
Ann. Inst. Statist. Math. 
Vol. 40, No. 4, 693 714 (1988) 

LOG-CONCAVITY OF STIRLING NUMBERS AND 
UNIMODALITY OF STIRLING DISTRIBUTIONS 

MASAAKI SIBUYA 

Department of Mathematics, Keio University, HiyoshL Yokohama 223, Japan 

(Received August 7, 1987; revised December 17, 1987) 

Abstract. A series of inequalities involving Stirling numbers of the first 
and second kinds with adjacent indices are obtained. Some of them show 
log-concavity of Stirling numbers in three different directions. The in- 
equalities are used to prove unimodality or strong unimodality of all the 
subfamilies of Stirling probability functions. Some additional applications 
are also presented. 
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I. Introduction 

"Stirling family of distributions" is a collection of eight subfamilies of 
discrete probability distributions which involve Stirling numbers of the first 
and second kinds (Sibuya (1986)). The subfamilies are classified as shown 
in Table 2. Although the forms of their probability functions are different, 
all are unimodal if monotone increasing or decreasing probability functions 
in their distribution ranges are regarded also unimodal. 

This fact can be proved by log-concavity of Stirling numbers or by 
inequalities involving Stirling numbers with adjacent indices. Each of the 
first and second kinds of Stirling numbers forms a triangular array, which 
is totally positive 2 (Karlin (1968)) as a function of two indices. The array 
includes finite and infinite sequences in three directions. All the sequences 
are log-concave (Keilson and Gerber (1971)) to the extent that some are 
just as the definition, and some are stronger and one is weaker than the 
definition (cf. Table 1). 

Such type of inequalities was studied by Lieb (1968) and Neuman 
(1985). Results of this paper extend and improve some of their results. For 
some others alternative proofs are given. Lieb (1968) used Newton's 
inequality for symmetry functions and Neuman (1985) used moments of 
spline functions to obtain their inequalities. The methods used in this paper 
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are elementary. Log-concavity conditions are given by Kurtz (1972) for 
triangular arrays defined by a recurrence formula. 

In Section 2, preliminaries on Stirling numbers, Stirling distributions 
and log-concavity are given. In Section 3, a series of inequalities are given, 
and the main inequalities are summarized in Table 1. In Section 4, the 
inequalities are used to prove strong unimodality or unimodality of all the 
probability functions in Table 2 for any parameter  value. 

The inequalities are applied to other problems (Section 5). One is 
Poisson upper bounds of the distributions of STR1F and STR2F subfamilies 
of Table 2. Another  problem is monotonicity of the convolutions of 
Stirling numbers. Finally, log-concavity of binomial coefficients are remarked 
(Section 6). 

2. Preliminaries 

'Unsigned'  Stirling numbers  of the first kind [ n ]  for nonnegative 

integers n and rn are defined by the polynomial identity 

rl ]tm t t n ] : = t ( t + l ) . . . ( t + n - l ) = m  E m ' 

in the domain 0 < m ___ n, and are zero outside the domain except that 

[ 0 ] = 1  by convention. They satisfy the recurrence relation 
LVJ 

~2,~ [n~,] [o][o] 
= n  + n > 0 ,  m > l  

m m m - 1  ' - - " 

num~e.s of the secon~ ~in~ {~} f o r . ,  m ~_ 0 a.e ~ef, ne~ Stirling 

similarly, in this case by 

where t/") := t ( t  - 1)...(t - m + 1). They satisfy the recurrence relation 

 22, { o } { n }  
= m  + n > 0 ,  m > l  

m m m -  1 ' - - " 

See Jordan (1947), Riordan (1958), Goldberg e t  a l .  (1964) and Knuth 
(1967-1981), for the introduction to Stirling numbers. The notation of the 
numbers differs by the literature; this paper follows the notation of Knuth. 
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Probability functions involving Stirling numbers as their main component 
are shown in Table 2, which appeared in Sibuya (1986). The table has two 
columns for each of two kinds of Stirling numbers. Good correspondence 
exists between them, and subfamilies have symbols STRI* in the first 
column, and STR2* in the second. The asterisks stand for F, W, C or I. 
The characters are initials of Finite range (or Fundamental), Waiting time, 
Complementary waiting time, and Infinite range. Some are very well 
known, some others are less known, and STR1W, STR1C and STR2C 
may be new. 

