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Abstract. After the observations were observed, the posterior distribu- 
tion under mild conditions becomes more concentrated in the neighbour- 
hood of the mode of the posterior distribution as sample size n increase. 
In this paper, the exponential rate of convergence of posterior distribu- 
tion around the mode is established by using the generalized Laplace 
method. An example is also given. 
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1. Introduction 

After the observations were observed, from the Bayesian point of 
view, the statistical inference about the unknown parameter 0 is expressed 
by the posterior distribution only. The posterior distribution, under mild 
conditions becomes more concentrate as sample size increase. There is 
considerable literature on the asymptotic behaviour of posterior distribu- 
tion in a neighbourhood of the mode (or maximum likelihood estimator), 
for example, LeCam (1953), Freedman (1963), Lindley (1965), Johnson 
(1967), Walker (1969), Brenner et al. (1983) and Chen (1983). Mathemati- 
cally, if a and b are constant, the posterior probability 

(1.1) 
cO,+ha, 0 

Pofs(On + atrn < 0 < On + ha,) =JO°+a~° f " (  Is)dO, 

converges to ~ ( b ) -  ~(a) when n -  ~ ,  where f~(01s) is posterior density 
function, 0, is the mode of posterior density (or m.l.e.), s = (xl,x2 .... ) 
stands for observations, cr]--(-l~2)(sl0,))-I = O(n-1), 142} is the second 
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derivative of logarithm of likelihood function, and q~ stands for cumulative 
distribution function of standard normal distribution. 

Schwartz (1965) and Johnson (1967, 1970) study, under certain regu- 
larity conditions, asymptotic expansions in powers of n -1/2 associated with 
posterior distributions having the standard normal as the leading term. 

Fu and Kass (1983) obtain the exponential rate for the e-tail posterior 
probability around the mode of posterior distribution tending to zero as 
n ~ oo; i.e., 

(1.2) lim I log Po ,(lO - OI > e )  --- - , 
t7--¢¢ n 

almost surely [Po,], where 0 is mode, fl(0, e) : min {K(00, 0 + e), K(Oo, 0 - e)}, 
and K(O', O) is the Kullback-Leibler information 

(1.3) f(x[O) f (x lO')dx.  

They proved this result under a very strong condition that 

(1.4) 2,(s, 00, 0) = 1 ~ log f(xilOo__~) --. K(Oo, 0) ,  
n ,=, f(xi[O) 

as n ---, ~ a.s. [P0o] f-uniformly with respect to prior distribution/~(0) (see 
Parzen (1953)) i.e., 

(1.5) ess.sup I&(s, Oo, O) - K(Oo, O)l ~ 0 ,  
0 

as n --- ~ a.s. [P0o], where the essential supremum is taken with respect to 
the prior measure/.t(0). This condition is usually satisfied only if the proper 
prior measure p(0) has a compact support (or the parameter space O is a 
compact subset of R). Hence it excluded many important cases, for 
example when Xl,...,x, are i.i.d, observations from a normal distribution 
N(O, 1) and the prior distribution p(0) is also a normal distribution on the 
real line. The main purpose of this article is to extend the result with 
broader scope, in particular, when the condition convergence f-uniformly 
doesn't meet. 

2. Main results 

To extend the result of Fu and Kass (1983) we need to extend the 
concept off-uniform convergence for broad scopes. 
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DEFINITION. The sequence 2n(s, 0o, 0) converges to K(0o, 0) as n --- 
a.s. [Poo] and Q(0)-uniformly with respect to prior measure/frO) (a proper  
prior distribution) if there exists a funct ion Q(O) (Q(O) may depend on 0o) 
such that  

(2.1) ess.sup I Q-l(O)[2,(s, 0o, O) - K(Oo, 0)]1 ~ 0 ,  
o 

as n --- ~ a.s. [P0o], where the essential sup remum is taken with respect to 
the prior  measure/ , (0) .  

For  given positive constant  6, we write 

(2.2) H(Oo, O, +~) = K(Oo, O) + c~l Q(O)I . 

