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CAPS TO 

Abstract. Consider a unit sphere on which are placed N random spherical 
caps of area 4rip(N). We prove that if lim (p(N).N/log N) < 1, then the 
probabil i ty that  the sphere is completely covered by N caps tends to 0 as 
N--" 0% and if lim (p(N).N/ log N) > 1, then for any integer n > 0 the 
probabili ty that each point of  the sphere is covered more than n times 
tends to 1 as N--* oo. 
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1. Introduction 

Consider N random spherical caps of area 4z~p(N) placed on the 
surface of a sphere of unit radius. We suppose that the centers of these N 
caps are independently and uniformly distributed over the surface of the 
sphere. Then, what is the probability that the sphere is completely covered? 
This problem is called a coverage problem (see, e.g., Kendall and Moran 
(1963), Santal6 (1976) and Solomon (1978)), and it seems that no exact 
solution is obtained yet. In this paper we consider the asymptotic behavior 
of the covering probability as N tends to infinity. We prove that the 
function po(N) = (log N)/N is a threshold function for the coverage in the 
following sense: if lim (p(N)/po(N))< 1, then the covering probability 
tends to 0 as N--0% and if lira (p(N)/po(N))> i, then for any integer 
n > 0, the probability that every point on the sphere is covered by more 
than n caps tends to 1 as N--- oo. 

The method used in the proof will be clearly applied to any dimensions. 
Hence the same function p0 = (log N)/N is also a threshold function for 
the coverage on a sphere in any dimensions. 
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2. Random arcs on a circle 

Here we recall how the similar result  was ob ta ined  in the one 
dimensional case. Consider the circumference of a circle with unit perimeter 
on which N random arcs I1,..., IN, each of length p, are randomly placed. 
Let o,- be the clockwise endpoint  of Ii, i =  1, . . . ,N. We assume that oi, 
i = 1,..., N, are independently and uniformly distributed over the circle. Let 
Yi be a random variable such that Y~ = 1 if Ii contains no other points oj, 
where j ¢ i, and Y~ = 0 otherwise. Then the sum Y = I11 + ... + YN stands 
for the number  of "gaps", that is, the number  of  connected components  of 
the part of the circle that is not covered by any N arcs. Then it was proved 
by Maehara  (1987) that if p = (c log N ) / N  with a constant c>O, then 
P(Y=O) tends to 0 or 1 accordingly as c < l  or c > l ,  and that if 
p = (t + log N)/N,  then P(Y= k) tends to ttke-~'/k! as N tends to infinity, 
where /l = e '. Hence the covering probabil i ty P(cover) tends to 0 if 
p .N/log N ~ c < 1, and P(cover) tends to 1 i fp .N/ log N --- c > 1. Further- 
more, i fp  = (t + log N)/N,  then P(cover) tends to e -~ as N--- 

3, Random caps on a sphere 

Let S denote the surface of  a unit sphere in three dimensions. The area 
of a spherical cap of angular radius a is 2n(1 - cos a) = 4n sin 2 (a/2). Thus 
any of random points uniformly distributed over S falls in a specified cap 
of angular radius a with probability 

p - -  (1 - cos a)/2 = sin 2 (a /2 ) .  

Now consider N random caps of angular radius a on S, whose centers are 
independently and uniformly distributed over S. For  each non-negative 
integer n, let U,,(N,p) denote the set of points of S that are covered by at 
most n caps, that is, any point  of U,,(N,p) is not covered by more than n 
caps. Thus 

Uo(N,p) C UI(N,p) C U2(N,p) C ... , 

and U(N,p) := Uo(N,p) is the part of S that is not covered by any of the N 
caps. The proport ion of the area covered by Un(N,p) is denoted by the 
lower case un(N,p); 

u,(N,p) = {the area of U,(N,p)l/(4n). 

THEOREM 3.1. I fp  = p ( N )  _< (c/N) log Nfor  a constant c < 1, then 

P(U(N,p) ~ f~) ~ 1 as N ~ ~ .  
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PROOF. If p '  < p ,  then clearly P(U(N,p ' )  ~ f~) > P(U(N,p)  ~ 9). 
So, it will be sufficient to prove the theorem when p = (c /N) log  N. By 
Robbins '  theorem (see Kendall and Moran (1963), p. 109), the expected 
value of  u(N,p) is 

E(u(N,p)) = fs P(x e U(N,p))dx/(4~z) , 

where dx is the area element of S at x. Since x e U(N,p) implies that all the 
centers of  the N caps fall outside the cap of angular radius a centered at x 
(where p -- sin 2 (a/2)), we have 

P(x ~ U(N,p)) = (1 _p)N, 

and hence 

E(u(N,p)) = (1 - p)N. 

Similarly, 

E(u(N,P) 2) = fs fs P(x, y 6 U(N,p))dxdy/(16n 2) 

= fs P(xo, y ~ U(N,p))dy/(4n) , 

where x0 is a fixed point on S. Suppose that Xo and y subtend an angle 0 at 
the center of the sphere and let q(O) denote the fraction of S inside both of  
the caps with angular radius a and centers xo and y. Since x0, y ~ U(N,p) 
implies that all the centers of the N caps fall outside both of the caps with 
radius a and centers )co and y, we have 

P(xo, y ~ U(N,p)) = (1 - (2p - q(O))) N . 

