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Abstract. We refer to the two classical approaches to multinomial 
selection as the indifference zone approach and the subset selection 
approach. This paper integrates these two approaches by separating the 
parameter space into two disjoint subspaces: the preference zone (PZ) 
and the indifference zone (IZ). In the PZ we insist on selecting the best 
(most probable) cell for a correct selection (CS1) but in the IZ we define 
any selected subset to be correct (CS2) if it contains the best cell. We then 
propose a single stage procedure R to achieve the selection goals CS1 and 
CS2 simultaneously with certain probability requirements. It is shown 
that both the probability of a correct selection under PZ, P(CSIIPZ), 
and the probability of a correct selection under IZ, P(CS211Z), satisfy 
some monotonicity properties and the least favorable configuration in PZ 
and the worst configuration in IZ can be found by these properties. 

Key words and phrases: Indifference zone approach, indifference zone, 
least favorable configuration, most probable cell, multinomial distribu- 
tion, subset selection formulation, worst configuration. 

1. Introduction 

This paper considers an integrated approach to ranking and selection 
of the multinomial cells. The two major approaches which we refer to as 
the indifference zone approach and subset selection approach are well 
known and have been treated in Bechhofer et al. (1959) a n d  Gupta  and 
Nagel (1967), respectively. In the present paper  these two approaches are 
combined in a meaningful manner  to form a new integrated approach for 
selecting among multinomial cells. The basic idea is to introduce both  a 
preference zone (PZ) and an indifference zone (1Z) (these are defined in 
Section 2 below); in the former zone PZ our goal is to find and select 
precisely the cell with the largest cell probabil i ty and in the latter zone IZ 
our goal is to select a random-size subset of size at least two which contains 
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the best cell. The proposed composite procedure R for selecting the best 
cell makes use of the data in a fixed sample size procedure to determine 
which part of the procedure should be used. This is a meaningful approach 
to the problem since when the parameters are close together (in the IZ) we 
can avoid an unnecessarily large sample size by adopting the weaker goal 
of selecting a subset containing the best. This integrated formulation has 
been used by Chen and Sobel (1987a) for selecting from normal popula- 
tions in terms of the means, and by Chen and Sobel (1987b) for selecting 
the most probable multinomial cell by using an inverse sampling procedure. 
Formally we set up two different probability requirements (i.e., P*-condi- 
tions), one for the PZ and the other for the IZ; the required constants to 
specify our composite procedure R are then determined so as to satisfy 
both P*-condition. In Section 2 we write out the goal of selecting the 
largest cell probability in a former manner, give the proposed procedure R, 
define the concept of a correct decision explicitly and discuss the infimum 
of the probability of a correct selection. In Section 3, we present the table 
of the probability of a correct selection under the least favorable configura- 
tion, the probability of a correct selection under the worst configuration 
and the corresponding expected selected subset size. 

2. Selecting the largest cell probability 

A multinomial distribution with k cells is given; let the ordered values 
of the cell probabilities be denoted by 

(2.1) pill < "" < ptk- ~] < ptk], 

where we assumed that ptk-11 is strictly less than p[k] in order that the best 
cell should be well-defined. If we let g denote the ratio Ptkl/ptk-~], then by 
(2.1), g > 1. The set of parameter vectors p - - (p l , p2 , . . . , pk )  for which 

_> ~* (where ~* > 1 is specified) will be called the preference zone (PZ); 
the complementary set of p for which 1 < ~ < g* will be called the in- 
difference zone (IZ). 

We define our goal in two parts, according to whether the true 
parameter p is in the PZ or the IZ, as follows: 

(2.2) Goal 

For p ~ PZ 

For p e lZ  

we want to select the best with 
probability at least P * ,  

we want to select a subset containing 
the best with probability at least P * .  