A series of nonnegative numbers (c,)n~-oo is log-concave if 

2 c,>_c,_~c,+~, n=O,  +_ 1, _+2,..., 

(Hardy et al. (1952)). Log-concavity of a probability function on integers is 
a necessary and sufficient condition for its strong unimodality in Ibragimov's 
sense (Keilson and Gerber (1971)). Log-concavity of probability functions 
is preserved under the operations, convolution, shift, truncation and reverse. 
Strong unimodality implies unimodality, but not reversely. 

Log-concavity of the subfamilies STR1F, STR2W and STR2I is 
obvious. Their probability functions are multiple convolutions of Bernoulli, 
geometric and 0-truncated Poisson probability functions, respectively, and 
these are log-concave. The probability function of STRll  is also a multiple 
convolution of logarithmic series probability functions which are, however, 
log-convex. 

3. Inequalities 

In Theorems 3.1-3.7, inequalities on Stirling numbers are shown. The 
main inequalities in Theorems 3.1-3.5 show log-concavity in both kinds of 
Stirling numbers in three directions. The schemes of indices of Stirling 
numbers in the inequalities are illustrated in Table 1. A duality exists 
between the first and second kinds of Stirling numbers, and the same type 
of inequalities often holds for both kinds. Occasionally, however, sharp 
differences arise. 

The proofs for all the theorems, except for Theorem 3.7, are based on 
the recurrence relations (2.1) and (2.2) although some maneuvering is 
necessary. 

THEOREM 3.1. (Lieb (1968)) The f o l l o w i n g  sequences are strictly 
decreasing f o r  any  n = 3, 4,... ; 

n - m + l  m j m - 1  ' m = 2 , 3 , . . . , n ,  
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Table 1. Log-concavity and related inequality relations among Stifling numbers. 

the 1st Pattern the 2nd 

Symbol kind m - 1  m m + l  m + 2  kind 
in 

the n -  1 
text [n]  n 

n + |  

Property 

A S s g2 s S log-concave 

g s totally 
B posmve 

s g 

s 
C W g2 log-concave 

s 

s 
G - -  g2 - -  log-concave 

s 

s g 
F S S - -  

g s 

s g 
D S S - -  

g s 

s g 
E S S 

g s 

1. The central column, "pattern", indicates the positions of indices n and m appearing in each 
inequality. "g" represents the greater part and "s" the smaller part of the inequality. For example, in 

row A the pattern means 

En]2~[ n ][ n ] m  m , m+, an~ /°/2~{ n J/ ~ / m  m , m+, 

2. "S" in the columns on both sides indicates that the inequality is actually stronger than what the 
pattern appears, and some factor larger than 1 can be multiplied to the smaller side of the inequality. 
"W" in the first kind column means the contrary; the inequality is weaker, and some factor larger than 

1 must be multiplied to the greater part. 

m i n i  ( A I ' )  - -  
? ' / - - m  / ' / - - m  

,A2,  m l,m{n} 
n - m +  l rn 

{ ° ] 
n - m + l  ' 

{n}  
m - 1  ' 

m =  1 , 2 , . . . , n -  1 , 

m = 2,  3 , . . . , n ,  

a n d  
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(3.2) ~m ~,~o m,{~} 2 {n } { n }  - - > ( m  + 1 ) ( n -  m + 1) 
m m - 1  m + l  ' 

m = 2 , . . . , n - 1 ,  

which will be proved in a similar way. For  n = 3 and m = 2, 

{3}2 {3}{3/6 
2 = 9 > 6  1 3 " 

