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Abstract. We refer to the two classical approaches to multinomial
selection as the indifference zone approach and the subset selection
approach. This paper integrates these two approaches by separating the
parameter space into two disjoint subspaces: the preference zone (PZ)
and the indifference zone (IZ). In the PZ we insist on selecting the best
(most probable) cell for a correct selection (CS1) but in the /Z we define
any selected subset to be correct (CS;) if it contains the best cell. We then
propose a single stage procedure R to achieve the selection goals CS; and
CS;, simultaneously with certain probability requirements. It is shown
that both the probability of a correct selection under PZ, P(CS\|PZ),
and the probability of a correct selection under IZ, P(CS:|IZ), satisfy
some monotonicity properties and the least favorable configuration in PZ
and the worst configuration in /Z can be found by these properties.

Key words and phrases: Indifference zone approach, indifference zone,
least favorable configuration, most probable cell, multinomial distribu-
tion, subset selection formulation, worst configuration.

1. Introduction

This paper considers an integrated approach to ranking and selection
of the multinomial cells. The two major approaches which we refer to as
the indifference zone approach and subset selection approach are well
known and have been treated in Bechhofer et al. (1959) and Gupta and
Nagel (1967), respectively. In the present paper these two approaches are
combined in a meaningful manner to form a new integrated approach for
selecting among multinomial cells. The basic idea is to introduce both a
preference zone (PZ) and an indifference zone (IZ) (these are defined in
Section 2 below); in the former zone PZ our goal is to find and select
precisely the cell with the largest cell probability and in the latter zone /Z
our goal is to select a random-size subset of size at least two which contains
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the best cell. The proposed composite procedure R for selecting the best
cell makes use of the data in a fixed sample size procedure to determine
which part of the procedure should be used. This is a meaningful approach
to the problem since when the parameters are close together (in the /Z) we
can avoid an unnecessarily large sample size by adopting the weaker goal
of selecting a subset containing the best. This integrated formulation has
been used by Chen and Sobel (19874) for selecting from normal popula-
tions in terms of the means, and by Chen and Sobel (19875) for selecting
the most probable multinomial cell by using an inverse sampling procedure.
Formally we set up two different probability requirements (i.e., P*-condi-
tions), one for the PZ and the other for the /Z; the required constants to
specify our composite procedure R are then determined so as to satisfy
both P*-condition. In Section 2 we write out the goal of selecting the
largest cell probability in a former manner, give the proposed procedure R,
define the concept of a correct decision explicitly and discuss the infimum
of the probability of a correct selection. In Section 3, we present the table
of the probability of a correct selection under the least favorable configura-
tion, the probability of a correct selection under the worst configuration
and the corresponding expected selected subset size.

2. Selecting the largest cell probability

A multinomial distribution with k cells is given; let the ordered values
of the cell probabilities be denoted by

2.1 P< - < pp-u<pr,

where we assumed that p(-1 is strictly less than pp; in order that the best
cell should be well-defined. If we let é denote the ratio pp/pi-13, then by
(2.1), 6> 1. The set of parameter vectors p = (pi, p2,..., px) for which
&= 6* (where 6* > 1 is specified) will be called the preference zone (PZ);
the complementary set of p for which 1 <J < d* will be called the in-
difference zone (/Z).

We define our goal in two parts, according to whether the true
parameter p is in the PZ or the IZ, as follows:

For pe PZ we want to select the best with
probability at least P¥,
2.2) Goal
For pelZ we want to select a subset containing
the best with probability at least Pg .

Thus in the PZ a correct decision (CD) is the same as a correct
selection of the best and the selection of a subset of size at least two is
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always incorrect. However, in the /Z we can make a correct decision in two
ways: either by selecting the best or by selecting a random subset of size at
least two containing the best. Hence the goal in (2.2) can be restated as

¥ for J6=6%,
%*

2.3 P(CD) =
23 (€D) P for 1<éd<é*,
where both P{f and P* (as well as 6*) are specified.

Let fi(i = 1,..., k) be the observed frequencies in the i-th cell 7; and let

k
}::.1 fi = n. The ordered values of f’s are defined by

(2.4) Jusfas < fa.
Then the procedure R for selecting goal (2.2) is defined as follows.