Thus in the PZ a correct decision (CD) is the same as a correct 
selection of the best and the selection of a subset of size at least two is 
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always incorrect. However, in the IZ we can make a correct decision in two 
ways: either by selecting the best or by selecting a random subset of  size at 
least two containing the best. Hence the goal in (2.2) can be restated as 

(2.3) 
PI* for &_>6*, 

P(CD) >_ P* for 1 < & < 8 ' ,  

where both P~* and P* (as well as 6*) are specified. 
L e t f ( i  = 1,. . . ,k) be the observed frequencies in the i-th cell ni and let 

k 
E f = n. The ordered values o f f ' s  are defined by 
i=1 

(2.4) fv ]  -< f[2] -< ... -< ftk]. 

Then the procedure R for selecting goal (2.2) is defined as follows. 

PROCEDURE R. If ftk] -- f[k-1] > C, then we select the cell that gives 
rise to the largest frequencyftk]. 

(2.5) Ifftk] -ftk-11 < c, then we select a random-size subset 
consisting of all those cells 7r with f requenc ies f  >ftk-~] - -  d 

( i =  1 , . . . ,k) .  

It should be noted that we have three constants (c, d and n) to 
determine and only two conditions (1.1) and (1.2) to determine them. 
Hence we can regard any one of them as fixed and determine the other 
two. If n is fixed, then our formulat ion is closer to the "Subset Selection" 
approach; if one of the others is fixed and we determine n (and the 
remaining constant), then our  formulat ion is closer to the "Indifference 
Zone"  approach. 

We need some notations before we discuss the infimum of the proba- 
bi l i ty  of  a co r rec t  dec is ion  (P(CD)) u n d e r  the  p r o c e d u r e  R. Let  
F(pl, p2,..., pk;f~, f2,...,fk) denote the probability of a multinomial distri- 
bution with the cell probabilities pl,pz,.. . ,pk and their corresponding 

k 
frequencies f l , fz , . . . , fk  where E f, = n. To derive the probabil i ty of a 

i=1" 

correct selection P(CS1) for p ~ PZ, we first note that a CSI in the PZ can 
occur only if we select the best cell and no others, i.e., if and only if 

(2.6) P(CSllPZ) = Y. 
i=l,2,...,k 

F(p[,I .... ,Ptkl;fl , . . . ,J~).  

In the expression F(pl,p2,...,pk;fl,...,fk), we fix all the p's and f ' s  
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except p,-, pj, fi andf .  Now we define 

k 
(2.7) x----pi, W(X) = 1 -- X -  Z p~,  

6t=l 
Ct~i,/ 

then F becomes a function of three variables x, fi and )~. Denote this 
function by g,(x,  fi, f~), i.e., 

(2.8) g.(x, f ,  fj) = n! 17 
fi! f !  ~,i j fi! " 

The partial derivative of g, in (2.8) with respect to x is 

(2.9) 
ag (x, fi,£) 

Ox 

n [ g , , - , ( x , f -  1,J~)- g.- f fx ,  f ,  f j -  1)] 

- n g . - t ( x , f ,  f j -  1) 

n g . - l ( x , f -  1,J}) 

0 

for f ,£_> 1, 

for f l = 0 a n d £ ~ 0 ,  

for ~ = 0 a n d f ~ 0 ,  

for f i = ~ = 0 .  

To find the least favorable configuration (LFC) when p ~ PZ, we need 
the following two lemmas on the monotonicity properties of P(CSll  PZ). 
The results that we obtain are quite similar to those of Kesten and Morse 
(I959) where the authors found the LFC for the procedure proposed by 
Bechhofer et al. (1959). In our formulation c is at least 0 and thus any tie 
for the first place is not possible. Hence randomization among the ceils tied 
for the first place is not required in our proposed procedure R. Therefore, 
the result in Kesten and Morse (1959) is not applicable here. 

LEMMA 2.1. Keeping the sum Pti] + p[k], 1 _< i < k, constant, the 
P(CSI lPZ)  as given in (2.6) decreases as we pass f rom the configuration 
(Ptq,..., Ptq,..., ptkT) to (pt~7,..., pvJ + e,..., ptk~ - e) where 0 < e <_ ptk~. 

