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Abstract. It is desirable that a numerical maximization algorithm 
monotonically increase its objective function for the sake of its stability 
of convergence. It is here shown how one can adjust the Newton- 
Raphson procedure to attain monotonicity by the use of simple bounds 
on the curvature of the objective function. The fundamental tool in the 
analysis is the geometric insight one gains by interpreting quadratic- 
approximation algorithms as a form of area approximation. The statis- 
tical examples discussed include maximum likelihood estimation in 
mixture models, logistic regression and Cox's proportional hazards 
regression. 
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1. Introduction and overview 

Various statistical questions lead to the following problem: 

(1.1) Find z~ ~ H  such that l(z~)_> l(~z) for all ~ H .  

The set H__ R e is a set of feasible parameter  values and 

l: H--" l(n) ~ R ,  

describes the objective function to be maximized, in this paper always a 
log-likelihood function. In the absence of a closed form solution to 
problem (1.1), we consider algorithmic ways to attack the problem at hand. 

*The first named author is in the Department of Epidemiology, Freie Universit/it Berlin, Augusta- 
str. 37, 1000 Berlin 45, Germany. 

**The second author's research was partially supported by the National Science Foundation under 
Grant DMS-8402735. 

641 



642 DANKMAR BOHNING AND BRUCE G. L1NDSAY 

If the solution to (1.1) lies on the boundary of H, then the constraints 
imposed by H may play an important role in an algorithm. Here we focus 
on the simpler unconstrained optimization problem of finding solutions in 
the interior. 

In specifying the properties an algorithmic solution should have, we 
frequently find the criterion of reliable convergence (to ~) in the literature. 
This issue can be critical: if we take as an example a simulation study in 
which a certain algorithm is started 100,000 times and converges in 90% of 
all cases to ~, and in 10% to something else, then the study results may be 
highly biased. 

A second major issue is that of convergence rate. The convergence rate 
measures the gain at each step relative to the gain in the step before. An 
algorithm with a "good" convergence rate will give a "large" improvement 
at each step. Algorithms with good convergence rates often require a larger 
number of operations at each step; in other words, the price to pay for the 
large improvement at each step is a high numerical complexity. A measure 
which adjusts to both these is the computational efficiency: the overall 
price paid to obtain r~. 

Sometimes other issues are discussed, such as the simplicity and 
numerical stability of an algorithm. 

In the present paper we focus on reliable convergence and convergence 
rates for a class of quadratic-approximation based algorithms related to 
the Newton-Raphson algorithm. The ideas are related to the EM-concept 
of Baum and Eagon (1967), Sundberg (1976), Dempster et al. (1977) and 
Wu (1983). In this regard we note that the EM-algorithm--celebrated for 
the monotonicity property which ensures reliable convergence--converges 
at a linear rate at best. Despite this apparent disadvantage, we note that the 
numerical complexity involved at each step of the EM-algorithm is usually 
low, and, especially in cases where the linear rate is governed by a small 
rate-factor, the EM-algorithm could be more computationally efficient 
than Newtonian methods. On the other hand, if the rate-factor is large the 
convergence can be very slow, and thought should be given to methods to 
accelerate its speed. 

Quadratic methods are known to lead to rapidly convergent algo- 
rithms. Moreover, for some statistical problems such as logistic regression, 
the EM-approach is not applicable. For Newtonian methods, however, 
problems sometimes arise in terms of non-monotonicity, leading even to 
non-convergence. This fact is sometimes mentioned in the literature (e.g., 
Andersen (1980), p. 69). Cox and Oakes ((1984), p. 172) write: 

"Divergence is much more frequent, as a full Newton-Raphson 
step will not necessarily increase the log-likelihood. As against 
this, the Newton-Raphson procedure usually converges rapidly 
when it does converge, in particular when the log-likelihood is 
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well approximated by a quadratic function, and the inverse of the 
matrix of second derivatives is often needed for the estimation of 
standard errors." 

The present paper considers the case where the quadratic-approxima- 
tion to the log-likelihood based on the Taylor series is "flatter" than the 
objective function, thereby sending the solution too far at the next step. 
The idea of replacing the flat quadratic by a more curved quadratic leads 
naturally to our approach of replacing the Hessian by some "bigger" 
matrix. A key feature of our algorithms will be that they are mono ton ic - -  
that is, every step increases the value of the objective function l (n)--and so 
have reliable convergence. 

The paper is organized as follows: After presenting some notation, we 
provide in Section 3 a simple example of a concave objective function in 
which the Newton-Raphson method is nonconvergent. The example leads 
to a general discussion of convergence properties of the Newton-Raphson 
(NR) algorithm based on characteristics of the Hessian matrix. The focal 
point is the introduction of an "area estimation" interpretation of the NR 
algorithm. Two statistically important  cases are discussed: in one, conver- 
gence or divergence depends on starting value; in the other, convergence is 
shown to hold by showing that monotonicity of the algorithm can be 
violated in at most one step. 

