = 0 and 

(2) ..,o, 
lol 0 = . l ..... v~, Ira1 = a z ) d ~ ( x l x a F ~ , )  

= Z v~ T .... d X ( X l X 2 F ~ ) .  
a=l 

For X a random variable with distribution G on R s, t h e  c u m u l a n t  

f u n c t i o n  Xx,. ..... = X ( X l . . . x r G )  may be expressed in terms of the c e n t r a l  

m o m e n t  f u n c t i o n s  

(3.2) p ....... = p ( x l . . . x r G )  = E ~ ( l (X _< xj )  - G ( x j ) )  , 
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according to the usual rule for expressing cross-cumulants in terms of 
cross-moments, namely (II.b) of Leonov and Shiryaev (1959). In particular, 

l¢ .... = llx,x~ = G ( x t  A X2) - G ( x t ) G ( x 2 )  , 

3 3 
K . . . . . .  = ,tt ....... = G(x1  A x2 A x3) - ]~ G(x1  A x 2 ) G ( x 3 )  + 2 I-I G(xi) 

I 

and 

3 
K . . . . . . .  = I~x, .  . . . .  - X l t x , x , p  . . . . .  

( ,  r ) 
where x~ A ... A x~ = min x,, . . . ,  min Xis for Xl, . . . ,  Xr in R s, 

i=1 i=l 

and 

3 
'Y'~A23 =f123 -J'-f231 -{'-J~12 , 

3 
Zf12j~4 =f12J34 +ft3j34 +fl4f23 • 

Because of (2.8) in calculating expressions such as f f  T~ ,x~&(x ,x2F~)  

above, we may replace p ....... by G ( X l  A ... A xr).  Thus Io~ 0 = Z v~ 

f f  oo f f  oo • T v d F ~ ( x  A y )  = X Va T~,xdFa(x) = [1 I]. In this way one obtains alo = 

T ( F )  and a21,..., a43 in terms of 

(3.3) I2(~) = [12], 

io,(~) = [ill, 

[ [22~ 
2,~00) =[1,  12, 2], 

h~(~) = [1, 11], 

(22) = [1,122], Iiol O0 

I /23"~ 3~ ~00) = [ 1, 12, 22], 

o 

0 

/, /22~ 
O2~o01 -- [ 12 ] ,  

I4(4) = [14] - 3<12, le>, 

I [222~ 
221000 ) = [1 ,  2, 23,  31]  and 
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f222~ 
o,[000 ) = [1, 2, 3, 1231, 

and hence 

(3.4) 
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alo = T ( F ) ,  a21 = [12] ,  a l l  = [ 1 1 ] / 2 ,  

a32 = [13 ] + 311, 12, 2] ,  

a22 = [1, I1] + [122]/2 + [1, 122] and 

a43 = [ 1 4 ]  - -  3(12, 12) + 1211, 12, 22] + 1211, 2, 23, 31] 

+ 411, 2, 3, 123]. 

In particular, n~/2(T(F) - T(F))  has asymptotic variance 

Hence the standardized 
satisfies (with Y. = Ynl) 

a (F)  2 = a=l = [12]. 

form of T(F) ,  Ynl = nU2(T(F ") - T ( F ) ) / t r ( F )  

(3.5) lCr(Y,~) ~ rl r/2 ~ Ar i r l  - i  , 
r-1 

r/2 with A~o = 0, A21 = 1 and Ari = a21 a¢i for (ri) ~ (10). 
In particular, setting [1 1] (F) = [1 1], T(P)  as an estimator of T(F)  has 

bias [1 1]n-~/2 + O(n-2), while 

(3.6) T(F)  - [11](P)n-l /2,  

the 'infinitesimal jackknife estimator', has bias O(n-2). 
Now (3.5) implies that the distribution of Yn has Edgeworth and 

Cornish-Fisher expansions in powers of n -~/2 given by (1.5) of Withers 
(1984). In particular, 

(3.7) P( Y, <_ x) ~-" qb(x) - qS(x) Z hr(x, F)n -r/2 
I 

where hff. ,  F) = All + A32He2, 

h2(-, F)  = (A22 + A~1)Hel/2 + (A43 + 4Al~A32)He3/24 + A~2Hes/72, 

Her is the r-th Hermite polynomial,  and qi and 4) are the distribution and 
density of a unit normal random variable. 