PROOF. Let x =Ptil and w(x) = 1 - x - Eiptal. For a typical term 
a ¢ k  

g , , ( x , f , f ~ )=  F(p~l,. . . ,ptkj;f~ .... ,fk) in P(CS1]PZ) of (2.6), the positive 
term in the partial derivative of g, , (x , f ,  fk) with respect to x is, by (2.9), 
ng,,-~(x, f l - 1 , f k ) .  It is clear that gn(x, f i - 1 , f k + l )  must also be in 
P(CSIIPZ)  since f -  1 < f < f k -  C < fk + 1 -- C. The partial derivative of 
g , , ( x , f -  1,fk + l) has a negative term (by (2.9)) ng , , -1 (x , f -  l,fk) which 
cancels the positive term in the derivative of the typical term g, , (x , f ,  fk) in 
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P(C&IPZ).  Thus  P(CSIIPZ) is a non-increasing funct ion in x = p[q. This 
completes the proof  of the lemma. 

LEMMA 2.2. Keeping the sum pill + P[Jl, 1 <_ i < j < k, constant, the 
P(CSIIPZ) as given in (2.6) decreases as we pass f rom the configuration 
(ptq,..., ptq,..., pH,.. . ,  pt*]) to (ptq,..., pt~l - e,..., pH + t,..., ptkl) where 0 < 
e _< p[q. 

PROOF. Let x = Ptq and w(x)= 1 - x -  Z Pt~]. For  a typical term 
a#i,j 

g,(x, fi, fj) = F(ptq,..., ptkl; f ~,..., fk) in P( CSI l PZ) of (2.6), we consider the 
following two situations: 

(1) If f +  1 <fk--C, then g , , ( x , f+  1,J~-  1) is in P(CSIlPZ). Thus 
the negative term in Og, (x, f ,  fj)/Ox, i.e., -ng,,-~(x, f ,  f j -  1), can be cancel- 
led with the positive te rm ng, , - t (x , f , , , f i -  I) in the derivative of the term 
g~(x , f  + 1,j) - 1) which is also in P(CS~IPZ). 

(2) I f f  + 1 = f k -  C, then we investigate the term g,,(x, fj, f ) .  It is in 
P(C&iPZ)  since g,,(x,f ,  fj) is in P(C&IPZ)  and f and J) satisfy the 
condi t ions t h a t f  <fk  - c a n d ~  < f k -  c. The positive term ngn(x, j~-  1 , f )  
in dg,(x, fj, f ) / d x  is at least ng,-ffx,  f , f  - 1) since f = f k  - -  C - -  1 > fj - I 
and Ptq < PtJJ. 
Thus  in bo th  si tuations (1) and (2), we can always find a positive term in 
the derivative of P(CSI[ PZ) that  cancels the negative term in the derivative 
of the typical term f rom P(CSll PZ). Hence P(CSII PZ) is a non-increasing 
function in x = Ptq. This completes the proof  of the lemma. 

The overall m i n i m u m  of P(CSIIPZ) has to be at a conf igurat ion 
which can't  be changed to one with a smaller probabili ty by using the 
above two lemmas. We have the following theorem. 

THEOREM 2.1. Under procedure R the LFC for  the P(CSIIPZ) is 
given by the configuration o f  the type: 

(2.10) (O,... ,O,s,p,p,.. . ,p,J*p), s<_p . 

PROOF. In the PZ, consider an arbitrary p,  i.e., 

(2.11) p t q  -<p[21 -< . . .  <-- p[k]  where p [ k I / P t k - 1 ]  >-- ¢~* . 