Sections 4 and 5 present a lower-bound algorithm for problems in 
which there exists a single matrix which dominates the Hessian globally. It 
is shown that this can be used to create a monotonically convergent 
algorithm, and the linear rate is found. It has the additional advantage over 
the NR of not requiring repeated calculation and inversion of the Hessian. 
Two examples are given: logistic regression and Cox's proportional hazards 
model. For the logistic regression case we also present a simulation study 
compar ing  our me thod  with Newton -Raphson  in high d imensional  
problems. 

In Section 6 we consider a second class of models in which there does 
not exist a global lower-bound on the Hessian, but the Hessian does 
possess a concavity property that enables one to bound the curvature along 
lines by the curvature at the endpoints. This structure enables one to ensure 
monotonicity by simple corrections to the NR algorithm. 

2. Notations and definitions 

• Parameter space of interest: H__ R e. 
• Function to be maximized (log-likelihood) l: H--" R. 
• Gradient of l at n (score vector): 
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• Hessian matr ix  of  l at n (negative of  sample information): 

V Z l ( n ) = (  02l 
\ O~r:Ozci ( n ) ) .  

Let A and B be two p × p matrices.  Then we say that  "A is greater  
than B in the Loewner  order ing"  (and write A >_ B) if A - B is nonnegat ive  
definite (see also Marshal l  and Olkin (1979), p. 462). 

I f p  = l, so that  n is a scalar, then vii(n) denotes  the i-th derivative of  l 
at n. [[nll denotes  the Eucl idean norm on R e, and if A is a p by p matr ix,  
then I lAll represents  the cor responding  induced norm,  sup {llAnll / I lnll: 

We will say that  a sequence (zcj:j = 1,2,. . .  ) converges  linearly to z~ if 
there exists a cons tant  c ~ (0, 1) such that 

I lnJ+,  - z~ll ~ c l l nJ  - A l l .  

The sequence converges quadratically if there exists a posit ive c such that: 

I I~ j+ ,  - A l l  ~ c l l ~ j  - ~112 

The sequence converges superlinearly if 

l i m s u p  IlnJ+~ - r ~ l l / I I n ~ -  ~11 = o .  
j ~ oo 

3. Convergence and quadratic-approximation 

Suppose  one uses a quad ra t i c - app rox ima t ion  to l(z 0 in a neighbor-  
hood  of  a current  value re0 based on the Tay lo r  series: 

(3.1) l(Tr) ~ Q(rc) := l(zr0) + (n - rc0)rVl(zc0) + (n - rc0)rV2l(n0)(n - re0)/2 . 

So lu t ion  to the cor respond ing  quadra t ic  max imiza t ion  p rob lem creates the 
next  value of  the Newton-Raphson algorithm: 

(3.2) n n r  = ZOo - -  V 2 l ( n o )  l Vl (n0)  . 

It is somewha t  surprising that  concavi ty  of  the objective funct ion is not  
sufficient to guarantee  convergence  of  the N e w t o n - R a p h s o n  algori thm. In 
this section we present  some results regarding convergence in some impor-  
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tant statistical problems, based on the structure of the Hessian matrix. We 
start with a simple example of nonconvergence. 

Example A. Suppose that: 

--/ l o g ( l + ~ ) - T r ,  rc_>O, 
l(zc) ( log (1 - zr) + re, ~z _< 0 .  

For this objective function the gradient is: 

Vl( ) = 

1 
l + r c  

1 

1 -~r  

- 1 ,  zc_>O, 

- - + 1 ,  ~ 0 ;  

for which a graph is shown in Fig. 1. Note that I is strictly concave, twice 
continuously differentiable and uniquely maximized at r~ = 0. 

Here the Newton-Raphson iteration is given by 

/ -- / [2  /[ ~ 0 , 

T(nr 
2 ,  ~ ~ 0 . 

o 

L.I., 

0.5 

7[ 

- 0 . 5  - 

- l -  
, c  

1- 

I I i I 
- 4  - 3  - 2  - I  0 

.................. ii ............................ 

" .  1st NR step 

2nd NR step 

T~2 

i I I I I 
I 2 3 4 5 6 

Fig. 1. The  spider-web-effect .  
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Thus the algorithm has the characteristic that, depending on the initial 
value n, it does one of three things: 

Converges 

Oscillates between - 1 and 1 

Diverges 

I n l < l ,  

n ~ { - 1 , 1 } ,  

I n l > l .  

This last case, the spider-web-ef fect ,  is also pictured in Fig. 1. We seek to 
eliminate the potential for this behavior. 