PROCEDURE R. If fii) — fi-11> ¢, then we select the cell that gives
rise to the largest frequency fx.

2.5) If fig — fix-1 < ¢, then we select a random-size subset
consisting of all those cells 7 with frequencies f; > fix-11— d
(i=1,...,k).

It should be noted that we have three constants (¢, d and n) to
determine and only two conditions (1.1) and (1.2) to determine them.
Hence we can regard any one of them as fixed and determine the other
two. If » is fixed, then our formulation is closer to the “Subset Selection”
approach; if one of the others is fixed and we determine n (and the
remaining constant), then our formulation is closer to the “Indifference
Zone” approach.

We need some notations before we discuss the infimum of the proba-
bility of a correct decision (P(CD)) under the procedure R. Let
F(p1, p2-.., Pi; f1, f2,--., fx) denote the probability of a multinomial distri-
bution with the cell probabilities pi, p,,..., px and their corresponding

k
frequencies fi, f2,..., fx where El fi=n. To derive the probability of a
correct selection P(CS)) for p € PZ, we first note that a CS: in the PZ can

occur only if we select the best cell and no others, i.e., if and only if

(2.6) P(CSi|PZ)= 3 = F(pum,., P fisos o) -

i=1,2,..,k

In the expression F(pi, p2,-.., px; fi,-.-, fx), we fix all the p’s and f’s
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except p;, pj, f: and f;. Now we define

k
(2.7) x=p, wx)=1-x- GZIZI De ,

a#=if

then F becomes a function of three variables x, fi and f;. Denote this
function by gn(x, £, fj), i.e.,

wx) - pi

" A =n!
(2'8) g"(xif;’./.") n' f;!ﬁ! a#i,j ﬁ! -
The partial derivative of g. in (2.8) with respect to x is
a n\AX, Jis Jj
dx

n[gnfl(x,ﬁ - laﬁ) - gn*l(x,ﬁ,fj\' - 1)] for .ﬁ’ﬁ =1 s
—ngn-x, fi, i— 1) for fi=0andf;j#0,

| ngeax, fi—- 1, for f=0andf;#0,
0 for fi=f=0.

To find the least favorable configuration (LFC) when p € PZ, we need
the following iwo lemmas on the monotonicity properties of P(CS:|PZ).
The results that we obtain are quite similar to those of Kesten and Morse
(1959) where the authors found the LFC for the procedure proposed by
Bechhofer et al. (1959). In our formulation ¢ is at least 0 and thus any tie
for the first place is not possible. Hence randomization among the cells tied
for the first place is not required in our proposed procedure R. Therefore,
the result in Kesten and Morse (1959) is not applicable here.

LEMMA 2.1. Keeping the sum puy+ pw, 1 <i<k, constant, the
P(CS1| PZ) as given in (2.6) decreases as we pass from the configuration
(piseess PUL-.., Py 2o (PuL,.-., Pl + &,..., piiy — €) where 0 < & < pin.

PROOF. Let x=p and w(x)=1—x— agi pia. For a typical term

a#k

g (x, i f) = F(pm,-..., pig; f1..--, f&) in P(CS1|PZ) of (2.6), the positive
term in the partial derivative of g.(x, fi, fi) with respect to x is, by (2.9),
ngn-1(x, fi— 1, fi). It is clear that gu(x, fi — 1, fi~1) must also be in
P(CS1|PZ) since fi— 1 <fi<fi—c¢<fi+1—c. The partial derivative of
gn(x, fi— 1, fe + 1) has a negative term (by (2.9)) ngr-i(x,f:i — 1, /i) which
cancels the positive term in the derivative of the typical term g.(x, f, f¥) in
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P(CS:1|PZ). Thus P(CS:|PZ) is a non-increasing function in x = pp;. This
completes the proof of the lemma.