We apply L e m m a  2.1 to p[k-1] and p~kl. By moving ptk-11 upward  to ptkl 
and keep all the other p 's  fixed, we cannot  increase P(CSIIPZ). However,  
the ratio Ptkl/ptkl is at least J*. Thus P(CSIIPZ) under  (2.1 1) is minimized 
when Ptkl/Ptk-l~ = J*. Now we work on the p 's  which are less than  the new 
ptk-II. By applying L e m m a  2.2 to Ptq and Ptk-21, and can move either Ptq to 
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0 or Ptk-2J to Ptk-ll =Ptkl/~*. If p[q reaches 0 first, we apply Lemma 2.2 
again to pt21 and Ptk-~l. Ifptk-21 reaches ptk-11 first, we apply Lemma 2.2 to 
Pm and Ptk-31. Repeating the above argument and each time applying 
Lemma 2.2, we finally reach a configuration of the type (2.10) for which 
P(CSI lPZ)  is a minimum among configurations in (2.11). This completes 
the proof of the theorem. 

Now we restrict the true parameter p to be an arbitrary configuration 
in the IZ  and look for the worst configuration (WC) in the IZ. The results 
of Lemmas 2.3, 2.4 and Theorem 2.2 below are similar in trend and nature 
of results to those of Gupta and Nagel (1967). Here we use two constants c 
and d (rather than just one constant in Gupta and Nagel (1967)) in our 
procedure in order to satisfy our composite formulation. Thus the results 
of Gupta and Nagel (1967) cannot be applied directly here. Again we 
consider two lemmas which are analogous to Lemmas 2.1 and 2.2. The 
result o f fP (CS2I IZ )  is a sum of two parts, the first of which (denoted by 
P~) is exactly the same as in (2.6). The second part (denoted by P2) assumes 
that the largest cell frequency f[kl is less than or equal to f[k-1] + C and the 
frequencyfk of the cell associated with the cell probability Pm is larger than 
ft~-iI - d. Thus we can write the P(CS21IZ) as follows: 

(2.12) P(CS2IIZ) = P1 + P2 

Z 
f~ c>f, 

i=l , . . . , k  I 

F(pfq,. . . ,  pLkl; f~,..., fk) 

+ E 
fm-ft~ ,~<-~' 
.f~+d>fE~ q 

F(p~,I,..., Ptkl; f l , . . . ,  fk) . 

LEMMA 2.3. Keeping the sum ptq + p~k], 1 <_ i<  k, constant, the 
P(CS21IZ) as given in (2.12) decreases as we pass f rom the configuration 
(Pro,..., Pvl,..., pEkl) to (Pro,..., PVJ + e,..., Pm -- e) where 0 < ~ <_ p~kJ. 

PROOF. Let x =ptil  and w(x)=  1 - x -  Z PL~. We only have to 
i ~ l , k  

consider the derivatives of the terms in Pz since the result of Lemma 2.1 is 
applicable to P1. For a typical term g , ( x , f ,  fk )= F(p tq , . . . , pm; f l , . . . , f k )  in 
P2, the negative part of the derivative is ng,-l(x,  f - 1, fk). It is clear that 
the term g , ( x , f -  1,fk + 1) must be either in P1 (when fk + 1 > f  + c, 
i = 1,..., k - 1), or in P2 since fk + 1 + d >fk + d >ilk-11. Moreover, the 
term g , ( x , f  - 1,fk + 1) has not been used to cancel the negative part in the 
derivative in P1 since the only term in P(CS21IZ) that gives -ng , - f f x ,  
f -  1,fk) in its derivative is g , ( x , f ,  fk) which must be in P2. The positive 
term in the derivative of the term g , ( x , f  - 1,fk + 1) is n g , - l ( x , f  - 1,fk) 
which cancels the negative term in the derivative of the typical term 
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g,(x,  fi, fk) in P2. Thus P(CS2IIZ) is a non-decreasing function of x. This 
completes the proof of the lemma. 

LEMMA 2.4. Keeping the sum Pt~1 + Pu], 1 < i < j  < k, constant, 
P(CS2IIZ) as given in (2.12) decreases as we pass f rom the configuration 
(PU1,..., P[i],..., PtJb..., ptk]) to (PUb...,P[~] -- e,..., ptjl + e,...,ptk]) where 0 < 
e < P[;l. 