3.1 Area-es t imat ion  
Since the concavity of l(n) does not ensure the convergence of the NR 

algorithm, one might ask if there are features of the problem which will 
guarantee this convergence. In order to explore this issue we offer an 
interpretation of the Newton-Raphson algorithm as an area-estimation 
algorithm, restricting attention to the univariate case, p = 1. Since VI(~) = O, 
we have 

(3.3) 
Vl(n0) + Vl(~) - Vl(no) = 0; 

f '  2 
Vl(no) + J~V l (n)dn  = 0 .  

o r  

If we think of the integral as the area defined by the Hessian curve, then 
another way to view equation (3.3) is provided in Fig. 2: namely, 

AREA = - Vl(no) .  

That is, although r~ is unknown,  we do know the area above V2l(n) from no 
to r~; it is - Vl(no). Newton-Raphson assumes that AREA can be approxi- 
mated by a rectangle with height V21(no) and width (n - no) so that: 

- Vl(no) = AREA -~ (~ - no)Val(no) , 

is satisfied. We note that if the lower edge of the rectangle is entirely below 
the Hessian curve, then the step must be directionally monoton ic .  That is, 
the step must land on a point between no and z~; if the objective function is 
concave (negative Hessian), then this is also a point of higher likelihood, 
and so the step is monotonic. 

3.2 Type I l ikel ihoods 
The Hessian for Example A is pictured in Fig. 3. We might character- 

ize it as follows: 
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Fig. 2. Geometric interpretation of equation (3.3). 
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Type I: • n is scalar; 
• V21(n) is negative, bounded below, and increasing in both 
directions from a point of minimality. 

It is clear that using the point of minimality as a starting value for the NR 
algorithm in a Type I likelihood will ensure monotonic convergence, as NR 
will at every stage use a box that overestimates the corresponding area 
between the curve and the axis. It will be shown in Section 5 that in the 
logistic regression model, scalar case, that the likelihood is of Type I, with 
a point of minimality at 7r -- 0, and we have therefore shown NR mono- 
tonicity when the starting value is n -- 0. This univariate result is not easily 
extended to p > l, but it does shed some light on the apparent good 
behavior of the NR algorithm in this model. That  this good behavior is 
related to the starting value will be demonstrated in Section 5. 

Example A motivates as well an alternative approach taken in Sections 
4 and 5. That  is, consider V2l(n), as shown in Fig. 3. Obviously, V21 is 
bounded below by B = Val(0) = - 1. If instead of (3.1) we use the quadratic- 
approximation 

(3.4) l(no) + Vl(no)(n - no) + B(n - n0)2/2, 

then, as verified in Theorem 4.1, we achieve a step which necessarily 
increases l regardless of starting value. That is, we have created a globally 
monotonically convergent procedure described by the mapping 

nrb = n + Vl(n) = 

1 1} ,  n > 0 ,  
n +  l + n  

{ 1} 
- - -  , n _ < 0 .  

Although the convergence rate for algorithms created in this fashion a re - -  
in full generality only linear, in this example the convergence rate is 
superlinear because the lower-bound is sharp at the solution point ~ = 0. 

3.3 Type H likelihoods 
Another important  type of structure can be recognized in Fig. 2, where 

the Hessian curve is not bounded below, but is concave. That is, consider 
the class of models: 

Type II: n is scalar; V2l is negative; V41 is negative. 

Here is an important example of a Type II likelihood: 
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Example B. (Mixture  of two known densities) Consider  a r andom 
sample taken f rom the density nf (x )+ ( 1 -  n)g(x), where f and g are 
known densities and n is an u n k n o w n  parameter  in [0, 1]. The log- 
likelihood has the form: 

l(n) = Zkj  log ( f  + nAj), 

w h e r e £  ---f(xj) and Aj = g(xj) - f (xs) .  We then have: 

Vml(n) = (m - 1) ! ( -  1)rn-lY.kjAs/(f + nAj) m • 

For  m -- 2, this implies that  I is concave. For  m --- 4, this implies that V2I(/~) 
is concave, which is the property we wish to exploit. We will call this 
proper ty  double concavity. Note that  this implies that  the m i n i m u m  of 
V21(n) on an interval [a, b] occurs at either a or b. 

To demonst ra te  the behavior  of the Newton-Raphson  in such a 
problem,  we consider a numerical  example: let gr= (.6, .3, .05,.05), f r =  
(.05, .15, .3, .5) and k r= (.15, .1, .2, .55). The solution is z~ -- .13522. In Table 
1 the steps of the Newton-Raphson  are shown, given a starting value of .9. 
Note that  Newton-Raphson  oversteps the solution at Step 4. The two other 
a lgor i thms in the table are modificat ions of the NR algori thm designed for 
monotonici ty;  they will be discussed in Section 6. 