To advance the induction step on n, calculate 

(m-1)(n-m+l){n+l}2-(m+l)(n-m+2){n+ll}{n+ll}m m -  m+ 

= ( m 2 - 1 )  n - m + 2 ( ( m - 1 ) ( n - m ) { n )  2 n - m + l  m 

- ( m + l ) ( n - m + l ) { m _ l n  }{m+ln }) 

+ m - 1  ( m2 + (n _ m + 2)(n _ m) ){ n } 2 
n - m + l  m 

+ - -  m+'(~m2,~m~,~nm,{° }{n 
m m -  1 m 

- m ( m  + l ) (n  - m + 2) { n }{ 
m - 2  m 

+ - -  m - 1  ( 2(n - 2) + (m - 2)2 ){ n }{ n m - 1  m 

m+l( {n}2 
+ -- ( m - 2 ) ( n - m +  1) 

m m - 1  

m,. m+2,{ " }{:}) m~ 
+ 2 n - m + l { n }  2 

m m - 1  " 

n/) 
+1  

All the terms are nonnegative and some are positive for m -- 2, 3,..., n. [] 

Remarks. Lieb (1968) showed (3.1) from Newton's inequality and the 

has only real roots. He fact that the generating funct ion of m m=~ 
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showed also the sequence 

, ~ ,  m, { n l / { .  } 
n - m + l  m - 1  ' m = 2 , 3 , . . . , n ,  

strictly decreasing. The inequal i ty  (A2) slightly improves this result. 
Numerical ly,  it is suggested tha t  the sequence 

(3.4) 
(m,)(2n+m)[n]/[n ] 

n - m + - I  m ,  m - 1  ' m = 2 , 3 , . . . , n - 1 ,  

is strictly decreasing and the same for m = n - 1 and n, and that  

{m~)2 In}I{ n } 
(3.5) n - m + l  m j m - 1  ' m = 2 , 3 , . . . , n ,  

is strictly decreasing. 

COROLLARY 3.1. S u p p o s e  a sequence  (am)m:l satisfies 0 = a~ < a2 <-- 

a3 <- . . .  and  2am _> am-~ + am+l, m = 2, 3 , . . . .  The sequences 

[nil[n] am 
m m - 1  ' 

i n  ]~[ am+ l 
n - m  ~ n - m + l  

{~}/{n } 
am 

m m - 1  ' 

I , 

m = 2, 3 , . . . , n ,  

m = 1, 2 , . . . , n -  1 , 

m = 2, 3 , . . . , n ,  

and  

{ n } / {  n } 
am+l m = 1, 2 , . . . ,n  - 1 

n - m  n - m + l  ' 

are strictly decreasing f o r  any  n = 3, 4 , . . . .  

PROOF. The sequence (am) satisfies 2_> a3/a2, and if m / ( m - 1 ) _ >  

am+ 1 / am, then 

am+2 % 2a,,+l - am % (m + l ) a , , + l / m .  

Since 
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m / m - I  m / > > a m + l / a m  , 
n - m  n - m +  l - m - 1  - 

the corol lary  follows f rom T h e o r e m  3.1. [] 

COROLLARY 3.2. Stirling numbers o f  the f irst  and second kinds, [ n ]  

an~l~ } wi~o~xe~, a~e ,ogco°cove~equeo~esiom 

Remark.  These  facts are well known .  H a m m e r s l e y  (1951) and  Erd6s  
(1953) showed  

i n ] / [  n 
m m - 1  ' 

for  any n and m. 

COROLLARY 3 . 3 .  Considering the ends o f  the sequences (A1) and 
(A2), 

n m+l [ n l / [  
(3.6) (m 1)(n 1) H . - 1 -  

- -  - -  m 

n ] > 2 ( n - m + l )  

m -  1 - (-m 7 i)-n ' 

2<_m<_n ,  

k 
where Hk = £ ( I / j )  is the harmonic number,  and 

j=l 

2n2 {O//{  n } 2 nm+l, 
- - >  > -(-m -( ~ 2 < m < n (3.7) n - 1  - m m -  1 - 7 , - • 

In both (3.6) and (3.7), the left equalities hold  f o r  m = 2 and the right 
equalities f o r  m = n. For 2 < m < n, the inequalities are strict. 