Now consider the Studentized statistic 
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(3.8) To(F)  = ( T(-P) - T ( F ) ) /  a ( F )  . 

This can be identified with t0(d~) of Withers (1982a), the Studentized form 
of t(&). It follows that 

(3.9) tc~(To(P)) ~ ~- (ari)rn -i, r >_ 1,  
r-1 

where (a10)l.-.(a43)4 are given on p. 60 of Withers (1982a) in terms of the 
expressions given by (3.3) and 

) = /~/12] 22 [13], = 0, 
(3.10) 13 01 2~,011 

, ,(22)=[I, i11, Ill O1 

[ [22] 
2~02) = _ 2(12), 

B1222/ 2) 
(020) = - 2(12' 1 and 

/222 / = ,  [222] 
I31~010 / ,3t~001 }=[1, 12, 22]. 

2). Where a derivative of a These are obtained as was demonstrated for 101 0 

cumulant function occurs--as indicated by a 1 or 2 on the bot tom row of 

an L(III ) funct ion--one may no longer replace the corresponding/~ .... by 

22 involves k~u, which becomes dSF xixj  G(Xl A x2). For example, h 2 
v 2 - 1 , .  where S ( F )  = Z ,~ lta~ = al)K(XkxlF,,). Set 

ak 

W ( F a )  = x ( x k x t F o )  = Fo(x~ A xl) - G ( x ~ ) G ( x t )  . 

Since V ( F ~ ) =  F~(y) has second derivative 0, it follows setting U ( F a ) =  
F~(xk)G(xl)  that 

[xz(2). (2) 
= - U): (xi, xj) = Z Fa(xk)x,F,(xt)x,, "V F. tX i ,  X j )  

O 

defined by (2.5) where Z f j  = f i  +f i .  Thus 
U 

(23) {222~ = 
h 10 = I4tlOl/  [14] - 02, 12)' 
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-_ _ f4  T~ Tb Ig V 2 dK(x~x1F~) Z dF~(xk)x,dF~(xl)x, . . . . .  
a I I 

2 Y v ~ f  2 T o  a a = - dx (xex jF , , ) l  x, Tx, since f TadF, ,(x)y  = Ty 

= - 2 £ V][12]a = -- 2(12) (as claimed). 

Hence one obtains (alO)l = 0, (a21)2 = 1 and 

(3.11) (ai~)i = [12]-1/2[11]/2- [lZ]-3/2([13]/2 + [1, 12, 2]), 

(a32)3 = - [12]-3/2(2113] + 311, 12, 2]), 

(a22)2 = [12]-1((12) - [1, 11 ] -  [122]/2) 

- [12]-2{[11]([13]/2 + [1, 12, 2]) - 2(12, 12> + 411, 12, 22] 

+ 211, 2, 23, 31] + 211, 2, 3, 123]} 

+ 71121-3([131/2 + [1, 12, 21) 2 , 

(a43)4 = 2112]-2(6(12 , 12 ) -- [14 ] - 611, 2, 23, 31] -- 4[1,  2, 3, 123] 

- 12[ 1, 12, 22]) 

+ 6112]-3([13] + 211, 12, 2])(2113] + 311, 12, 2]). 

Since (a~o)~ = 0 and (a21)2 = 1, Yn2 = nl /2To(F)  satisfies (3.5) with A ,  = 

(a~)~ and so has Edgeworth and Cornish-Fisher expansions given by (1.5) 
of Withers (1984) in terms of these {A,~}. 

