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Abstract. Through use of a regression framework, a general technique is
developed for determining test procedures based on subsets of the order
statistics for both simple and composite parametric null hypotheses.
Under both the null hypothesis and sequences of local alternatives these
procedures are asymptotically equivalent in distribution to the generalized
likelihood ratio statistic based on the corresponding order statistics. A
simple, approximate method for selecting quantiles for such tests, which
endows the corresponding test statistics with optimal power properties, is
also given.
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1. Introduction

It is a common practice to base initial or even final analyses of data
sets on information obtained from only a subset of the sampled observa-
tions. Examples of this include various methods for estimating location
and scale parameters using subsets of the sample quantiles or order
statistics (see, e.g., Sarhan and Greenberg (1962)). Such estimators are
known to provide considerable savings in the cost and time of analysis with
very little loss of efficiency, provided the observation subset is selected
correctly. In a few cases test procedures based on subsets of the observa-
tions have also been considered (see, e.g., Cheng (1983)).

In this paper we derive test statistics, computed from subsets of the
sample quantiles, that are appropriate for hypotheses about location
and/or scale parameters as well as other simple and composite null
hypotheses of interest. The proposed statistics are easily computed quadratic
forms in the selected sample quantiles and are asymptotically equivalent in
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distribution to the generalized likelihood ratio statistic (GLRS) based on
the corresponding order statistics. The problem of optimal quantile selection
is also addressed and a simple approximate method for selecting optimal
quantiles is provided.

Let Xi,..., X. be independent identically distributed random variables
with common distribution function (d.f.) Fx. Consider the case where
Fx(x) = F(x;0), with 0 € ©, an open subset of R®, for some known
distribution F. In this setting we study the problem of testing the hypothesis
H:: 0= 8 (specified) against the composite alternative Hi4: 87 0. This is
accomplished in the next section by using a regression framework involving
the sample quantiles to derive appropriate test statistics. The basic approach
has its foundation in techniques for testing the specification of a nonlinear
regression model due to Hartley (1964).

The regression framework used for testing H; can also be extended to
develop tests for certain composite hypotheses concerning the model
Fx(x)= F((x — p)/ 0; 8), with @ € ©, — o0 < u < oo, and ¢ > 0. In this case
we derive tests for Hy: 0= Oy(specified), 0 >0, — oo < u < oo, against the
alternative Haa: 0+ 6y, 0 > 0, — oo < ut < o0, Finally, in Section 3, we study
the problem of optimally selecting the quantile subset used for testing H
and H,.

2. Test procedures

Denote the order statistics associated with Xi,..., Xu by Xin,..., Xun
and define the sample quantile function by Q(w) = X;n, G — 1)/n<u <j/n,
j=1,...,n. Throughout this section we assume that a set of percentile
points U = {uo,..., th+}, k <n, satisfying 0 =uo<u; <--- <w+1 =1 has
been chosen. A set of this form is frequently termed a spacing. Inference is
then to be conducted using only the observation subset Ot = (Ow)),..., O(w)).

2.1 A test for Hi

Consider testing H, in Section 1. Define the quantile function associated
with Fx by Qx(u) = inf {x: Fx(x)=u}= Q(«;0), 0 <u < 1, and its partial
derivatives by Dy(u; 0) = 3dQ(u; 8)/96;, j=1,...,p, 0 <u < 1. Assuming that
Fx admits a density function fx(x) = dFx(x; 8)/dx = f (x; 8), we also define
the density-quantile function fQ(u; 8) = £ (Q(u; 0); 0), 0 <u < 1, and adopt
the notational conventions Q¢ = (Q(w; 0o),..., Q(ux; 60)), Dy = Dj(us; 00),
i=1,..,k,j=1,..,pand Dy= {DV}}::IIE,

When fQ(u; 0) is continuous and positive at the w/s, it is well known
that under H 1\/; (QOv- 0v) 4 N0, Vy), where “ 4 » denotes convergence
in distribution and Nk(0, Vy) is a k-variate normal distribution with mean 0
and variance-covariance matrix Vy having (i, j)-th element Vj = w;(1 —
w) /[ fO(ui; 80) fO(ws; 80)], i <j. Thus, under H;, an approximate model is
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2.1 Ov=0u+n"e,

where e ~ Ni(0, V) and “ ~ ” indicates “is distributed as”.
To detect departures from H, we fit (in a figurative sense) the alter-
native model

(2.2) Quv=Qu+ Dyé+n"e,

where d is a p X 1 vector of unknown parameters. This approach is a direct
parallel of the goodness-of-fit approach to testing the specification of a
nonlinear regression model due to Hartley (1964) and others (see Gallant
(1975)). The usual least-squares estimate of é in (2.2) is

(2.3) ov =11 (U)DVi'[0v - Qul,
where
(2.4) In(U) = DyVy'Dy .