It is a remarkable proper ty  of the Newton-Raphson  algori thm that in 
a doubly  concave funct ion the steps can be directionally non-mono ton ic  at 
most once, as we now demonstrate .  Let ~ denote  the value maximizing l 
and n* denote  the maximizing value of V2I(/~), assumed concave. We can 
characterize the behavior of the Newton-Raphson  algorithm in the doubly 
concave model - -as  a funct ion of the initial value n0--as follows: 

Case 1. If ~ is between n0 and n*, then the Newton-Raphson  step 
will always be monotonic ,  as illustrated in Fig. 4, and all further steps are 
in Case 1. 

Case 2. If the starting value no lies between r~ and n*, as in Fig. 5, 
then the step can be an arbitrarily bad overs tep- -how bad is clearly a 

Table 1. A comparison of algorithms: the Newton-Raphson, (6.3) and (6.6). 

Step number 
Algorithm 

1 2 3 4 5 6 7 8 

NEWTON .9 .69191  .34420  .08556  .12609  .13494  ,13522  .13522 
(6.3) .9 .69191  .34420  .24900  .17756  .14133 .13534  .13522 
(6.6) .9 .69191 .34420  .17763  ,13581 .13522  .13522  .13522 
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funct ion of the curvature of V2/(g). One other  impor tan t  proper ty  can be 
deduced f rom the figure: Once Case 2 occurs, all further steps will be in 
Case l, and so a non-monoton ic  step of this type can occur but once. 

Case 3. If 7r* is between ~Zo and z~, then we are in an undecided 
phase. Note that  eventually (in a finite number  of steps) the algori thm 
carries ~ro to some zrj which is in either Case 2 or Case 1. 

In conclusion,  we have shown that  the Newton-Raphson  algori thm is 
guaranteed to converge in the doubly concave situation, but  that  it can 
take one arbitrarily bad step. 

This should be compared  with other results concerning the mono-  
tonicity of the Newton-Raphson  algori thm (see, e.g., Pot ra  and Rheinboldt  
(1986)). For  a function of one variable the conditions usually require at 
least concavity (or convexity) of VI (Collatz (1961), p. 102 and Horst  
(1979), p. 152) as the most  impor tan t  condition.  For  Example  B, such a 
condit ion does not  generally hold. 

4. The lower-bound algorithm 

We now extend the class of Type I likelihoods to the multivariable 
case by saying that  the likelihood is Type I* if 

(4.1) V2I(~)>B, 

is satisfied for all ~r e / / ,  where B is some symmetric, negative definite 
matr ix  not  depending on re. The Lower Bound algori thm (LB) will have 
steps defined by 

(4.2) ~rlb = ~Z0 -- B -1Vl(rc0). 

This corresponds to a quadrat ic-approximat ion to l(~r)-l(~zo) of the 
following form: 

(4.3) QB0r) := (~  - ~ o ) r V / ( ~ o )  + (Tr - ~ o ) r B ( ~  - ~ o ) / 2 ,  

where zc0, 7r e / 7  and B is a symmetric, negative definite matrix. If B = 
V2/0r0), then (4.1) is the second-order  approximat ion  to l(r 0 -l(rc0). It is 
impor tan t  to notice that,  for every B, Qn matches l(rc) - 10r0) in slope at zc0 
and has value 0 there. The following lemma collects some useful informa- 
tion about  this approximat ion;  it is followed by the main theorem concern- 
ing the algorithm. 

LEMMA 4.1. For B a symmetric, negative definite matrix: 



652 DANKMAR BOHNING AND BRUCE G. LINDSAY 

(a) Qs is maximized at 7~ = no - B-1Vl(no). 
(b) QB(r~) = - Vl(no)VB -1Vl(no)/2 >_ 0, where the inequality is strict if  

Vl(no) # O. 

PROOF. For  (a), compute  VQs(n) = Vl(no) + B(n - no) and equate it 
to zero. For  (b) note that 

QB(7~) = - (B -1Vl(no))rVl(no) + (B -1VI(no))VB(B -~ Vl(no))/2 

= - V/(no)TB -~ V/(zo) + V/(no)7"B -~ V/(no)/2 

= - Vl(no)rB-1Vl(no)/2 >_ 0 , 

and the inequality is strict if Vl(no) # O. [] 

THEOREM 4.1. Let no ~ H and suppose that (nj:j= l ,2, . . .  ) is defined 
by the LB  algorithm. Under assumption (4.2) the sequence (nj) has the 
following properties: 

(a) Monotonicity: /(nj÷l) _> l(nj), with > if nj+~ ~ nj. 
(b) Guaranteed convergence: The sequence Vl(nj) converges to 0 if  

l is bounded above. 
(c) Rate o f  convergence: The algorithm converges linearly, with 

rate 

lid - B-lV2I(~)II < 1 . 