Let H , ( x ,  F )  denote h , . ( x ,F )  of (3.7) for I1, = Y,2, that is with A ,  = 
(a~&. Thus H~ and/-/2 are specified by (3.7) and (3.11). In particular, 

H i ( x ,  F )  = [12]-1/2111]/2 - [12]-3/2{[13](2x 2 + 1 ) /6  + [1, 12, 2 ] (x  2 + I ) / 6 } .  

By (3.7) for I1, = Y,2, confidence intervals (C.I.s) based on the approxi- 
mation Y,2 ~ J//(0,  1) have error e, of magnitude n -v2 for one-sided 
intervals or n -~ for a two-sided equal-tailed interval. This error can be 
reduced to magnitude e 2 by the method of second order inference: applying 
Withers (1982b) (with 0 = T(F), I1,(0) = - Y,,2, h,.(x) = - H,-( - x,  F ) )  one- 
sided C.I.s for T ( F )  of level q~(x) + O(n  -~) are given by 

(3.12) T(F) - -  o ' ( P ) / " / - I / 2 ( X  q'- H t ( x , / ~ ) n  -1/2) < T ( F )  

and 
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(3.13) T(F)  < T ( F )  + a(_P)n-'/2(x- H,(x,  _P)n-'/2), 

a two-sided C.I. of level 2q~(x) - 1 + O(n -2) is given by 

(3.14) T(P)  - ~ < T ( F )  < T (P)  + ~ , 

where ( = a(fi ' )n-m(x + H2(x, F)n-1), and the p-value of the hypothesis H0: 
T(F)  = To, is given by 

(3.15) c.b( Y,,o + Hff  Y,,o, P)n -1/2) + Op(n-') , 

where Y,o = n'/2(To - T (F) ) /  a(F). 
Cumulant, Edgeworth and Cornish-Fisher expansions for 

T,,( P) ,~ ~, T,I( P)n  -i/2 
o 

may be obtained similarly from Section 4 of Withers (1983a). Likewise, 
C.I.s for T ( F )  may be obtained from Sections 1 and 2 of Withers (1983a) 
by inserting the expressions given in (3.3), (3.10) and 

I [12] . [222~ (3.16) 2~10] = O, 14[011] = [14] - (12, 12), 

(23)=[14] -3(12 ,  12), 
I401 

12 = 0  and I l l  01 " I,, 00 ' 

Thus f o r j  _> 1 as n --- ~ one-sided C.I.s of level ~(x) + O(n -j/2) are given by 

Vj,([', x) <_ T ( F )  , (3.17) 

and 

(3.18) 

while a two-sided 

T(F)  < Vjn(fl', - x) , 

C.I. of level 2 q ~ ( x ) -  1 + O(n-S/2), (J=j + 1 for j odd, 
J = j  fo r j  even, x > O) is given by 

(3.19) Vj.(fi', x) _< T(F)  <_ Vj.(~', - x) , 

where 
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J 
(3.20) Vj,,(F, x) = T(F)  + ,~:1 qr(F, x)n r/2 , 

and 

ql(F, x) = - [12]l/2x , 

q2(F,x) = - [11]/2 + [12]-1{[13](2x2 + 1)/6 + [1, 12, 2](X 2 + 1)/2} , 

q3(F, x) = [12]-1/2{ - <12>/2 + [1, 11] -~ [122]/4 + [1,122]/2}x 

+ [12]-3/2{(12, 12)(X3/2 + X) -- [14](3X 3 + 5X)/12 

- [1, 12, 22](2x 3 + 5x)/2 - (3[1, 2, 23, 311 

+ [1, 2, 3, 123])(x 3 + 3x)/6} 

+ [12]-5/2{[1312(16X 3 + 23x) + 48113][1, 12, 2](x 3 + 2x) 

+ 1811, 12, 212(2x 3 + 5x)}/72.  