To test the hypothesis that é = 0, equivalently H, standard results from
regression analysis lead to consideration of the test statistic

(2.5) T(U) = ndy1(U)dy
=n[Quv— Qul'Vi' Dulii'(U)DuVi'[Qu— Qu],

with H, rejected at level a if T1(U) exceeds its upper a percentage point.

To compute Ti(U) it is helpful to note that, since Vy is a patterned
matrix, explicit formulas for the elements of 1;,(U) and Dy Vi'[Qv — Qul
exist. Specifically, set a; = fQ(u; 80) Dy ~ fQ(thr-1; 00) Dys-1yj and b, = fQ(u;
00)(O(ur) — Q(ur; 00)) — fO(tr-1; 80X B(tir-1) — Q(utr-1; 80)). Then the (i, j)-th

element of [1;(U) is

k+1

(2.6) Z (= th-1) " @ity ,

and, similarly, the i-th element of Dy V¢'[Qv — Qu] is

k+l1

2.7 Z (e — tr-1) 'ariby

where it is assumed that fQ(0"; 80)D;(0"; @o) = fQ(17; 80)D;(17;85) = 0 for
j=1,...,p and, as a result, J(0) and J(1) can be arbitrarily defined to be
X1.» and X, ., respectively.
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The asymptotic distribution theory for 7i(U) will be investigated
under both the null hypothesis and a sequence of local alternatives. Conse-
quently, the following definition is provided.

DEFINITION. Let B be an element of R? — {0} which satisfies 8o + pn "’
€ O for all n=>1. A sequence { X"}, where for each n>1 the X" are
independent random variables with common d.f. F(-; 8o + pn "), is termed
a sequence of local alternatives (SLA) to H..

The following assumptions are required for Theorem 2.1:

(A1) I(U) has rank p.

(A2) Fori=1,.. k, fQu; 60) > 0.

(A3) Forj=1,...,p, the Dj(u; 8) are continuous in u for u € (0, 1)
with fQ(0%; 80)Dy(0"; @o) = fQ(17; 80) D;(17; 85) = 0.

(A4) The functions Di{u; ) =3Di(u; 6)/36,, i, j = 1,..., p, are contin-
uous in (0, 1) X N, where N is an open neighborhood of 6.

THEOREM 2.1. Assume k = p and Assumptions (A1)-(A4) are satisfied.
Under H,, T\(U) 4 17(0), and, for an arbitrary sequence of local alternatives
to Hi, T(U)% (B L(U)P), where x3(A) is a noncentral chi-squared
random variable with p degrees of freedom and noncentrality parameter A.

The proof of Theorem 2.1 is straightforward and hence omitted (see
Eubank and LaRiccia (1985) for details).

In the case where @ is either a location or scale parameter Ti(U) is
asymptotically equivalent to tests considered by Chan et al. (1972), Chan et
al. (1973), Ogawa (1974) and Cheng (1980a, 1980b). A somewhat more
novel application of Theorem 2.1 is provided by the following example.

Example 1. Assume the Fx has positive support and that Qx(w) =
aQ(u)G for some known quantile function Q(-) (e.g., the two parameter
Weibull or lognormal distributions). Consider testing Hi: (g, 8) = (0o, 6o)
versus Hi4: (0, 0) # (00, 6o).

Let fQ(u) = 1/ Q'(u) denote the density-quantile function associated
with Q(+) and define

0= Qu), fi=fQw), ain = fiQi — fi-1Qi-1 .
an = fiQiIln Qi — fi-1Qi-1 In Qi-y

and

b: :ﬁQli_oon(u;’) "fi—lQ}:qOQ(ui—l) .
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Then set

K+ 12 k+l -1
K](U) = El (u,- - u,'-l) ai, Kz(U) = El(ui - ui-l) apa. ,
k+
K(U) = 3 (- u-)'ah,  A(U)= K(U)KAU) - KUY,
k+l g 5
Yvu)= izzl(ui — ui-1) anb;
and
k+1 IR
Y>(U) = FZI (i — wi-1) “anb: .

It can then be shown that the test statistic for H; is

TW(U) = 03"0% [K(U)SW(U)* + 260K2(U)S1(U)62(U) + 06 Ka(U)S:(U)] ,
where
3:(U) = [Ks(U)Y(U) — Ko(U)YU)]/ A(U) — a0
and

&(U) =[ - Kx(U)Yi(U) + K(U) Y2(U))/ (4(U)a0) .