PROOF. Let x =Pil l  and w ( x ) =  1 -  Y~ PIll. For  a typical term 
av~i,J 

gn(x, ni, nj) = F(pt~],pt21,...,ptk];fl,f2,...,fk) in (2.12), we consider the fol- 
lowing two situations: 

(1) If the term g,(x,  ni + 1 , n j -  I) is in P(CS21IZ), then the negative 
part of the derivative of g,(x,  ni, nj) can be cancelled with the positive part 
of the derivative of g,(x,  ni + 1, nj - 1). 

(2) If the te rm g , ( x , n ~ +  1 , n j -  1) is not  in P(CS2I IZ ) ,  then  
g~(x, nj - 1,n~ + 1) is not in P(CS2IIZ) either. We also know that ng + 1 _> nj. 
The positive part in the derivative of g,(x,  nj, ni), namely, ng~-~(x, nj - 1, n~) 
is in the derivative of P(CS2[IZ) and cannot be cancelled with the negative 
part in the derivative of any term in P(CS2IIZ) since g~(x, nj - 1, ni + 1) is 
not in P(CS2IIZ). Thus we can use ng,- l (x ,  n j -  1, nO to cancel the negative 
part  in the derivative of the term g,(x,n~,nj) since g , -~(x ,n~ ,n j -  1)_< 
g~- fix, nj - 1, nO where ni >- nj - 1. 

Thus in either situation, the negative part from the derivative of the 
typical term will always be cancelled or exceeded by a positive term. Thus 
P(CS21IZ) is a non-decreasing function of x. This completes the proof  of 
the lemma. 

The overall minimum of P(CS211Z) has to be at a configuration which 
cannot be changed to one with a smaller probability by using the above 
two lemmas. Hence we have the following theorem on the WC of procedure 
R. 

THEOREM 2.2. Under procedure R,  the WC for  the P(CS2IIZ) as is 
given by the configuration o f  the type: 

(2.13) (O,O,. . . ,O,s,p, . . . ,p),  s < p .  

PROOF. By applying Lemmas 2.3 and 2.4, the proof of this theorem 
is analogous to that of Theorem 2. I and so is omitted here. 

For the procedure R, the size S of the selected subset is a random 
variable which can take on integer values from 1 to k. The desired result 
for E(S) can be written as 
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(2.14) E ( S )  = Y_, F ( p l ,  p2, . . . ,  pk; f l , . . . ,  fk)  
ftkl-c>rt* ,1 

+ lg F ( p ~ , p z , . . . , p k ; f l , . . . , f k ) B ( f ~ , . . . , f k ) ,  
~kl-c<-ft~ ,1 

where B(fl,fz,...,fk)= number of  f ' s  >fEk-1] -  d. The first sum is the 
expected value of S when the first part of the procedure is used and the 
second sum is the expected value of S when the second part of the 
procedure is used. 

3. Tables and remarks 

Table 1 gives the probability of a correct selection P(CS~IPZ) under 
the LFC for k = 2, 3, 4; c = I, 2, 3 and 0* = 2.0 and 5.0. Since the LFC is in 
the form (2.10), the overall minimum can be found by 

(3.1) rain P(CSIlP ~ PZ) = min (min P(CS~l(O,...,O,s,p,...,p,O*p))) 
P r=2,...,k 

where s = 1 - g * p -  ( r -  2)p, and r is the number of positive cell proba- 

Table 1. P (CS l lLFC) :  The minimum probability of a correct selection in the preference zone. 

6* = 2.0 

k = 2  k = 3  k = 4  

c I 2 3 1 2 3 I 2 3 

6 .6804 .3512 .3512 .3438 .2266 .1094 .2406 .1331 .4100 
7 .5706 .5706 .2634 .4316 .2266 .1445 .2683 .1393 .0705 
8 .7514 .4682 .4682 .4658 .3086 .1445 .3285 .1599 .0773 
9 .6503 .6503 .3772 .4692 .3462 .2129 .3533 .2108 .0911 