LEMMA 2.2. Keeping the sum pi+ prja, 1 <i<j<k, constant, the
P(CS:|PZ) as given in (2.6) decreases as we pass from the configuration
(PUL+ o> Plidseres PULs-- - PIKY) 20 (PUilyevss DU~ Esevey PUL T ey P1) Where 0 <
EZ pril

PROOF. Let x=pp; and wx)=1~-x— a%j pra. For a typical term

& (x, fi, ) = F(pu,-..., pug; f1,-.., fi) in P(CS1| PZ) of (2.6), we consider the
following two situations:

() If fi+1<fi—c, then gu(x, fi+1,f—1) is in P(CS1|PZ). Thus
the negative term in dg.(x, f;, f))/9x, i.e., —ng.-1(x, fi, f; — 1), can be cancel-
led with the positive term ng.-i(x, fr, fi — 1) in the derivative of the term
gn(x, fi + 1, fi — 1) which is also in P(CS:|PZ).

(2) If fi+ 1=/fx— ¢, then we investigate the term g.(x, fj, fi). It is in

P(CS\|PZ) since ga(x, f;, f)) is in P(CS)|PZ) and f; and f; satisfy the
conditions that f; < fx — ¢ and f; < fk — c¢. The positive term ng.(x, i — 1, f)
in dga(x, f;, f})/9x is at least ng,-i(x, fi, i— 1) since fi=fi—c—1>fi— 1
and p) < prj).
Thus in both situations (1) and (2), we can always find a positive term in
the derivative of P(CS1| PZ) that cancels the negative term in the derivative
of the typical term from P(CS:|PZ). Hence P(CS1|PZ) is a non-increasing
function in x = pp;. This completes the proof of the lemma.

The overall minimum of P(CS:|PZ) has to be at a configuration
which can’t be changed to one with a smaller probability by using the
above two lemmas. We have the following theorem.

THEOREM 2.1. Under procedure R the LFC for the P(CS\|PZ) is
given by the configuration of the type:

(2'10) (0,“':O’S)P3p9'“3p95*p)’ sSp'
PROOF. Inthe PZ, consider an arbitrary p, i.e.,
2.11) pu<pm<--<pw where pp/pr-n=5*.

We apply Lemma 2.1 to p-1; and pw. By moving pi-1) upward to p
and keep all the other p’s fixed, we cannot increase P(CS:|PZ). However,
the ratio ppq/p is at least 6*. Thus P(CS1| PZ) under (2.11) is minimized
when pua/pi-11= 0*. Now we work on the p’s which are less than the new
Pik-11. By applying Lemma 2.2 to ppij and p-2, and can move either py to
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0 or px-2 to pi-11 = ppa/6*. If py) reaches 0 first, we apply Lemma 2.2
again to pry and p-1). If p-2 reaches pp-1 first, we apply Lemma 2.2 to
pm and pp-3. Repeating the above argument and each time applying
Lemma 2.2, we finally reach a configuration of the type (2.10) for which
P(CS,| PZ) is a minimum among configurations in (2.11). This completes
the proof of the theorem.

Now we restrict the true parameter p to be an arbitrary configuration
in the 7Z and look for the worst configuration (WC) in the IZ. The results
of Lemmas 2.3, 2.4 and Theorem 2.2 below are similar in trend and nature
of results to those of Gupta and Nagel (1967). Here we use two constants ¢
and d (rather than just one constant in Gupta and Nagel (1967)) in our
procedure in order to satisfy our composite formulation. Thus the results
of Gupta and Nagel (1967) cannot be applied directly here. Again we
consider two lemmas which are analogous to Lemmas 2.1 and 2.2. The
result of fP(CS:|IZ) is a sum of two parts, the first of which (denoted by
Py) is exactly the same as in (2.6). The second part (denoted by P:) assumes
that the largest cell frequency fx is less than or equal to fix-13 + ¢ and the
frequency fx of the cell associated with the cell probability ppq is larger than
fik-11— d. Thus we can write the P(CS:|IZ) as follows:

(2.12) P(CS:|IZ) = P+ P,
F(pu,--, Pw; frs- fo)
t

X
Sime>f;
ke

+ X F(pm,..., pis fr,-0 fo)

S-S nse
/k+d>f[k N

LEMMA 2.3. Keeping the sum pu+ pw, 1 <i<k, constant, the
P(CS$12|1Z) as given in (2.12) decreases as we pass from the configuration

(P11 -vs Plidye--» PR 10 (P11, -, PLi1 + &, P11 — &) where 0 < & < pi.