Further (3.6) and (3.7) are equivalent to 

(3.6') n ( 2 n - m + l )  [ n + l ]  
2(n m + 1) > - m 

n ] ( m -  1 ) ( n -  1) 
> n +  

m (n - m + 1)H,-1 

and 

(3.7') ( 2 n - m + l ) m  { n + l }  
2(n m + 1) > - -  m 

{°/ 
m 

> m + ( n  - 1 ) / ( 2  ~ - 2 ) .  
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Remark.  The inequalities (3.7) and (3.7') improve the inequalities 
(4.17)-(4.20) in Neuman  (1985). 

THEOREM 3.2. As  double sequences, Stirling numbers o f  the f irst  
and second kinds are strictly totally positive 2 (Karlin (1968)) in the sense 

that f o r  any nl < n2 and ml < m2 

(BI) [o,][o,] 
m~ m2 

This means the sequences 

and 

[n,][o2]~0 
> O, i f  ml m 2  ' 

[n'][~]:o. 
= O, / f  m l  m2 

[n2]/[Ol] ~nl~n2) 
, m =  1,2 .... , n l ,  

m m 

n = m2, m2 + 1,..., ( m l  < m2) , 
[ n ] [ n ]  

m2 m l  

are strictly increasing. {n} 
A relation (B2) which is completely the same as (B1) holds f o r  . 

PROOF. It is enough to prove 

[n][n+~] [ n ]In+,] In]2 [ n ][ ° ]~0 
- -  ~ - -  - -  ° 

m m +  m + l  m m m + l  m - 1  

This is true due to Corollary 3.1, and the last equality holds only if all the 
terms vanish. 

For  Stirling numbers  of the second kind, 

Inlln+~l l ~+ m+,lI~+'lm 
:/n/I n } In/2/ n } I n /  

m m + l  + - > 0 ,  m m + l  m - 1  

by the above reason. [] 

Remark.  Examining the above proof,  we get a stronger result: The 
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is equal  to n if m -- 1, increasing if m = 2, increasing first and decreasing 
af terward if m >_ 3. Thus the factor  I / n  is necessary to obtain a decreasing 
sequence (see Theorem 3.7 for  fur ther  discussion). 

({o/) ~ The inequa l i ty  (C2), showing  the log-concav i ty  of  m n=m' was 

proved by N e u m a n  (1985) based on the log-concavi ty  of  the symmetr ic  
m e a n s .  

THEOREM 3.4. For n >_ m + 1 >_ 2, 

(D1) [ ][] ( n - I )  n - 1  n > n  
m m m -  m + l  ' 

and f o r  n -> m + 1 _> 3, 

n2[n'][n] 
m m - 1  > m - 2  m + l  

PROOF. The inequalit ies are proved s imul taneous ly  by induct ion  on 
bo th  m and k := n - m. Fo r  m = 1 (D1) is true since the r ight -hand side 
vanishesl For  m --- 2 (El )  is similarly true. Fo r  n - m = 1 (D1) and (El )  are 
true, because 

(DI)  ¢* (m + 1)m2/2 > (m + 1 ) m ( m -  1) /2 ,  

and 

(El)  ¢~ (m + 1)m3(m - 1)(3m + 2)/24 

> (m + 1)2m(m - 1)(m - 2)(3m - 1) /24.  

Now assume tha t  (D1) is satisfied for  k = n - m  for all m, and in the 
induc t ion  step of  k + 1 assume (D1) for  m - 1. At  the same t ime (El )  is 
assumed in step k and m. 

m m ,  m + l  

m 

-((m+k) 2-1)(m+k)[ m + k - I  

m - 1  1[ m + l  
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+ m+~ (m+k ,)2[m+~ '][m+~] 
m + k - 1  m m - 1  

+(m+~)2[m+k , m 

+ 

-((m+k) 2-1)[ m+k,]fm+~]m, m 
m+~ (m+k ,)[m+k ,][m+k] 

m + k - 1  m - l  m - 1  

m+k+, (m+~)[m+k ,][m+k] 
m + k  m - 2  m ' 

which is posi t ive since all the lines are posit ive;  the first line is so by (D1) 

with m and n = m + k, so is the second by ( E l )  with m and n = m + k, the 

th i rd  trivially, and the fou r th  by (D1) with m - 1 and n = m - 1 + k + 1. 
Thus ,  (D1) is t rue for  m and n = m + k + 1. 