To prove our results, we assume the following conditions hold: 

CONDITION 1. For  every 0 and 0' (0 ~ 0'), the probabili ty measure 
given by the density f (x lO)  is absolutely cont inuous  with respect to the 
probabili ty measure given byf (xJ  0'). 

CONDITION 2. For  0o and 0~ O, the Kullback-Leibler informat ion 
K(Oo, O) is finite and m times differentiable 

d i 
K(i)(Oo, 0) = ' ~  K(0o, 0) < ~ ,  i =  1, . . . ,m (m_> 2) . 

CONDITION 3. The prior  distr ibution has density funct ion g(O). The 
g(O) is m times differentiable (gli)(o) < ~ ,  i = 1,2,..., m) and bounded.  

CONDITION 4. The sequence 2n(S, 0o, 0) converges to K(0o, 0) as 
n - - - ~  a.s. [Poo] Q(0)-uniformly with respect to prior measure/f rO) and 
Q(O) is m times differentiable (QIml(0)<~) ,  Q(0o)-=0, and I Q(0)IT as 
1 0 -  0oi l  

CONDITION 5. For  every ~ > 0, H(0o, 0, ___ ~) are convex and m 
(m _> 2) times differentiable functions in the intervals ( - ~ ,  0o) and (0o, ~) .  

CONDITION 6. On(S) converges to 0o a.s. [Poo] as n ~ ~ .  

THEOREM 2.1. Let s = (xl .... ,xn) be n i.i.d, observations f rom the 
population f(xJOo) and It(O) be prior distribution o f  O. I f  the Conditions 
1-6 are satisfied and O is the mode o f  the posterior density function, then 

(2.3) a + = Pot~(O > 0 + e) = e -"tK~°°'~+')+°°)l , 
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(2.5) 

can be written as 
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and  

(2 .4)  a~ = Pot,(O < 0 - e) = e -'t~(°°'O ~).oml , 

as n --* ~ a lmos t  surely  [P0o]. 

For ~ > 0, the e-tail probability of posterior 

4- 

an = Pol~(O > 0 + ~) , 

(2.6) 

where 

+ ( ~  . n .  -n,t.(s.Oo,O).n 
a, = Cn(s, Oo)Jo.~gttl)e au , 

(2,7) 

(F (s oo o3 
Cn(s, Oo) = =g(O)e " ' ' 

and 2,(s, 0o, 0) is defined by (1.4). We write 

c ;  ( Oo) = g( O )e °° dO 

=L=g t  ( ~ "O)e nEK(Oo,O~-~o)R°(s,Oo,OlldO , 

where 

(2.8) 

Since, by 

Rn(s,  0o, O) = Q-'(O)[2,(s,  0o, O) - K(Oo, 0)] .  

Condi t ion  4, R , ( s ,  0o, O) converges to zero as n -  ~ a.s. [P00] 
uniformly in 0 hence for any smal l  6 > 0 we have, for n sufficiently large, 

f5 J5 (2.9) ~g(O)e-'m°°'°'~ldO <_ C£l(s, O) <_ ~g(O)e nmo,,,o, ~dO , 

(a.s. [P0o]). Note that lim H(Oo, O, +_ (~) = K(Oo, 0). For arbitrary r > 0, it follows 
~-0 

f rom Condit ions 4 and 5 that  there exists 6 such that  

f_~ e-nH(Oo, O,,~) (2.10) =g(O) dO = O(enr), 

and 
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(2.1 1) f_~ g(O)e-'mt°°'°'-'~)dO = O(enr) . 

Since, by Condi t ion  6, On(s) converges to 0o as n ~ ~ [P00] hence wi thout  
loss of generality we assume 0o < On(s) + e < b a.s. [P00] for all b > 0o + e. 
Denote  

__ (~o .,,qx -n2,(s,Oo,O) 1,q 
(2.1 2) L - .lO,(s)+~ g tv  ~e av  

:[f,,bcs,+ +fb]g(O)e-"X"("O°'O)dO 

= In ,  l + In ,2  . 