Note that since q2(F, x) = - [12]l/2Hl(X, F ) ,  (3.12) and (3.13) are just (3.17) 
and (3.18) with j =  1. However, (3.14) is a s imple r  C.I. than (3.19) with 
j = 3, though both have error of magnitude n ". 

In the one sample case (12) = [12] and (12, 12) = [12] 2, SO that except for 
(3.6), (3.14) and (3.15), the results of this section specialize to those of 
Withers (1983a). The errors in these approximate C.I.s satisfy Theorem 3 
of Withers (1983a) and Theorem 3.2 of Withers (1980) with [12] and 
qj+ I(F, x) as redefined here. 

The results of this section were initially found by generalizing the 
technique of Withers (1983a). However, the present method is more 
instructive and probably less prone to error. It may be useful--for example 
to apply Theorem 3.2 of Withers (1980)--to include the following version 
of (a21)1ol of Section 5 of Withers (1983a): 

(a21)101 = - [12]-'([1, 11] + [1,122]) 

+ [12]-2{[111K/2 + ([141/3 -(12 , 12) + [1, 12, 22])(2x 2 + 1) 

+ (211, 2, 23, 31] + 211, 12, 22] + [1, 2, 3, 123])(x 2 + 1)} 

- [12]-3{[13](2x 2 + 1) + 311, 12, 2](x 2 + 1)}K/2, 

where K = [13] + 211, 12, 2]. 
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4. Examples 

The expansions  of Section 3 were given in terms of the [.] and (.) 
functions defined in Section 2. Here we obtain their values for some simple 

cases. We use/z~ =/z,(F~) =ffodF  t o  denote  the mean of the a-th distri- 

but ion after a given t ransformat ion  fa: R s ° -  R has been applied, and 

paj--ltaj(Fo) = f ( f , -  pa)JdFa to denote  the j - th  central m o m e n t  of the 

t ransformed distribution. Typically Sa =- 1 and f a ( x ) -  x; however, log and 
power t ransformations are also commonly  used. 

For  S a series of sequences f rom 1, 2,... set 

: [ S ] ,  = [S]oo . . . ,  

of Section 2 with (T, F)  = (T~), F~). 

we have 

so that 

k 
Example 4.1. Linear combinations:  T(F) : "~1 T(a)(Fa): 

ab... aa... since Txy . . . .  l(a b . . . . .  ) Tialxy... , 

[s]o  . . . .  l ( a  = b . . . .  ) [ S ] a ,  

i + 2 j - l r . i  [1 i , l l  j ] = E v a  [ l ,  l lJ]a ,  

[1, 12, 2 j] = ~2 v~+l[1, 12, 2J]a, 

[122] = • V2[122]a, 

[I, 122] = E v2[1, 122]~, 

[1, 2, 23, 31] = Z v~[1, 2, 23, 31]~, 

[1, 2, 3, 123] = Z v~[1, 2, 3, 123]a, 

(12) = Z v2[12]a and (12, 12) = Z v~[1212~. 

Example 4.1.1. A linear combina t ion  of means: T(F) = Y~ edna: 
/~a(F~) has first derivative pax =fa(X) --pa and higher derivatives vanish; the 
non-zero terms are 

[1:] Z ' ; - l ~ J "  2 2 = Va Ca,Uaj ,  <12) = E VaCalZa2 and <12, 12) Z 3 4 2 : Pa Ca~la2 . 
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C.I.s are given by (3.12)-(3.14) with 

H1(x, F )  = - [ 1 2 ] - 3 / 2 [ 1 3 ] ( 2 x  2 + 1)/6 and 

H2(x, F )  = [12]- '(12)x/2 + [12]-2{(12, 12)(x 3 - x) /2  - [14](x 3 - 3x)/12} 

+ [12]-311312(x5 + 2X 3 - 3X) /18 ,  

and by (3.17)-(3.20) with 

ql(F, x) = - [12]1/2x, q2(F, x) = [12]-1[13](2x2 + 1)/6 and 

2 -3/2 2 q3(F,x) = - [12]-1/2(12)x/2 + [1 ] {(1 , 12)(x3/2 + x) - [14](3x 3 + 5x)/12} 

+ [12] 5/2[1312(16x 3 + 2 3 x ) / 7 2 .  