This  new inequal i ty  is mult ipl ied by ( D I )  with m + 1 and n = m + 1 + 

k side by side. The  result is (E l )  with m + 1 and n = m + 1 + k. Now the 

induc t ion  on m is advanced  one step for  bo th  (D1) and (El ) .  []  

COROLLARY 3.4. 

(F1) 

(G1) 

[ ; ] [ ]  [ ° , ] [ n ]  ( n - I )  n -  n > n  
m -  m m - 2  m + l  " 

[°]~ ~ [ ~ ', ][ °+', 1 
m m - -  m - F  ' 

where the equality holds only i f  both sides are 0 or 1. The latter is the case 
n z m .  

PROOF. Mul t ip ly  (D1) with 

[°_;]2 ~ In , ]fn , ] 
m -  m - 2  m ' 

(Coro l l a ry  3.1) to ob ta in  (F1). (G1) is a direct  result  of  (D1). [] 

THEOREM 3.5. For n _> m + 1 _> 2, 
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(D2) 
{n l/{n / {n ~/{ n / 

m > ( m +  1) 
m m m m + l  ' 

and for n _>_ m + 1 > 3, 

~E2, ~ml ,{nl}{n  / { } { n }  
m m 1 > ( m + l )  n - 1  - m - 2  m + l  " 

PROOF. The way to prove is the same as Theorem 3.4. For  m = 1 
and m = 2, (D2) and (E2) are true, respectively. For  n = m + 1, 

(D2) <=> (m + 1)m2/2 > (m + 1 ) m ( m -  1)/2,  

and 

(E2) ¢=~ (m + l )m(m - 1)2(3m - 2)/24 

> (m + 1 ) m ( m -  1 ) ( m -  2 ) ( 3 m -  5) /24,  

and these inequalities are true. 
Assume the induction step k : - - n - m  for all m, and assume in step 

k + 1 (D2) holds for m - 1. Further assume (E2) holds for k and m. 

m Im+~}lm+~+'} m m ,  m+l 

=m2m{ m + k - 1 } {  m+ k m 

- ( m  2 - 1 ) ( m + l ) {  m+k ,}{o+~} 
m - 1  m + l  

+ - -  m - I  ( m - l )  m + k  1 m + k  
m m - 1  

-~m+"a{m+k-'/{m+~/m-2 m+l 
+m2{m+k-'}{m+~}m_l m 

-'m2-l'{m+k-l}{m+~lm-, m 

+ - -  m ~ m , , { m + k , l { m + k  I 
m - 1  m - 1  m - 1  
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_o+lm m{m+~ '/{m+~ } m 2  o 
which is positive since the first line is so by (D2) with m and k, so is the 
second by (E2) with m and k, the third trivially and the fourth by (D2) with 
m - 1  a n d k + l .  

This new inequality is multiplied by (D2) with k and m + 1 side by side 
to give (E2) with k and m + 1. [] 

COROLLARY 3.5. 

{"',/{;} { /{ " } (F2) m > ( m + l )  n - 1  
m -  m - 2  m + l  ' 

m m m +  ' 

where  the equal i ty  ho lds  on ly  i f  bo th  sides are 0 or 1. The latter is the case 

n - - - - r e .  