2.2 Tests for H,

Attention is now focused on the case where Fx(x)= F((x — u)/0;8)
and we wish to test H> of Section 1. First note that in this setting we have
Ox(u) = u+ aQ(u;8),0 < u<1and fxQx(u) = 6 fO(u;8), 0 < u < 1. Thus,
under H-, asymptotic distribution theory for sample quantiles can be used
to justify the approximate model

(2.8) Ow)=p+0Qui;0)+n e, i=1,..k,

where e = (ei,...,ex)’ ~ Ni(0, Vy) with Vy defined as before. To detect
departures from (2.8) we then “fit” the model

29) Otu) = p+ 00 00 + % (0 Dy) + n”™er,

with Dy = dQ(w; 8)/96;|e-0, and 6 = (J1,..., 5,)’ = 0 — 0.
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Let Qu = (Q(u1; 00),..., Qux; 00))’, Cu=[1lk, Qu], where 1 is a kx|
vector of unit elements, and let Dy be the k X p matrix with (i, j)-th element
Dj. Define the matrices

(2.10) L(U) = DyVy' Dy,

(2.11) Ii(U) = DyVi' Cy= Ly(UY ,

(2.12) Ly (U)= CyVy'Cy,

and

(2.13) Lia(U) = L(U) = L(U) L2 (U)A(U) .

k]

Thus, as before, results from regression analysis suggest that an “estimator’
of § in model (2.9) is

(2.14) 3(U) = IL(U)[Dy - hU) I (U)CW] Vi'Qul o,

and that the quadratic form n8(U)'I11.2(U)8(U) could be used to test H.
This quantity involves the unknown parameter ¢°, which we replace with
any consistent estimator 6” to obtain the proposed test statistic

(2.15) T(U) = QuVi' [Dy — Cv B (U E(U)iL2(U)
Dy — L)L (U)YCulVi'Qu 67 .

The asymptotic distribution theory for 7>(U) is summarized in the
following theorem whose proof can be found in Eubank and LaRiccia
(1985). For this case a set of random variables is called an SLA to H, if,
for each n > 1 and arbitrary u, ¢, and f satisfying — o < <o, >0, f e
R°—1{0}, and 0o+ n"*p € ©, X{",..., X\ are independent identically
distributed random variables with distribution function F ((x — x)/0; 80 +

n_mﬁ).

THEOREM 2.2. Assume that i) for any SLA to H., é* converges in
probability to ¢°, ii) L1.2(U) has rank p, and iii) Assumptions (A2)-(A4)
are satisfied. Then, under H,, T>(U) 2 ¥H0) and, for any sequence of local
alternatives, To(U) % yi(B' L1 U)P).

Remark 1. ltis easily shown that

(2.16) 61 = [0, 1N[EAU) — L)L) U)]
[Cv— (UL (U) D Vo' Qv
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is a consistent estimator of o for any SLA to H, and can therefore be used
to compute T>(U).

Remark 2. Only slight modifications of T>(U) are required to obtain
tests for the case where Fx(x) has the form F(x/0;0) or F(x—u;0). A
specific example of such a test is given below.

Remark 3. One can show that, subject to regularity conditions, both
TW(U) and T>(U) are asymptotically equivalent in distribution, under the
hypothesis and any SLA, to the corresponding generalized likelihood ratio
statistics based on Q.

Remark 4. By modification of the proof of Theorem 2.2 it is possible
to obtain a parallel of 7>(U) for testing composite hypotheses about either
the location or scale parameter. Examples of tests derivable from this
perspective include those studied by Ogawa (1951) and Chan and Cheng
(1971).

Example 2. Let Fx have positive support with Qx(x) = 0Q(u)’ for
some known quantile function Q(:). We wish to test Hy: 8=6,, >0
against H,4: 8 # 6y, 0 > 0. Thus, we consider a variant of Example 1 where
o is viewed as a nuisance parameter whose precise value is not of interest.
This gives a test for exponentiality when Q(u) = — In (1 — ) and 6o = 1.

Using the notation of Example 1 and Remark 2 it is seen that
To(U) = n[Ky(U) Yo(U) — KA(U)Yi(U)V/[K(U)A(U)G],

for 6° any consistent estimator of ¢°. By Theorem 2.2, T5(U) % »}(1) with
A= BA(U)] Ky(U). Also, for this case, 61 of (2.16) is given by

61 = [Ky(U) Yi(U) — Ko(U)Yo(U)/ A(UY* .

3. Selection of quantile subsets

It will often be possible to select, a priori, the quantile subsets to be
utilized in T1(U) and T2(U). When this is feasible, the spacing should be
chosen to maximize (asymptotic) power. We now turn our attention to this
problem. It should be noted that, as a consequence of Remark 3, the
following results are applicable to the selection of optimal spacings for tests
based on the GLRS as well.