If  one knew a priori  that  the popu la t ions  were not  skew, i.e., that  
[13] = 0, then instead of  (3.12), (3.13) one would  use (2.3) of  Withers  
(1982b). 

In the case of  T ( F ) = ~ 1 ,  the mean  of  a single popu la t ion  with 
variance a 2--/z~2, these simplify: put t ing 2j = o--J/tu the s tandardized j - th  
moment ,  we have 

Hi(x,  F)  = - a-~q2(F, x) = - 23(2x 2 + 1 ) / 6 ,  

H2(x, F )  = x3/2 - 2 4 ( x  3 - 3x)/12 + 2~(x 5 + 2x 3 - 3x)/18 , 

~r-lq3( F, x) = (x 3 + x) /2  - 24(3x 3 + 5x)/12 + 22(16x 2 + 2 3 x ) / 7 2 ,  

while f rom Sect ion 5 of  Withers  (1983a), o'-lq4(F, x ) =  2 3 ( -  1 9 -  19x2+ 
36x4)/12 + 25(27 + 86x 2 + 24x4)/120 - 2324(14 + 55x 2 + 18x4)/36 + 2~(110 + 
529x 2 + 192x4)/648. 

These C.I.s p rovide  nonpa rame t r i c  al ternatives to the C.I. der ived 
f rom the k-sample  t-statistic 

t / = f l / 2 ( N ( F )  - N ( F ) ) / a ( F )  where f =  Z (ha - 1),  

N ( F )  = Z cakta and a2(F) = (Z C2na 1) Z n~Iza2 . 

The lat ter  C.I. is only exact  for  normal  popu la t ions  with equal  
variances; if the variances are not  equal, its a-level is not  even asymptot ical ly  
correct  unless 

(4.1) (~_~ Calla)2 ]~ lla-I l/a2 = (y~ lla 1) ]~ Calla~la22 , 

which is t rue if [Cal/lTa does not  depend  on a. (In the general  case, an 
expans ion  for  the d is t r ibut ion  of  ty is ob ta inab le  by applying Sect ion 3 to 
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T(F) --f-l/2tf; c.f. Subsect ions 2(b) and (c) of  Geary  (1947) as corrected on 
p. 403 of  Gayen  (1950), and Example  2 of  Withers  (1983a); an al ternat ive 
expans ion  when  k = 2 and cumulants  beyond the four th  are zero is given 
by Tan  (1982), but  the magn i tude  of  the e r ror  of  this app rox ima t ion  when 
cumulants  are non-zero is not  given.) 

Example 4.1.2. A linear combina t ion  of  variances: T(F) = Z c,/2~2: 
p~2 has first and second derivatives p~2x = p]x-/2a2 and/2a2xy = -  2 f l a x , U a y ,  

where p~x =fa (x)  -/2o, while higher derivatives vanish. Hence 

[12]  = Z 12aC2a(/2 4 - -  /22)a , 

where  (/z4 - p2)a = / 2 a 4  - / - / 2 2 .  Similarly, 

2 3 [13] = Y~ VaCa( /26  - 3/24/12 + 2/2~)a, 

[14] ~ 3 4 
= 12aCa(/28 - 4/.16/22 + 6/24/22 - 3/.t~)a, 

( 1 2 )  = Z 122aCa2(/24 --  /2~)a , 

3 4 (12 , 12)  = Z 12aCa{( /24  - -  /222)a} 2 , 

[I 1] = - 2 Z 12aCa/.,la2 , 

[1, 12,2] 212 2 3 2 - - - - -  VaCa/2a3 , 

[ l ,  11 ]  ~- - -  2 Z 122C2(/24 --  /222)a , 

2 2 2 [ 122] = 4 E 12aCa/2a2, 

[1, 12,22] 212 3 4 2 2 = - -  1 2 a C a ( / 2 5 / 2 3 - -  /23/22)a , 

y3C4  2 [1, 2, 23, 31] = 4 12 a a/2~3/2~2 and 

[1,122]  = [1, 2, 3, 123] = 0 .  