PROOF. Let x=pp and w(x)=1-x— #%kp[a]. We only have to

consider the derivatives of the terms in P, since the result of Lemma 2.1 is
applicable to Pi. For a typical term gu(x, fi, fi) = F(pu,..., pw; fi,.--, fi) In
P», the negative part of the derivative is ng.-1(x, fi — 1, fi). It is clear that
the term g.(x, fi — 1, fx + 1) must be either in P (when fi +1>fi+¢,
i=1,..,k—1), or in P, since fi + | +d> fi + d> fu-u. Moreover, the
term gn(x, fi — 1, f + 1) has not been used to cancel the negative part in the
derivative in P; since the only term in P(CS:|/Z) that gives —ngn-1(x,
fi— 1, ) in its derivative is g(x, f;, fc) which must be in P,. The positive
term in the derivative of the term g.(x, fi— L, fx + 1) is nga-1(x, fi — 1, fi)
which cancels the negative term in the derivative of the typical term
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gq(x, fi, fi) in P,. Thus P(CS:|IZ) is a non-decreasing function of x. This
completes the proof of the lemma.

LEMMA 2.4. Keeping the sum pu+ pij), 1<i<j<k, constant,
P(CS:|1IZ) as given in (2.12) decreases as we pass from the configuration
(PUlye-os Plilyees PUilse-+» P1K)) 20 (PUlyeees Pl — Eseers PLA T .o, Pix1) Where 0 <
& = pr.

PROOF. Let x=pu and w(x)=1- az.‘.ijp[a]. For a typical term

gn(x, ni, ny) = F(pu, pa,--., P f1, f2,---, fi) in (2.12), we consider the fol-
lowing two situations:

(1) If the term gu(x,n: + 1,n;— 1) is in P(CS:|IZ), then the negative
part of the derivative of g.(x, n;, n;) can be cancelled with the positive part
of the derivative of g.(x,n:+ 1,n,— 1).

(2) If the term gu.(x,ni+ 1,n;— 1) is not in P(CS:|IZ), then
g.(x,n— 1,n; + 1) is not in P(CS:|IZ) either. We also know that n; + 1 = n;.
The positive part in the derivative of g.(x, n;, n;), namely, ngn-1(x,n; — 1, )
is in the derivative of P(CS2|IZ) and cannot be cancelled with the negative
part in the derivative of any term in P(CS:|IZ) since g.(x,n;— 1,ni + 1) is
not in P(CS:|1Z). Thus we can use ng,-1(x, nj — 1, n;) to cancel the negative
part in the derivative of the term g.(x,n:n;) since gn-1(x,ni,n— 1)<
gn-1(x,n; — 1, n)) where n; = n; — 1.

Thus in either situation, the negative part from the derivative of the
typical term will always be cancelled or exceeded by a positive term. Thus
P(CS:|1Z) is a non-decreasing function of x. This completes the proof of
the lemma.

The overall minimum of P(CS:|IZ) has to be at a configuration which
cannot be changed to one with a smaller probability by using the above
two lemmas. Hence we have the following theorem on the WC of procedure
R.

THEOREM 2.2. Under procedure R, the WC for the P(CS:|1Z) as is
given by the configuration of the type:

(2.13) 0,0,...,0,s,p,....,p), s<p.

PROOF. By applying Lemmas 2.3 and 2.4, the proof of this theorem
is analogous to that of Theorem 2.1 and so is omitted here.

For the procedure R, the size S of the selected subset is a random
variable which can take on integer values from 1 to k. The desired result
for E(S) can be written as
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(2.14) ES)=_ X  F(py,p2e., D6 friyeee, Ji)

Ju=e>fu

Z  F(pu,pr... 06 fr,.., flOB(f1,..., fo)

S efun

where B(fi, f2,..., fx) = number of fi’s > fix-11— d. The first sum is the
expected value of S when the first part of the procedure is used and the
second sum is the expected value of § when the second part of the
procedure is used.