PROOF. The proof is similar to that of Corollary 3.4. [] 

LEMMA 3.1. For  c > 0, 

1 [n+,]/[n] 
( 3 . 8 )  ~ > -  , 

n + c  m m 

i f  and  only  i f  

I n ]  In] m - 1  < c  m " 

PROOF. Just expand [n m + 1]. [] 

([o])n 
is unimodal ,  and the mode  is R e m a r k .  The sequence m m=l 

approximately equal to log n (Jordan (1947)). When m is fixed and if n is 
larger than some value close to e m the inequality (3.8) with c = 1 is satisfied. 

THEOREM 3.6. For  any  c > 0 and  f o r  any  n = m,  m + 1,... 

(3.9) , [hi/in 1]<~ 
n + c  m m ' 
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implies (3.9) itself with n replaced by n + 1. 

PROOF. For m = 1 and for any n > 1, 

, 1 - - - < 1 .  
n + c  1 1 n + c  

For m >_ 2, (3.9) is equivalent to 

1 

m m -  c + l '  

because of Lemma 3.1. Since the left-hand side is increasing in n (Theorem 
3.2), 

[m.]/[ ] , ~ m 1 > - -  - c + l  ' 

which is equivalent to (3.9) with n replaced by n + 1. [] 

THEOREM 3.7. Put 

r(n; m, O ) . -  
' 

n + l + 0  m m " 

For any m = 1, 2,... and f o r  any 0 >  0, (r(n; m, 0))~=m is not a non- 
increasing sequence. 

Remark. Compare Theorem 3.7 with Theorem 3.3. 

PROOF. The existence of n such that 

r(n; m, O) < r(n + 1; m, 0 ) ,  

should be proved, and this is equivalent to 

n + l  n + 2  
n + 1 + 0 r(n; m, O) < r(n + 1; m, 0) 

n + 2 + 0  

Since (n + 1)/(n + 1 + 0) < (n + 2)/(n + 2 + 0) it is enough to prove the 
above-mentioned fact for 0 -- 0. For  m = 1, 

r(n; 1, O) = n/ (n  + 1), 
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which is increasing. For m = 2, 

1 
r(n; 2, O) - 

n + l  
(n + H~1) ,  

where Hn J=~ ( l / j ) .  Therefore, 

r(n; 2, 0) < r(n + 1; 2, 0) 

¢~ (n + 2)/ Hn-~ < 1 + (n + 1)/ H~ 

¢~ 1 + I /n  < H,(Hn-1 - 1), 

and the last expression is valid for n = 3, 4,.. . .  Now for m > 2, r(n; m, O) 
< 1 if n is larger than some value close to e m (Remark of Lemma 3.1). On 
the other hand it is known (Jordan (1947)) that 

lim r(n; m, O) = 1 , 
n ~ o o  

so that r(n; m, 0) cannot be nonincreasing for all n > e m. [] 

4. Unimodality of Stirling distributions 

The theorems in Section 3 make it possible to check unimodality of 
the probability distributions in Table 2. The following theorem summarizes 
the results. 

THEOREM 4.1. A m o n g  the eight subfamilies o f  Stirling probabili ty 
dis tr ibut ions in Table 2, the f o l l ow ing  six are strongly un imoda l  in 
Ibragimov's sense f o r  any parameter value: 

STR1F, STR2F, STR2W, STR1C, STR2C and  STR2I. 

The other two subfamilies are not strongly unimodal  but are unimodal  
f o r  any parameter value: 

STR1W and STRII .  

PROOF. For each of the distributions in Table 2, the ratio of 
consecutive probabilities r ( x ) = f ( x +  1 ) I f ( x )  is as follows, and each is 
decreasing due to the corresponding inequality shown by its symbol. 

r x,=O[n x 
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Table 2. Stirling family of probability distributions. 

the 1st kind the 2nd kind 

Finite 
Interval 

STR1F(n, 0) 

0 x 

l<~x<_n,O<O<~ 

no. breaking records; 
binary search tree 

STR2F(n, m) 

m (x) 

{ n }  m" 

I _< x ~< rain (n, m) 
m:pos,  int. o r n  l < m r e a l  

occupancy; poker test, test 
of empty boxes, collision 
test. 