Example 4.2. Products  and quotients: T(F) = T~I)(FOT~z)(F2) = TI T2, 

T1...I 2.--2 = r { l ) x , . . . x , r ( z ) y , . . . y j ,  SO that  say: , x,x,y,..y, 

2 . . . 
[1 j] = VlJ-'[lJ]lT~ + v~-l[lJ]2T~ = Z v / - ' [ I ' ] T ~ ,  

where 

2 
1 2 f ( T I 1 ) ,  T~2), 121, 122) = f ( T ~ , ~ ,  T~2), 121,122) + f ( T ~ 2 ) ,  T(1), 122, 121), 

2 2 2 
[11] = 12v1[ll]1T2, [1, 111 = 12v1[1, l l ] I T  2 , 

[ 1, 12, 2q = {vl + 1[ 1, 12, 2 jll T~ ÷2 + v l v~ T/[1211T2[ I j+ 112}, 
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2 2 [1221 = Zv~[122]~r~  + 2VlV211 It[1 12, 

[1, 122]= E{v2[1, 122],T~ + v , v2[12] t [ l l ]2T2} ,  

T 2 122 , [1, 2, 23,  31] : ~{V~[I ,  2, 23, 3|]1T24 Ji - 1~12122[1212 2([ ][-~- 2 T i l t ,  12, 2]1)} 

" 2 2 2],[1212} [1, 2, 3, 123] = E{v~[1, 2, 3, 123]~T 4 + 3 v , v 2 T ~ T 2 [ 1 ,  12, 

9 2 2 2 "123 22 4 (12) = Ev~[l  ]IT~ and (12 , 12)= E ~[I ]~T2. 

The coefficients for a quotient  may be obtained by applying this to 

~ -1 T2 T(2)(F';') = T(3I(:2) = T31, say: 

from 

and 

where 

we have 

and 

-2 T = T2x = - T3 3.~-, T2xy - T~ZT3xy + 2T33T3~T3y ,  

3 
T2xyz = - T32T3xyz + 2T_~ 3 X T3xT3y~ - 6T-34T3xT3yT3~ , 

3 
y-,fxy2 -- fx~,z + f~2,~ + fzxy, 

[1J]2 = ( - -  T32)J[lJ]3, [1112 7- - T32[1113 q- 2T33[1213 , 

[1, 1112 = T34[1, 1113- 2T3S[1313 , 

[~, 12, 2s]~ = ( - T;~)"+~{[~, ~2, 2Ja~ - 2T~' ta~t~s+ ' ]~},  

[12'].~ = T34[12213 - 4T~5[1, 12, 2]3 + 4T~6112]~, 

[1,122],:, = T34[1, 12213- 2T35{[1213[1113 + 2[1, 12, 113} + 6T36[12] 2 , 

, = _ 4T-lO 12 3 [1 2, 23, 3112 T~8[1, 2, 23, 3113 4T~9[1213[1 ,  12, 113 + 3 [ ]3, 

, , - , 6T-l°r l  z13 [1 2, 3, 12312 = T38[1 2, 3, 12313 6T~9[1213[1 12, 113 + 3 I_ ] 3 .  