By Condit ions 3 to 5, there exist ~ and ( > 0 such that  

(2.13) L,2 = O(e (,,-C~H(Oo,b,o~), 

a.s. [P0o]. Now we need only to consider the integral 

(2.14) L , I  = f;.,g(O)e :~,(s, Oo,O) dO " 

Again, for any ~ > 0, by Condi t ion 4, we have the following inequality 

( b  z ~ x  nH(Oo 0 ~)j,q 
(2.15) j,,,l =jo+~g~v)e " a v _  L,1 

< fb+~g(O)e "H(°°,°,-°~dO = [~,j . 

Now we need to evaluate the rates of i-,,~ and j , , l  tending to zero. Let 
a = 0 + e (0 < a < b). Note that,  by Condi t ion 4, 

(2.16) H(~)(Oo, O, 8 ) > O ,  for all a<_O<_b.  

Therefore the min imum of H(Oo, O,O) for a_< 0_< b occurs at 0 = a. It 
follows, for arbitrary 6 > 0, 

(2.17) 

where 

_L,, = e -'ml°°''''~) fb  a(o; n)e-'m"(°°'""~)~°-'°dO 
~o 

I [' ]1 (2.18) G(O; n) = g(O) exp - n  - ~  Hl2)(Oo, a, ~)(0 - a) z + ... . 
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By Condi t ions  2 to 4, the Taylor  expans ion  of  G(O; n) at 0 = a yields 

m - I  1 ' 1 
(2.19) G(O; n) = iZo ~. Gtil(a; n)(O - a)' + ~ .  GIm)((; n)(O - a) m , 

where a _< ~ _< b. Note  that,  by  Condi t ion  3, the numbers  

(2.20) Mi = sup Igtil(0)l, i =  0, I .... , m ,  
a<O<b 

are bounded .  Fur the rmore ,  by using the inequal i ty  x l exp ( - x  2) < I! for  
x > 0 and 1 = 0, 1,2,. . .  it is easy to see that  

(2.21) Glil(o; n) = O(n i/2) , 

for  all i -- 0, 1,..., m - 1 and a _< 0 < b. Insert ing the equa t ion  (2.19) into 
equa t ion  (2.17) and integrating term by term, we have 

e_nH(Oo, a,~) { ~1 1 (2.22) _ I,,l = i:0 ~ Gti)(a;n) 

• f~ ( 0 -  a)ie-"H"'(o°"~'°o(°-")dO+~,,m} 

where the remainder  term 6,,,~ satisfies 

(2.23) IC~,,ml = O(nm/2f~(O--a)me-nn")(O°'°'~)(O a)dO) 

= O(n-(m+2)/2), a s  n --, ~ .  

Note  that  each term in equa t ion  (2.22) is a gamma- type  integrat ion,  hence 
for  each i = 0, 1,... there exists a posit ive constant  ei such that  

(2.24) f~ (0 - a)ie-'H'"(°°'""~)(°-")dO = i! [nH(t)(Oo, a, ci)] i+l + O(e-'")" 

(2.15), (2.22), (2.23), (2.24) and O(n -(m+2)/2) = O(e -L(m+l)~°g'v2) Equa t ions  
yield 

(2.25) In, I ----e nH(O°'a'5) { m~li:O G(i)(a; rt)[nH(1)(O°' a ,  ( ~ ) ] - i - 1  q_ O(n-(m+2)/2) } 

= e-n[H(Oo,a. /h+o(I)] . 

Similarly, for  given e > 0 and arbi t rary  small cf > 0, we have 
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(2.26) -[.,t = e -'[m°°'a'-~+°(°] . 

Results (2.25) and (2.26) and inequality (2.15) yield 

(2.27) e ,[/~(0o,0+~)+~fq(~+~)i+o(O] _< I,,j < e -'[~(°°'~+~) ~iq~0+~)l+o(~)], 

for any small 5. Since Q(O) is bounded  in the interval a < 0 _< b and 5 is 
arbitrary it follows from (2.27) 

(2.28) L,I = e -'[K(°°'O+~)+°(°] . 