3. Tables and remarks

Table 1 gives the probability of a correct selection P(CS:|PZ) under
the LFC for k=2,3,4; c=1,2,3 and 6* = 2.0 and 5.0. Since the LFC is in
the form (2.10), the overall minimum can be found by

(3.1) m}jn P(CS\|P€ PZ)= rgxink (min P(CS$1|(0,...,0,s, p,..., p,6*D))) ,
where s=1-6*p — (r — 2)p, and r is the number of positive cell proba-

Table 1. P(CS:|LFC): The minimum probability of a correct selection in the preference zone.

§* =20
k=2 k=3 k=4
4 1 2 3 1 2 3 1 2 3

n

6 .6804 3512 3512 3438 2266 .1094 2406 .1331 4100

7 5706 .5706 2634 4316 2266 .1445 2683 1393 .0705

8 7514 4682 4682 4658 3086 .1445 3285 (1599 .0773
9 6503 6503 .3772 4692 3462 2129 3533 2108 0911
10 7869 5593  .5593 .5308 3513 .2488 3706 2364 1291
11 110 7110 4726 .5564 4154 2543 3991 2538 .1513
12 8223 .6315 6315 5635 4456 3147 4343 2805 .1663
13 7587 7587  .5520 .6080 .4542 3462 4550 3163 .1886
14 .8505 .6898 .6898 .6287 5041  .3552 4740 3387 2208
15 7970 7970 .6184 6366 5292 4062 4964 3587 2422

&*=50

6 9377 7368 .7368 7703 6109 4516 .6533 4888 2742
7 9042 9042 6698 8386 6792 5199 7257 5379 3815

g 9693 8652 .8652 8766 7703  .5882 7922 .6201 4323
9 9520 9520 .8217 .8982 8202 .6966 8274 7042 5164
10 9845 9303 .9303 9289 8499 7570 .8593 7511 6118
11 9755 9755 .9044 9442 8931 .7940 .8889 .7931 .6681
12 9921 9637 .9637 9557 9154 .8498 9119 8335 .7183
13 9873 9873 .9489 9678 9318 .8799 9285 8865 .7687
14 9959 9809 .9809 9750 9501 9017 9427 8905 8118

15 9934 9934 9726 .9802 9610 .9272 9542 9110 .8432
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bilities. The probability P(CS|(0,...,0,s, p,..., p,6*p)) of k cell multi-
nomial distribution is obviously equal to P(CSi|(s, p...., p,d*p)) of r cell
multinomial distribution for fixed n. Thus, we only have to consider the
cases where r is less than k, when the problem is already solved for all
smaller values of k for the same n and same J*. Hence, we only consider
vectors of the type (s, p,..., p,6%p). For s and 6* fixed, we have p =
(1 = 5)/(k — 2+ 6*). When we let s run from 0 to 1/(k — 1 + 6*) with equal
increment of 107, we can detect the P that minimizes P(CS;|P € PZ).
Numerical results showed that the minimum always took place at one end
of the interval in question, i.e., for s = 0 or for s = p.

In Table 2, we provide the values of the probability of a correct
selection P(CS-|7Z) under the worst configuration for k=2,3,4;¢=1,2,3
and d = 2,4. We use the technique in analogy with the one we described
above to find the WC. In the present case, we let s run from 0 to 1/k with
equal increment of 10, Numerical results showed that the minimum of
P(CS>|1Z) no longer took place at either end of the interval. We use * to
denote those cases in which the minimum occurs in the interior of the