Two points x0 and y subtend an angle between 0 and 0 + dO at the center of 
the sphere if and only if y falls in a ring of area 2n sin 0 dO. Hence 

E(u(N,p) 2) = f~ (1 - (2/9 - q(O))) N ( 1 / 2 )  s in0  dO, 

and noting that q(O) = 0 for 0 > 2a, 

< [2a n 
E(u(N, p)2) ~ o (1 - p)U (1 / 2) sin 0 dO + f ~  (1 - 2p)N(1 / 2) sin g dO 

< (l _p )U[  _ (1/2) cos 0]2 a + (1 - 2p) u 
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= (1 - p ) N ( 1  - cos 2a) /2  + (1 - 2p) N. 

Since (1 - 2 p ) N <  (1 _p)2N= E(u(N,p))2,  and (1 - cos 2a ) /2  = 4p(1 - p ) ,  

it fol lows that  the variance of  u ( N , p )  is 

V(u(N ,p ) )  = E ( u ( N , p )  2) - E ( u ( N , p ) )  2 < 4p(1  - p ) N + l .  

V(u (N ,p ) ) /  E ( u ( N , p ) )  2 < 4p/(1  - p ) N - l  ~ 4pePN 

= (4c log N ) / N  1-c ~ 0 

Thus 

Therefore ,  using Chebyshev 's  inequali ty,  

that  is, 

as N---  

P(u (N ,p )  = O) < P ( l u ( N , p )  - E(u(N,p))J  > E(u (N ,p ) ) )  

< V ( u ( N , p ) ) / E ( u ( N , p ) )  2 --" O, 

P ( U ( N , p )  ~ ~ )  ~ 1 as N ~ oo. 

THEOREM 3.2. I f  p = p ( N )  _> (c/ N )  log N fo r  a constant c >  1, then 

for  any integer n > 0, 

P ( G ( N , p )  ~ 0 )  ---, 1 

First  we prove  the fol lowing lemma. 

LEMMA 3.1. 

PROOF. 

Since u . (N ,p )  
asserts that  

as N---" oo . 

I f  p = (c/ N )  log N (c > 1), then f o r  any n > 0 and e > O, 

P ( U . ( N , p )  > ep) ~ 0 as N ~ ~ .  

By R o b b i n s '  theorem,  

E(u,  (N,p))  = fs P(x  ~ U, (N ,p) )dx / (4z0  = P(xo ~ U, (N,p))  

= ~; pJ(1 _ p ) N - j  S=O (NJ/J!)PJ(1 _ p ) N  
j=O 

-- (c log N ) " / ( n ! N  c) . 

is a non-negat ive  r a n d o m  variable,  Markov ' s  inequal i ty  
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P(u, (N,p)  >_ tE(u,(N,p)))  < 1/ t . 

Hence, letting t = ep/E(un(N,p)) ,  we have 

P(U, (N,p)  > ep) < E(u , (N,p) ) / (ep)  . 

Since 

E(u,(N,p))  

ep 

N(c  log N)" (c log N)  "-1 

(ec log N)n ! N c en ! N ~- 1 --* 0 ,  

we have P(U. (N,p)  > ep) --" 0 as N---- oo 

PROOF OF THEOREM 3.2. It will be enough to prove the theorem 
whenp  = (c/N) log N(c > 1). Let c' = (c + 1)/2 andp '  = (c'/c)p = (c' log N)/N.  
Then, since c' > 1, it follows from the above lemma that for any e > 0, 

P(U,(N,p ' )  > ef t )  --" 0 as N--- oo 

Let a' be the angular radius of  a spherical cap of area 4np'. Then a - a' > 0. 
Choose a constant  e > 0 so that e(4np') is less than the area of a cap of  
angular radius a - a'. For  example, we may let e = ( c ' v ~  - 1)2/2. To see 
this, no te  that  since a is small,  na 2 ~  4np and a ~ 2x/p.  Similarly,  
a ' - -  2 ~ .  Hence 

~ ( a  - a t )  2 - -  4 n ( x / p -  ~ / ~ ) 2  = 4 n p ' ( c x / - ~ ' -  1) 2 , 

and 

1 ( c x ~ -  1)24np ' <  n ( a -  a') 2 e(4np') = --f 

Now, let x~,..., xN be N random points on S and suppose that u,(N,p ' )  <_ ep' 
for the N caps of angular radius a' centered at xi, i = 1,..., N. Suppose that 
Un(N,p') ~ 0 and let y be a point of  Un(N,p'), i.e., y is covered at most n 
times by those N caps. Then there must be a point z (~ U,(N,p')  within 
angular distance a -  a' f rom y. For  otherwise, we have u , ( N , p ' ) >  eft, a 
contradiction. If a cap C of angular radius a' covers z, then the cap of 
angular radius a concentric with C covers y. Therefore, if we extend the 
size of  each cap from angular radius a' to angular radius a, then those caps 
that cover z extend to caps that cover y, and hence y will be covered by 
more than n extended caps. This implies that 
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P(un(N,p')  < ep') < P( Un(N,p) = Q) . 

Hence ,  P(Un(N,p) = Q)  ~ 1 as N -  oo 
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