Waiting 
Time 

STRIW(k, 0) 

[ x - ' l ° W  
k 1 0 [~] 

2 < k < _ x < ~ , O < O < ~  

waiting new records 

STR2W(k, m) 

{ x - l l m  tk' 
k -  1 m x 

2_<k_<x<~ ,  
k 1 < m < ~ ,  m: real 

coupon collector's test 

Complementary 
Waiting 
Time 

STR1C(k, 0) 

k + l < _ x < _ ~ , O < O < ~  

waiting non-records 

STR2C(k, m) 

{ x - I  } (x k ) m ( x - k ' x - k  m x 

k + 1 _<x_<k + rn, m: pos. int. 

waiting collisions 

Infinite 
Interval 

STRII(k, 0) 

k! 0 x 

O < k < _ x < ~ , O < O < l  

logarithmic series 

STR2I(k, 0) 

k! 0 ~ 

O < k < _ x < ~ , O < O < ~  

O-truncated Poisson 

0: real; k, n, x: positive integer; m: positive integer or real 

a I"] = a(a + 1) ... (a + n - 1), a I"~ = a(a - I) ... (a - n + 1). 

STR2F: 

STR2W: 

STR1C: 

r'x'=(m-x'ln }/l° } 
x + l  X ' 

r ( x ) = - - I  { x } / { x - l }  
m k - I  k 1 ' 

o x [  x 1,rx-,1 
r ( x ) -  O + x x 1 x + l - k , x k ' ] / t  ] 

(x + l - k ) ( m -  x + k) I x 
x +  l - k  

x - l } ,  

(A2) 

(C2) 

(G1) 

STR2C: r(x) = (G2) 
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o {x+,l/{x } 
STR2I: r(x) - - -  . (C2) 

x + l  k k 

Notice that the coefficients Ox/(O+ x ) ( x - I )  in STR1C and ( x + l - k )  
• (m - x + k ) /m(x  - k) in STR2C are decreasing in x. 

Regarding the other two subfamilies 

ix I/ix_,] STRlW: r (x )  = (x  + O) -1 k - 1  k 1 ' 

and 

STRII: r(x) = O(x + l) l [ x + l ] / [ x ]  
k k ' 

Theorem 3.7 is applied to show that they are not decreasing for any k or 0. 
However, Theorem 3.6 shows that 1 > r(x) implies 

f ( x )  > f ( x  + 1) > f ( x  + 2) > . . . ,  

and this means f ( x )  is unimodal (including the case of increasing or 
decreasing). 

Unimodality of STRII  was also stated in Patil and Wani (1965). [] 

5. Other applications 

Distributions of the subfamilies STRIF and STR2F can be approximated 
by Poisson distributions. Based on Theorem 3.1, Poisson distributions, 
which are stochastically larger than these distributions, can be obtained. 

Let f and g be probability functions on the integers. A partial order 
f < g is defined by 

f ( x  + 1)g(x) <_f(x)g(x + 1) for any x .  

This relation implies Z x f ( t )  <_ ~ g(t), namely g is statistically larger than 
f ,  and moreover on any interval the conditional g is statistically larger than 
the condit ionalf(Yanagimoto and Sibuya (1972)). 

THEOREM 5.1. (i) Let f l  and f2 be the 'reversed' STR1F and 
STR2F probability functions, respectively: 

O _ < x _ _ _ n  - 1 , 
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and 

f2(x)={ n n  - x } m("-x~m" - - ,  O < _ x < _ n - l < m .  

Let go be the Poisson probability function with mean it. Then 

9q "< go if 2 >jq(1)/f~(0)= n ( n -  1)/20, 

and 

J~ ~( go if 2 _>~(1)/)q(0) = n(n - 1)/2(m - n + 1). 

(ii) Let f3 and f4 be the probability functions of  STR1F and STR2F, 
respectively. Let g~ and g2 be the probability functions of'shifted' and '0- 
truncated' Poisson distributions: 

g,(x) = e - ~ x - ~ / ( x -  1)!, 

g2(x) = (e ~ - 1)-'2X/x!, 

Then, 

x--  1, 2,.. . ,  

x--  1,2,. . . .  