PROOF. To prove (a), let h = -B-~VI(nj) .  Consider the Taylor- 
expansion about n/  

(4.4) l(nj+i) - l(nj) = hrVl(ny) + hrV2l(no + a*h)h/2 

>_ hrVl(nj) + hrBh/2 [using (4.2)]. 

Now apply part (b) of Lemma  4.1 to verify monotonicity.  
To prove part (b), suppose for purposes of contradict ion that  II Vl(zOII 

is bounded  away f rom 0. F r o m  part (b) of Lemma  4.1, it can be seen that  
the increments in (4.3) are bounded  below, contradicting the boundedness  
of l. 

For  part (c), note that  because of (4.2) we have hrV2l(n)h >_ hrBh and 
thus the Rayleigh-quotient of V2l(n), namely hrV2l(n)h/hrh, is larger than 
the Rayleigh-quotient of B, hrBh/hrh, for every h. Therefore: 

2 = [IB-~V2l(~)[[ ~ IIn-~ll IIV2l(~)l[ = IIV2l(~)ll/Ilgll ~ 1. 

Note that  2 is the maximal  absolute eigenvalue of B-~V2I(~). The proof  
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concludes by noting that II~ - B-lV2l(z~)l[ = 1 - 2 < 1. [] 

5. Applications 

We look now at two important models of Type I*. 

5.1 L o g i s t i c  r e g r e s s i o n  

For each i f rom 1 to n, let Y~ be a 0-1 variate whose distribution 
depends on a vector xg of predictors. Let p = p ( x )  e (0, I), depending on x, 
represent the probability of obtaining Y= 1 from an individual with 
predictors x. Logistic regression modelling (Pregibon (1981), McCullagh 
and Nelder (1983), p. 75 and Moolgavkar et  aL (1985)) assumes that 
conditionally upon the observed x's, the Y's are independent Bernoulli 
random variables with respective success probabilities: 

(5.1) p i  = p ( x i )  = 
exp (xr~) 

1 + exp (xfn) " 

Thus the log-likelihood is 

n 

l(n) = iZly, log (P3 + (1 - y,) log (1 - p ; )  

= Y ~ y i x T T z  - -  ~ ,  log (1 + exp ( x f n ) ) ,  

and the score is 

" { exp(xfn)  } 
V/(n) = iZ1 xi  y i -  1 + exp (x/m) 

= x T ( Y  - L ) ,  

where X is the n × p design matrix, Y is the vector of observations and I7", 
is the corresponding vector of expected values given x's and the current 
value of n. Note that the design matrix X is independent of n. The Hessian 
is given by 

n T 
V2l(n) = - Z x i x i p i ( 1  - pi)  = - X r A , X  , 

i = 1  

where A, is diagonal, with (i, i)-th entry p i (1  - p i ) .  The Newton-Raphson 
iteration with initial value n is therefore 

(5.2) n - V 2 l ( n ) - l V l ( n )  = n + ( X r A , X ) - l x r ( y  - Y , )  . 
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An algorithm whose steps have the given form are sometimes called iterative- 
ly weighted (or reweighted) least squares. Note also that (5.2) coincides 
with Fisher-scoring since the expected and the sample information matrix 
are equal. 

Since we have p s ( 1 - p j )  <_ .25 for j =  1,...,n, a lower-bound for the 
Hessian is 

(5.3) V21(TQ >_ --  x r x / 4  for all 2z. 

Note that this lower-bound is sharp since it is attained for re--0. We 
summarize this application of the LB algorithm with: 

THEOREM 5.1. In the logistic model  the sequence (rcj) created by 
arbitrary rco and 

(5.4) rq+l : uj + 4 ( X r X ) - I X r ( Y  - ~'~) , 

converges monotonically.  I f  Newton-Raphson  is started at 7~o = 0 the f irst  
Newton-Raphson coincides with the lower-bound step. 

To illustrate the algorithm, we consider a data set found in Neter et al. 
((1985), p. 365). Here x represents the amount  of price reduction on a given 
product, Y indicates the selected household response. The following table 
compares the Newton-Raphson (5.2) and lower-bound algorithm (5.4) for a 
logistic model which includes a constant and linear term in x, with 
corresponding parameters nl and n2. The lower-bound algorithm reaches 4 
digits of accuracy in the parameter estimates in the 7th step (3 steps for 
Newton-Raphson). It is rather interesting to note that 4 digits of accuracy 
in the likelihood are already reached in the 4th step (2 steps for Newton- 
Raphson). 