10 .7869 .5593 .5593 .5308 .3513 .2488 .3706 .2364 .1291 
11 .7110 .7110 .4726 .5564 .4154 .2543 .3991 .2538 .1513 
12 .8223 .6315 .6315 .5635 .4456 .3147 .4343 .2805 .1663 
13 .7587 .7587 .5520 .6080 .4542 .3462 .4550 .3163 .1886 
14 .8505 .6898 .6898 .6287 .5041 .3552 .4740 .3387 .2208 
15 .7970 .7970 .6184 .6366 .5292 .4062 .4964 .3587 .2422 

6" = 5.0 

6 .9377 .7368 .7368 .7703 .6109 .4516 .6533 .4888 .2742 
7 .9042 .9042 .6698 .8386 .6792 .5199 .7257 .5379 .3815 
8 .9693 .8652 .8652 .8766 .7703 .5882 .7922 .6201 .4323 
9 .9520 .9520 .8217 .8982 .8202 .6966 .8274 .7042 .5164 

10 .9845 .9303 .9303 .9289 .8499 .7570 .8593 .7511 .6118 
11 ,9755 .9755 .9044 .9442 .8931 .7940 .8889 .7931 .6681 
12 .9921 .9637 .9637 .9557 .9154 .8498 .9119 .8335 .7183 
13 .9873 .9873 .9489 .9678 .9318 .8799 .9285 .8865 .7687 
14 .9959 .9809 .9809 .9750 .9501 .9017 .9427 .8905 .8118 
15 .9934 .9934 .9726 .9802 .96t0 .9272 .9542 .9110 .8432 
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bilities. The probability P(CStl(O,...,O,s,p,...,p,d*p)) of k cell multi- 
nomial  distribution is obviously equal to P(CSI I(s, p, . . . ,  p, c~*p)) of r cell 
mult inomial  distribution for fixed n. Thus, we only have to consider the 
cases where r is less than k, when the problem is already solved for all 
smaller values of k for the same n and same c~*. Hence, we only consider 
vectors of the type (s,p,...,p,c~*p). For  s and c~* fixed, we have p = 
( 1  - s)/(k - 2 + c~*). When we let s run f rom 0 to 1/(k - 1 + c~*) with equal 
increment of 10 -3, we can detect the P that minimizes P(CS11P ~ PZ). 
Numerical  results showed that the minimum always took place at one end 
of the interval in question, i.e., for s = 0 or for s = p. 

In Table 2, we provide the values of the probabili ty of a correct 
selection P(CS211Z) under  the worst configuration for k = 2, 3, 4; c = 1,2, 3 
and d = 2, 4. We use the technique in analogy with the one we described 
above to find the WC. In the present case, we let s run f rom 0 to 1/k with 
equal increment of 10 -3 . Numerical results showed that the minimum of 
P(CSalIZ) no longer took place at either end of the interval. We use • to 
denote those cases in which the minimum occurs in the interior of the 

Table 2. P(CS21WC): The minimum probability of a correct selection in the indifference zone 
and E(SI WC): The expected subset size under WC. 

d = 2  

k = 2  k = 3  k = 4  

c 1 2 3 1 2 3 1 2 3 

.6563 . 8 9 0 6  .8906 .6563 .8134  .8906 .6748 .7737  .8396 
6 (1.313) (1.781) (1.781) (2.317) (2.546) (2.811) (3.139) (3.622) (3.886) 

.7734 . 7 7 3 4  .9375 .6214 .7734  .8327 .6214 . 7819  .8242 
7 

(1.547) (1.547) (1.875) (2.056) (2.633) (2.748) (3.077) (3.538) (3.738) 

.6367 .8555  .8555 .6000 .7452  .8476 .6001 . 7452  .8008 
8 

(1.273) (1.711) (1.711) (2.056) (2.492) (2.799) (2.762) (3.465) (3.649) 

.7461 .7461  .9102 .6911 .7423  .8277 .5599 . 7012  .7714 9 
(1.492) (1.492) (1.820) (2.073) (2.381) (2.637) (2.701) (3.312) (3.628) 