E x a m p l e  4.2.1. The ratio of two means: T ( F ) = p 1 / ~ 2  = T,  say: 
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]J - 2  T 2 - -  2 - 3  - -  2 - 3  setting G-1 = vlp~2p12, G-2 = 2p2 p22 , H1 = vl/t2 pl3, H2 = v2p2 p23T 3, the 
coefficients needed for H1 and q2 are 

[12] = GI + G-2, [11] = 2G2T -~ , 

[13] = H~ - H2 and [1, 12, 2] = [12][11] ; 

the coefficients needed for H2 and q3 are 

- -  - -  - - 2  - -  , 

(12)  = v1G1 - 1~2G2, (12, 12) = VlG~ + v2G2, [1, 11] = - 2 H 2 T - )  

[14] 3 -4 v 3 -4 T 4 = v l P z 1 2 t 4 +  2pzp24 , [ 1 2 2 ] = [ 1 , 1 2 , 2 ] T  -~, 

[1, 12, 22] = - H2(G, + 2 G 2 ) T - ' ,  [1, 2, 23, 31] = G2(G, + 4G2)[12]T -2 , 

[1, 2, 3, 123] = 6G-~[12]T -2 and [1,122]  = 2Gz(GI + 3G-z)T -2 . 

In part icular ,  

and 

(a11)1 = - [12]-'/2G-2T-~ - [12]-3/2[13]/2, 

(a32)3 = - 6 [ 1 2 ] - 1 / 2 G z T - 1  - 2[12]-3/2[13], 

6~2T-2~ (a22)2 = - 3 G - z T  -2 + [12]-1((12) + 6 H 2 T  -1 + u2  ) 

+ [12]-2{GzT-1(15H~ - 1 1/72) + 2(12, 12)} + 7112]-3113]/4, 

(a,3)4 = - 12G2T -2 + 12[12]-l(7G-~T -2 + 2H2T- ' )  

+ 12112]-2{(12 , 12 ) -- [ 1 4 ] / 6  -- 3 G 2 T  -2 + G 2 T - I ( 7 H 1  - 5 /~2 )}  

+ 12112]-3113] 2 , 

H i ( x ,  F )  = - [12]-1/2G2T-1x2 - [12]-3/2[13](2x 2 + 1 ) /6 .  

Note  tha t  if it is known  tha t  p2 ~ 0 ,  then  the test of  ].~1 ~-  ],~2 derived 
f r o m  the conf idence  interval  for  p l / p 2  provides an al ternative to the test of  
/~i =/12 derived f rom the conf idence  interval f o r / t l  - /12 given in Example  
4.1.1; a third al ternat ive for  a test that  p~ =/~2 is that  derived f rom the 
conf idence  interval  for kt2/p~. Their  A R E s  are one. A similar r emark  
applies to the tests of  0.~ -- 0-2 2 derivable f rom Example  4.1.2 and the next  
example.  

E x a m p l e  4.2.2. The  rat io  of  two variances:  T ( F )  = 12~2/t222: the 
required coefficients are given by the first part  of  Example  4.2 in terms of  
TI 1/12, T2 = -1 z / - / 2 2 ,  
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[1211 = / ~ 4  - / ~ 2 ,  [13]1  ~-" ///16 - -  3///14///12 q- 2 / / / 2 2 ,  

[1411 = ///18 --  4/t16~,2 + 6/t14/t~2 - 3/z~2 , 

[1111 = - 2//12, [1, 12, 211 = - 2fl23, [ l ,  11]1 = - 2(,//14 - -  ~/22)  , 

[1221, = 4/1212, [1, 12, 221, = - 2(¢t1,,u,3 - 2,u23,u,2), 

[1, 2, 23, 31]1 = 4/z~3/~2, [1 ,122] ,  = [1, 2, 3, 123]1 = O,  

and the second par t  of  Example  4.2 with T3 = ]22 and [*]3  ~- [ ' ] 1  with {/z~i} 
replaced by {/z2~}. In part icular,  T ( F )  has asymptot ic  var iance 

2 
[12]/n = (IZ12/IZ22) 2 ~ ( l l Ja4 / [ .122  - -  1 ) /n ,  

= 2(n~ l + n21) T ( F )  2 for  (FI, F2) n o r m a l .  