We note that if one uses nonzero start values for Newton-Raphson in 
the logistic regression model, one can obtain the spider-web-effect. In 
particular, in the example of Table 2, if we start Newton-Raphson at 
no r = (. 15,. 15) instead of (0, 0), then the first two iterations yield: 

{5.067 / { 7E+09} 
- . 8 1 2  . 6 E  + 0 8  

From the same starting value the LB algorithm needed 10 steps to reach 4 
digits of accuracy. 

Which algorithm is better (NR or lower-bound) depends on the overall 
computational  efficiency, which will depend on the size of the matrix to be 
inverted, the location of the solution and other factors. To gain some 
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Table 2. A comparison of algorithms (5.2) and (5.4). 
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Step number 
Algorithm 

0 1 2 3 4 5 

np 0 -1.9027 -2.1730 -2.1854 -2.1855 - -  
(5.2) n~ 0 .0949 .0970 .1087 .1087 - -  

l(~) -693.15 -585.90 -584.38 -584.38 -584.38 

n u 0 -1.9027 -2.0977 -2.1563 -2.1756 -2.1821 
(5.4) n~ 0 .0949 .1044 .1073 .1082 .1085 

l(~) -693.15 -585.90 -584.52 -584.39 -584.38 -584.38 

information on this issue, a simulation study was conducted. 
The design of the study was based on the opinion that the greatest 

potential value for this procedure is in large scale data snooping projects, 
where one is hunting for potentially important covariates among a very 
large set of candidates, possibly over a large number of data sets. In such a 
setting, most of the "true" values of the n-components would be nearly 
zero. Consistent with this consideration, for each trial, n = 300 observa- 
tions (Y,x) were generated. Each x-vector consisted of independent uni- 
form (0, 1) variates. The corresponding value of y was Bernoulli, with 
success probability .5, as determined by the logistic model (5.1) with n = 0. 
The number of predictors, p, was varied from 2 to 15, and 10 trials were 
conducted at each value o fp .  

In Fig. 6 the two algorithms are compared by showing the CPU time 
required to attain 4-digit accuracy on a Prime 2250 minicomputer .  
Although the number of steps required by Newton-Raphson was fairly 
constant across values of p, the plot shows the greatly increasing cost of the 
matrix operations. The plot for the L B  method shows a nonlinear trend 
corresponding to the single matrix inversion operation required. In every 
case the L B  method was faster, and the gap increased in p. 

Since an important limitation of the study was its focus on n = 0, 
which gives z~ a tendency to be near zero, an attempt was made to see if the 
comparison between algorithms depended on the distance of the solution r~ 
from the initial value 0. The tradeoff here is not clear; Newton-Raphson 
will need more inversions to get there, but the lower-bound will require 
more iterations as well. Figures 7 and 8 show how the difference 
(CPU(Newton-Raphson)-CPU(lower-bound)) depended on the standardiz- 
ed distance E~2i/p of the solution from the initial value 0 for the ten 
problems generated at each level of p. Least squares lines are plotted to 
indicate separate trends for each value of p. While there is some sign of 
downward trend, it appears that for moderate distances beyond the generat- 
ed range the lower-bound method will remain superior. Moreover, the 
higher the dimensions, the longer the advantage would stay with the L B  
method. 
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5.2 Cox proportional hazards model 
We adopt here the notat ion of Miller ((1981), p. 123). The object to be 

maximized is the partial likelihood: 

exp [ l @ ) ]  = IeI 
i = l  

T exp (X(i)~) 

E exp (rcrxj) " 
jf.R~ 

Here the product is taken over all uncensored observations and Ri denotes 
the risk set at the ordered failure time Yl;)- The Hessian of the log- 
likelihood can be computed to be 

(5 .5)  VZl(n) = - E [  j~xjxjrpj - [j~xjp~]. [j~xjrp~ ] ] ,  

where: 

pj exp (zr rxj) 

= E exp (rcrxj) " 
j~R, 

Note first that, for given i, {pj} is a probability distribution on {xjlj eRi}. 
This implies that -V2l(z0  can be represented as a sum of covariance 
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matrices and as such is non-negative definite. This implies the concavity of 
the log-likelihood l. 

The quest ion remains to find a lower-bound for vZ/(g) in (5.5). As a 
simple and quick answer in the spirit of (5.3), we find that  replacing all the 
p} by 1/2 and deleting the second term in the Hessian will do the job. 

THEOREM 5.2. 

g2/(:g) _> - Z Z x j x f / 2 .  
i i~R~ 

PROOF. 