)q *( g,, 

f3"< g2. 

f l '<  gl, 

i f  it >_f3(2)/f3(l) = OH._ , ,  

i f  2 >_ 2 f3(2)/fi(1) , 

i f  i t_>)q(2)/fi(l) = (m - 1)(2"-' - 1) ,  

f i  "< gz, /f 2_> 2fi(2)/f i(1).  

PROOF. Notice that for the Poisson and the 0-truncated Poisson 

and 

distributions (x + 1)gi(x + 1)/gi(x) = 2 (i = 0, 2), and for the shifted Poisson 
distribution xg,(x + 1)/gffx) = it. Since 

x+l[0 n , I / I n ]  
JltX) n x n -  x 

is decreasing due to Theorem 3.1, 

x > f , ( l )  > ( x +  l) 
- f l ( 0 )  

fl(x + 1) 
fffx) ' x =  1, 2,..., 
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and this means  go(x + 1)/go(x) >_ f f f x  + 1)/f l(x) o r f l < g 0 .  
The  o ther  five cases are similarly proved.  [] 

The  last appl ica t ion  is related to the convo lu t ion  of  Stir l ing numbers .  

THEOREM 5.2. P u t  

In, I[ n~] cl(nl, n2, m ) : =  
t m - - I  ' 

and 

'2~°ln2m>~/°'}/t m ,  °' } 

When nl + n2 is f i xed ,  c i (n l ,  n2, m) decreases when In1 - n2l decreases f o r  
i = 1, 2 and f o r  any m. Except  that when nl + n2 = 2s, 

cl(s - 1, s + 1, m) = el(s, s, m) = cl(s + 1, s -  1, m) . 

PROOF. It is enough  to p rove  

(5.1) c i ( k -  1, n -  k + 1, m) > c6k,  n -  k, m) if k _  n -  k ,  

( replaced by equal i ty  if i = 1 and n = 2k). F o r  i - -  1, (5.1) can  be rewri t ten  

as 

and this is t rue unless n - k -- k. 
Fo r  i = 2, (5.1) is rewri t ten as 

~ ( m - t ) { k - t  1 } { n - k } > ~ t {  k - 1 } { n - k }  t m - t  

Take  the two terms t = s and t = m - s  (s < m -  s) f r om bo th  sides, to 
obta in  

{ ){ } {~'}{~}+, t r n -  s~ k - 1  n -  k 
s m - s  m - s  s 

>s{~ '}{° ~ } ,  m,  +,m s>{~ '}{° ~ / m ~  s 
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This is true because 

{ k , } { n ~ } s  s 

m - - s  m - s  

if k -  1 < n - k a n d s < m - s .  [] 

> 0 ,  

and 

6. Log-concavity of binomial coefficients 

Finally, we remark that binomial coefficients, to which Stifling numbers 
are similar somewhat, are log-concave. 

THEOREM 6.1. Let a be a posit ive real number,  and let n and m be 
positive integers. The sequences 

,x+,,( a ) / (a)  x + l  , x=0,1 , . . . ,n ;  n < a ,  

( a ) / (  a ) x = O ,  1 , . . . , n - 1 ;  n -  l < a ,  
n - x - 1  n - x  ' 

(a+x+'t/(~+~)'~+, x ~=o,,,~,...., O~a, 

(°+x+,)/(o+x),  x_-o,,,2,...~ m - , ~ a  
m m 

are strictly decreasing. 

The proof is straightforward and omitted. 

Keilson and Gerber (1971) showed strong unimodality of binomial, 
negative binomial and Poisson distributions for any parameter value. The 
facts are due to part of the above theorem. Strong unimodality of positive 
and negative hypergeometric distributions 

Part of both Theorems 5.1 and 5.2 has been used in the discussion of 
the occupancy problem with two types of balls (Nishimura and Sibuya 
(1988)). 
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a , b > n -  1 or 

is also due  to T h e o r e m  6.1. 

a , b < - l ,  
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