Table 2. P(CS:| WC). The minimum probability of a correct selection in the indifference zone
and E(S| WC): The expected subset size under WC,

d=2
k=2 k=3 k=4

¢ 1 2 3 1 2 3 1 2 3

n
6 6563  .8906  .8906 6563 8134 8906 6748 7737 8396
(1.313) (1.781) (1.781) (2.317) (2.546) (2.811) (3.139) (3.622) (3.886)
2 J734 7734 9375 6214 7734 8327 6214 7819 8242
(1.547) (1.547) (1.875) (2.056) (2.633) (2.748) (3.077) (3.538) (3.738)
8 6367 8555  .8555 6000 7452  .8476 6001 7452 8008
(1.273) (1.711) (1.711)  (2.056) (2.492) (2.799)  (2.762) (3.465) (3.649)
9 7461 7461 9102 6911 7423 8277 5599 7012 7714
(1.492) (1.492) (1.820) (2.073) (2.381) (2.637) (2.701) (3.312) (3.628)
10 6231 8281  .8281 5759 7537 7820 5759 6820  .7516
(1.246) (1.656) (1.656)  (1.888) (2.421) (2.592)  (2.725) (3.232) (3.530)
1 1256 7256 8867 5628 6932 8013 5628  .6902 7399
(1.451) (1.451) (L.773)  (1.923) (2.314) (2.638)  (2.648) (3.190) (3.442)
12 6128 8062  .8062 6128 6945  .7789 5451 6840 7317
(1.226) (1.612) (1.612)  (1.918) (2.240) (2.493)  (2.448) (3.103) (3.373)
13 7095 7095 L8666 5464 7095 7439 5143 6840 7132
(1.419) (1.419) (L733)  (1.775) (2.266) (2.464)  (2.424) (2.987) (3.337)
14 6049 7880  .7880 5357 L6568  .7648 5278 6250  .6952
(1.209) (1.576) (1.576)  (1.823) (2.181) (2.505)  (2.444) (2.945) (3.258)
15 .6964  .6964 8491 6032 6597 .7420 5349 L6313 .6865

(1.393) (1.393) (1.698)  (1.810) (2.130) (2.377)  (2.386) (2.921) (3.202)
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Table 2. (continued).

d=4
k=3 k=4
& 1 2 3 1 2 3

n
6 6563 .8745*% 8906 7997 .8820 .9643
(2.399) (2.646) (2.893) (3.197) (3.681) (3.944)
7 7174 7734 9277* 7174 .9095 9479
(2.152) (2.728) (2.844) (3.230) (3.692) (3.892)
8 6367 .8332* 8555 6854 8476 .9500
(2.088) (2.575) (2.882) (2.980) (3.703) (3.888)
9 T137* 7461 .8953% 7231 8255 9194
(2.208) (2.515) (2.797) (2.911) (3.569) (3.892)
10 .6231 .8048* 8281 6719 .8434* 9066
(2.016) (2.570) (2.74]) (2.938) (3.508) (3.825)
1" 6411 7256 .8709* 6411 7976 9056
(1.970) (2.940) (2.775) (2.907) (3.502) (3.783)
12 6128 7779 .8062 6695 7779 8773
(2.075) (2.396) (2.694) (2.758) (3.472) (3.767)
13 6369 7095 .8463* 6369 .7938* 8667
(1.911) (2.440) (2.639) (2.712) (3.364) (3.742)
14 6047 7572 7880 6078 7572 .8652
(1.876) (2.324) (2.671) (2.707) (3.312) (3.670)
15 6325 6964 .8274* 6259% 7392 .8404

(1.973) (2.293) (2.596) (2.677) (3.295) (3.631)

interval [0, 1/k]. In the same table, we also provide the values of E(S)
under WC. E(S) is generally considered as a criterion of the efficiency of a
selection procedure which satisfies a specific probability requirement
P(CS:|1Z) > P*.

Remark 3.1. In Table 2, P(CS:| WC) and E(S| WC) values for k = 2
are identical for all the D values, since the d value in the proposed
procedure R does not play a role in this case for any number of
observations.

Remark 3.2. An analogous procedure for selecting the least probable
cell will not be similar in nature. The ratios cannot be even used to measure
the cell probabilities as it was pointed out in Alam and Thompson (1972)
where the authors considered a selection procedure for the least probable
cell in PZ. An appropriate measure under both PZ and IZ and its
properties for selecting the least probable cell under our integrated formula-
tion is worthy of further investigation.
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