Again since r is arbitrary it follows f rom (2.6), (2.10), (2.11), (2.12), (2.13) 
and (2.28) that  

a~£ = Pols(O > O, + e) 

= C21(s, 0o)[I,,l + I,,z] 

~_ e -n[K(Oo,O.+e)+o( l ) ]  , 

a.s. [Pool as n ~ oo. Similarly, we have 

a n  "~-- e -n [K(O° 'O ' - e )+° ( l ) ]  , 

a.s. [Pool as n ~ ~ .  This completes our proof. 

3. Example 

Suppose  x l , . . . , x ,  are i.i.d, observations f rom a normal  popula t ion  
having mean 0, variance one and density function 

' / I / 
(3.1) f ( x )  = - ~ u  exp - -~- (x - 0) 2 . 

Assume the pr ior  dis tr ibut ion ¢t(0) for the locat ion parameter  0 has a 
density funct ion 

(3.2) g ( O ) = ~ e x p  - - ~ 0  . 

For  00, 0 ~ O, the Kullback-Leibler informat ion is 

(3.3) K(Oo, 0) = (0 - 00)2/2. 
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For  any 0o and arbi t rar i ly  small r > 0 the poster ior  d is t r ibut ion  of  para-  
meter 0 given da ta  s can be writ ten as 

L ( O I s )  " .,o = c~e gt~), (3.4) 

where 

C 1 ( ~  .-n(O 0,,)(0.0, 2k)'2 ,,q-~1,q 

= O(e"') , 

a lmost  surely [Po,] as n ~ ~ .  Let  0o = 0. The log-l ikelihood rat io statistic 
2,(s, O, O) is 

02 
(3.5)  o, 0 )  = 5 -  - 

For  every 0, 2,(s, 0, 0) converges to K(0, 0) a.s. [Po]. Note that  

(3.6) ess.sup 12,(s, 0, 0) - K(0, 0)] ~ ~ ,  
0 

a.s. [Po] as n ~ ~ ,  where the essential supremum is taken with respect to 
the prior  d i s t r i bu t ion /40 ) .  This means tha t  2,(s,  0, 0) does not  converge to 
K(0, 0) a.s. [Po]f-uniformly.  Let Q(O) = 0. Note that  

(3.7) I Q-'(O)2,(s, 0, 0) - Q-~(O)K(O, 0)1 = I X.I,  

which is independent of 0. Fu r the rmore ,  IX~l --" 0 a.s. [P0] and the conver- 
gence is independent  of  0. Hence the sequence 2 , ( s ,0 ,0 )  converges to 
K(0, 0) a.s, [P0] and Q(O)-uniformly with respect to prior  measure/~(0)  as 
n ~ ~ .  For  any 6 > 0, it follows f rom (3.7) for sufficiently large n 

(3.8) I Q-~(O)2~(s, O, O) - Q-~(O)K(O, 0)1 < 6 .  

For  every ~, the H(O,O,+6)= K ( 0 , 0 ) +  61Q(O)[ are convex funct ions and 
lim H(0, 0, +6) = K(0, 0). This can be seen f rom the fol lowing Fig. 1. All 
6~0 

the condi t ions  stated in Section 2 are satisfied. It follows f rom Theorem 2.1 
we have 

(3.9) a + = e ~[~0°{~)~ ~)::2 + o~n] , 

and 
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K(0, 0)=82/2 

glQ(O)I=aIOI 

0 , 0  

Fig. 1. 

(3.10) an = e nl(O.(s) a)~/2+oO)] . 

The results (3.9) and (3.10) can also be obtained by integrating 
directly. One could see that this example does not fit the framework of Fu 
and Kass (1983). This result provides more broad expression for a large 
deviation probability that is relevant to a Bayesian, more importantly, a 
characteristic of parametric families that affects the quality of the inferences 
a Bayesian can make. 
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