The associated confidence interval for a variance ratio and the associated 
test for  equal i ty  of  var iances  are impor tan t  as they provide  al ternatives to 
the conf idence interval and test based on the usual  assumpt ion  that 

1)n2 (nl l) -1 T ( f ' ) /  T ( F )  ~ F~, ,,~,.-i . n~(n2 - - 1  _ 

The latter are not  even consis tent  u n l e s s / , 2 a 4 / [ 1 2 2  ~ 3, as for  normal  popu la -  
tions. In short ,  p rocedures  based on the F-d is t r ibut ion  are no tor ious ly  
inconsis tent  for  non-normal  popula t ions .  The 'correc t ion terms '  q2(F,x) ,  
etc., are N O T  zero even for  normal  popula t ions :  in fact, if (FI, F2) are 
normal ,  then 

q2(F, x) = {5(1)I  - -  V2) "~- 2x2(2vl + v2)} T ( F ) / 3  , 

while T(/~) has bias ~ al ln  -1 = ( - nl  1 + 3n21)T(F)  (nelzli~ible only if n2 
-1 -1 3n0  and skewness (/13) ~-" a32n -2 8(nl 1 + n2 )(nl + 2n-1 )T (F)  3. 

Note .  If c is a one to one increasing func t ion  on the range of  T ( F ) ,  

an al ternat ive to a C.I. for  q0 = T ( F )  based  on Vj, = I~ n-r/2qr is to use a 
0 

"Z n-r/Zq~, where q~ is the coefficient of  C.I. for  q~ = c ( T ( F ) )  based on b,~ = 0 

1l -r/2 in c(Vj,) for  j >  r: 

c 2 2 3 qCl = clql ,  q2 = clq2 + c2ql/ , q~ = c lq3  + czqlq2 + c 3 q l / 6 ,  

and 
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2 q~ = clq4 + c2(qlq3 + q2/2) + c3q~q2/2 + c4q4/24, 

where ci = cIi)(T(F)). In particular,  the C.I.s for p~/p2 (if known to be 
positive) and /-/12//-/22 derived in this way f rom Examples 4.2.1 and 4.2.2 
with c ( T ) =  log T are likely to be more robust  than the original C.I.s. 
(These VjT, could also be derived directly f rom Example 4.1.) 

5. Regularity conditions 

For k = 1 these are given in Withers (1983a), based on the results of 

and Ghosh  (1978)for  T ( F ) =  H ( f f d F ) .  Extension of their Bhat tacharya  
results to k-samples- - tha t  is, to 

\ ! 

(5.1) F - -  (F1,..., Fk),  

Z(F) -- n(  f f, dgl,...,f MF,) -- say ,  

should be straightforward.  We note here an alternative approach which is 
available for (5.1) when 

(5.2) na =- m,~N for m 1,..., mk bounded integers and N an integer .  

Set flu,,,o =ffadPo. Then fi,,,,,, may be considered as the mean of a r andom 
N 

sample of size N, say/L.no = N -~ Z Xi~, where )~,., has the same distr ibution 
i=1 

as rio .... say F,,,,,.(x), the m~-fold convolut ion  of P( f , (Xa)< x), where 
Xo--F~.  

Thus writing p = (pl , . . . ,pk) and/~ = (/21,...,ilk) we have 

N 
fi = N -l X )~  where 

i=1 
= ( ; ? , a , . . . ,  • 

Hence the results of Bhat tacharya and Ghosh (1978) may be applied or the 
results of Withers (1983a), where now 

k 
(5.3) F(x) = H Fam,(x~), 

1 

N 
with empirical distr ibution FN(x) = N -1 E l()~a < x). 
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