(5.6) 

Consider for arbitrary h ~ 0~ p the quadratic form: 

. T [  ,~  T i ~ i ~ T i ]  
xjPj xj PJ n [ , S x j x j p j  - h ] 

( ,h ): = £ %)PJ  • 
j~R~ / 

Regarding {p~Jj ~ R~} as a probability distr ibution with support  points in 
the set {hTxj[j~ Ri}, then (5.6) is the variance of a r andom variable Ui 
which takes on the value hVx~ with probabil i ty p~. Var (U~) becomes 
maximal  if p~ puts mass 1/2 at the smallest and largest of the hrxj. 
Identifying these values of {hrx~: i ~ Rg} by mi and Mi, we have that  (5.6) is 
dominated by: 

(5.7) 

(5.8) 

Bi(h) = { (m, )  2 + ( M i )  2 - (m, + M~)2/2}/2 

< E hVx j x fh /2 .  
j ~ R, 

The last step comes f rom noticing that  m 2 and M 2 are summands  in (5.8). 
The argument  is valid for all i and all h. [] 

However, we note that  inequality between (5.7) and (5.8) can be rather 
crude. In particular,  the bound  lacks the location invariance in the x's that  
the Hessian has. The following theorem eliminates this difficulty: 

THEOREM 5.3. Let ni = #Ri. Then: 

(5.9) 

PROOF. Consider  a N x N matr ix of the form M ( p )  = D ( p )  - ppr ,  
where pT is a vector of probabilities (p;) and D ( p )  is a diagonal  matr ix 
with the value pi in location (i,i). This is the covariance matrix for the 
mul t inomia l  with cell probabi l i t ies  pi. In the Bernoull i  case ( N =  2), 
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M ( p )  < M(p*),  where p * r =  (.5, .5). We seek to generalize this inequality 
for arbitrary N by choosing c(N)  such that M ( p )  <_ c ( N ) M ( p * ) f o r  every 
p, where p* represents the uniform multinomial distribution. 

This can be accomplished by choosing c to be the supremum of 
orM(p)o /vrM(p*)v  over all choices of vector v and probability vector p. 
Maximizing over p first, the argument of Theorem 5.2 indicates the 
maximum occurs when mass .5 is put at the maximum and minimum of 
the oi. Leaving the maximum and minimum coordinates of o fixed, we now 
maximize over the remaining coordinates of o, which corresponds to 
minimizing the denominator.  This is equivalent to minimizing the variance 
of a random variable which has fixed mass 1 / N at specified maximum and 
min imum-- the  solution is clearly to put mass ( N -  2) IN at the midrange. 
Evaluating this solution yields the optimal c(N): N/2  (a second proof 
could be constructed from the results of Baksalary and Pukelsheim (1985)). 

Finally, note that (5.6) has the form: 

• T • • 

hT"V21(n)h = - Z{o' [M(p')]d} , 

where O i ~-- (hTxj:j ~ Ri) T. The bound of the theorem consists of substituting 
niM(p*) /2  for the term in square brackets of (5.6). [] 

Note that the bound (5.9) becomes the bound in Theorem 5.2 if ni 
becomes large. Moreover, the bound, although the best of its type, is still 
crude as n gets large: this can be seen by considering the starting value 
n - - 0 ,  which generates the uniform distribution on the p}, and comparing 
the Hessian there with our lower-bound. In this problem there is an 
inherent loss of sharpness in using a single bound because the curvature 
can vary sharply as a function of the initial value no and the direction h. 
Because of this, we now turn to simple algorithmic improvement which 
utilizes the sharper bound in (5.7). Assuming no and direction h are given, 
it provides a curvature bound along the line no + ah, a ~ R. 

Step 1. Compute the lower-bound step h = - B -1V/(n), where B is 
the lower-bound found in (5.9). (One could choose any direction of 
increase h for this step. This one has the feature that the inversion of B 
need be carried out only in the initial pass through the algorithm, and that 
it is guaranteed to be a direction of increase.) 

Step 2. Consider n + ah with scalar a and note that 

l(n + ah) - l(n) >_ ah~Vl(n) + a2b,ew/2 , 

when the lower-bound bnew = ZBi(h) is determined as in (5.7) from the 
minimum and maximum of {hrxA. Solving for a gives an extended step in 
the h-direction: 
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Ct = - h r V l ( n ) /  bnew . 

(This step is necessarily monotonic.) 

6. Monotonic algorithms in Type II models 

Returning now to Type II models, with double concavity, we note that 
even though the Newton-Raphson convergence holds, there are some good 
arguments for considering simple fixups to the NR procedure which will 
guarantee monotonicity. The most important aspect is speed and reliability 
of convergence in high dimensional problems, where each step is costly. We 
will discuss the multivariate extension of the Type II model after we 
present two modified NR algorithms which are strictly monotonic in the 
univariate Type II model; their behavior in a particular data set was 
demonstrated in Table 1. 