.6231 .8281  .8281 .5759 .7537  .7820 .5759 . 6820  .7516 10 
(1.246) (1.656) (1.656) (1.888) (2.421) (2.592) (2.725) (3.232) (3.530) 

.7256 . 7 2 5 6  .8867 .5628 .6932  .8013 .5628 .6902  .7399 
11 

(1.451) (1.451) (1.773) (1.923) (2.314) (2.638) (2.648) (3.190) (3.442) 

.6128 . 8 0 6 2  .8062 .6128 .6945  .7789 .5451 . 6840  .7317 12 
(1.226) (1.612) (1.612) (1.918) (2.240) (2.493) (2.448) (3.103) (3.373) 

.7095 .7095  .8666 .5464 .7095  .7439 .5143 . 6840  .7132 13 
(1.419) (1.419) (1.733) (1.775) (2.266) (2.464) (2.424) (2.987) (3.337) 

.6049 .7880 .7880 .5357 .6568  .7648 .5278 . 6250  .6952 14 
(i.209) (1.576) (1.576) (1.823) (2.181) (2.505) (2.444) (2.945) (3.258) 

.6964 . 6 9 6 4  .8491 .6032 .6597  .7420 .5349 .6313  .6865 15 
(1.393) (1.393) (1.698) (1.810) (2.130) (2.377) (2.386) (2.921) (3.202) 
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d = 4  

Table 2. (continued). 

k = 3  k = 4  

c 1 2 3 1 2 3 

.6563 .8745* .8906 .7997 . 8 8 2 0  .9643 
6 

(2.399) (2.646) (2.893) (3.197) (3.681) (3.944) 

.7174 . 7 7 3 4  .9277* .7174 . 9 0 9 5  .9479 
7 

(2.152) (2.728) (2.844) (3.230) (3.692) (3.892) 

.6367 .8332* .8555 .6854 . 8 4 7 6  .9500 
8 

(2.088) (2.575) (2.882) (2.980) (3.703) (3.888) 

.7137" .7461 .8953* .7231 .8255 .9194 
9 

(2.208) (2.515) (2.797) (2.911) (3.569) (3.892) 

.6231 .8048* .8281 .6719 ,8434* .9066 
10 

(2.016) (2.570) (2.741) (2.938) (3.508) (3,825) 

.6411 . 7 2 5 6  .8709* .6411 . 7 9 7 6  .9056 11 
(1.970) (2.940) (2.775) (2.907) (3.502) (3.783) 

.6128 . 7 7 7 9  .8062 .6695 . 7 7 7 9  .8773 
12 

(2.075) (2.396) (2.694) (2.758) (3.472) (3.767) 

.6369 , 7 0 9 5  .8463* .6369 .7938* .8667 
13 

(1.911) (2.440) (2.639) (2,712) (3.364) (3.742) 

.6047 , 7 5 7 2  .7880 .6078 . 7 5 7 2  .8652 
14 

(1.876) (2.324) (2.671) (2.707) (3.312) (3.670) 

.6325 , 6 9 6 4  .8274* .6259* .7392 .8404 
15 

(1.973) (2.293) (2.596) (2.677) (3.295) (3.631) 

interval [0, Ilk]. In the same table, we also provide the values of E(S) 
under WC. E(S) is generally considered as a criterion of the efficiency of a 
selection procedure which satisfies a specific probability requirement 
P(CSzlIZ) >_ P*. 

Remark 3.1. In Table 2, P(CS21WC) and E(SI WC) values for k = 2 
are identical for all the D values, since the d value in the proposed 
procedure R does not play a role in this case for any number of 
observations. 

Remark 3.2. An analogous procedure for selecting the least probable 
cell will not be similar in nature. The ratios cannot be even used to measure 
the cell probabilities as it was pointed out in Alam and Thompson (1972) 
where the authors considered a selection procedure for the least probable 
cell in PZ. An appropriate measure under both PZ and IZ and its 
properties for selecting the least probable cell under our integrated formula- 
tion is worthy of further investigation. 
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