6.1 The  a d a p t i v e  l o w e r - b o u n d  a l g o r i t h m  

Step 1. Given current value no, construct Newton-Raphson step nn,. 
Step 2. Let b = b(no, n,r) be a lower-bound for vzI(Tz) for n between 

no and nnr. The adjusted step is: 

(6.1) nazb = no - Vl (no) /  b . 

The applicability of the ALB algorithm depends on one's ability to 
construct the bound b. In the doubly concave case, one only needs to 
compare the Hessians at each endpoint of the interval and use the smaller 
one. If the initial Hessian is the smallest, then the step is the Newton- 
Raphson step; if not, then one makes a backstep. This algorithm is easily 
shown to be quadratically convergent. 

For very little additional cost, one can construct a monotonic  algo- 
rithm which is superior in convergence. In the above we have used the 
concavity of V2l(n) in a crude way: its minimum value on an interval [a, b] 
occurs at the endpoints. However, given its values at the endpoints, we can 
in fact construct the stronger inequality: 

(6.2) V21(fia + ab) >_ a V 2 l ( a )  + aV21(b) for a = 1 - f ie  [0, 1]. 

Consider the following cubic approximation to l ( n ) -  l(no) for n in the 
interval between no and nnr: 

(6.3) C(n) = (n - no)Vl(no) + (n - no) 2 V21(no)/2 + (n - no)3A/3! . 

We set A equal to [V21(lZnr) --  V2l(Tr0)]/OZnr -- no), a secant approximation to 
the third derivative. Then C has the same gradient at no as l (n)  - l(no) but, 
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by differentiating twice and applying (6.4), one can show that everywhere 
on the interval from no to n*C has greater curvature and so lies beneath 
this objective function. Hence at its maximum value on that interval we are 
guaranteed that the objective function has increased. Incorporating this 
refined approximation gives the following. 

6.2 The cubic adaptive lower-bound algorithm 
Compute nnr. If the Hessian has increased, the step is saved. Otherwise 

nnr is replaced by the value maximizing (6.5): 

(6.4) nca,b = no + [-- V2l(no)- ~/(V2l(n0)) 2 -  2Vl(no)A ]/A. 

Note that the enhanced cubic algorithm (6.4), once it enters a region of 
declining curvature (the region of overstep), estimates area by trapezoidal 
regions, replacing the cu rve  wZl(n) with a line segment between endpoints. 

There are a number of important statistical models with multi- 
dimensional n which have the property that when the likelihood is viewed 
along a line l*(a) := l(n0 + eth), it is doubly concave in a. Although in such 
a Type H* likelihood it is therefore true that there can be at most one bad 
step along any line, this is no guarantee of convergence, as the Newton- 
Raphson procedure continually changes direction. 

It is, however, a simple matter to fix up the Newton-Raphson algo- 
rithm so that it is monotonic. 

6.3 Multivariate adaptive lower-bound algorithm 
For initial value no, define 

:= l(n0 + a h ) ,  

where h represents a selected vector known to be a direction of increase to 
the objective function, such as the gradient, conjugate gradient, or Newton- 
Raphson direction. Take one step along the line no + ah, based on ~(a), 
using one of the two adaptive lower-bound algorithms. 

We conclude by describing two examples with Type II* structure. 

Example B. (Mixture of densities) We consider the log-likelihood 
generated by a finite mixture of known densities: 

(6.5) - j = l  log i  n (xJ) . 

For an arbitrary vector h we have 
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~ ( ~ )  j = l  log (& + a z l j )  , 

where & = Erc/f(xj) and zl; = Ehf . (x j ) ,  which is readily shown to be doubly 
concave. 

The adaptive lower-bound may be of particular interest in the case of 
mixtures since frequently the flat log-likelihood leads to convergence 
problems. Titterington et al. ((1985), p. 89) report a simulation study where 
the Newton-Raphson algorithm failed in about 50% of the cases even 
though the algorithm was started from the true parameter  values. The EM- 
algorithm converged monotonically,  but was dreadfully slow. Similar 
problems are mentioned and discussed in Everitt and Hand ((1981), p. 38). 

Example  C. (Log-linear model) Suppose that the dependent vari- 
able Y, conditionally upon a vector of covariates x, follows a Poisson 
distribution with mean value E(Y)  -- exp (x~) .  That  is, in the terminology 
of McCullagh and Nelder (1983), the model is linear in the natural link 
function log (it) = q. Here the log-likelihood is proportional to: 

(6.6) 
n T 

l(n) = iE l [yjxj rc - exp (xfzO] . 
• = 

And so we have 

V29~(a) = - E(x fh) :  exp (xf(~ + ah)) ,  

and 

V 4 ~ 9 ( a )  = - -  Y,(xTh) 4 exp ( x f  (rc + ah) )  , 

as required. 
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