All the tests considered in Section 2 had asymptotic noncentral chi-
squared distributions, under local alternatives, with noncentrality parame-
ters of the form P A(U)B, for some positive definite matrix A(U) (e.g.,



610 R.L. EUBANK AND V.N.LARICCIA

A(U) = L(U) or A(U) = I12(U)). Consequently, their asymptotic power
is a monotone function of f’A(U)B. Thus, if it is possible to choose the
spacing U, it should be selected to maximize some function of A(U).

An argument for the maximization of | 4(U)| (equivalently, the mini-
mization of |A(U)'|) is as follows. Consider the ellipsodial region {f:
FAU) < ¢’} for some constant ¢. Vectors outside this region correspond
to higher power. Thus U should be selected to minimize the region’s size.
The volume of this region is proportional to |A(U)|™”, so an optimal U
should minimize |A(U)'|. Similar types of arguments can lead to the
consideration of other optimality criteria. These will not be explored here,
but many are amenable to analysis using the same basic methodology
developed in this section.

The selection of a spacing to minimize |A(U)™'| is a nonlinear opti-
mization problem that is quite difficult. Thus, we will instead provide a
simple, general, approximate solution that will work well for larger values
of k,eg, k=7

3.1 Spacing selection for tests of H,
Let gi(w) = fQ(u; 00)Di(u; B80), i = 1,...,p, and define I;; as the matrix

1
with (7,/)-th entry <g,-,gj>=f0 gi(wgj(wdu, i, j=1,...,p. The change of

variable x = Q(u) shows that for full samples /:, is the Fisher information
matrix for @ evaluated at @ = 0¢. Similarly, 7;,(U) is the information matrix
for the order statistic subset corresponding to U. Thus, from a regret point
of view, the character of U can be evaluated in terms of the disparity
between 111’ and 1,1 (U).

Let Sk ={U = (uo,..., tk+1): 0 = o <y < -+ < < ug+1 = 1} denote the
set of all k-element spacings. An optimal k-element spacing is one which
attains the bound J?SI: |11'(U)|. We therefore say a spacing sequence

{Ui}x-1, U € Sk, is asymptotically (as k — o) optimal for minimization of
| U) if
|00'(U)| — 1]
1m = -1 -1
koo lljilsf | 1ii (U)| = |1

(3.1)

Thus, if {Ux}-1 is asymptotically (as k — o) optimal, Ux may be used when
k is large instead of an optimal spacing without an appreciable loss in
power.

The task of constructing asymptotically optimal spacing sequences
may seem equally formidable to that of minimizing |Ii'(U)|. However,
simplifications occur if attention is focused on spacings generated by a
density, A, on [0,1]. A spacing sequence {Ui}x-: is said to be a regular
sequence generated by h, denoted {Ui}i-1 is RS(h), if Uk = {uok,..., U+ 1}
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has elements satisfying
[ hwdu=ilte+1), i=1,..k.

The following theorem provides a density which generates an asymptotically
optimal spacing sequence for minimization of |;;'(U)|. Its proof is imme-
diate from the Corollary on p. 62 of Sacks and Ylvisaker (1968).

THEOREM 3.1. Assume that the g: are twice continuously differentiable

on [0,1] with g(0Y=g(1) =0, i=1,....p. Let yi(u) = (g7 W),..., g1 (W)
and define the density

(3-2) (w) = [ B W] ] [, LY B w1 ds.

The sequence {Ui"}t=1 that is RS(hy) is asymptotically (as k — o) optimal
for minimization of |I1'(U)| in the sense of (3.1).

Determination of optimal spacings for tests of simple parametric null
hypotheses is equivalent to optimal spacing selection for estimation of @ by
an asymptotically best linear unbiased estimator based on the quantiles
corresponding to U. Thus, for joint or separate tests about x4 and o
examples of spacing densities and comparison with optimal solutions can
be found in Eubank (1981). For a three parameter example reference may
be made to Carmody et al. (1984).

3.2 Spacing selection for tests of H,

Define the two additional functions g,+1(w) = fQ(u; 0), gp+2(u) = fQ(u; 6)
+Q(u; 0), and let Iio=TI> and > denote the matrices having elements
(8i,&+» 1= 1,...,0,J= 1, 2, and {gp+i, 8p+), i, j = 1, 2, respectively. We now
focus on the disparity between I1.2(U) and i1z = I — Lok ' b A spacing
sequence {Ui}x-1 is termed asymptotically optimal in this case if

|12 (V)] ~ |11
m 1 1
k—o [l/?éf l]u.z(U)l - |I11.2

A density which generates such a sequence is provided by the next
theorem, whose proof can be obtained by straightforward modifications
of arguments in Sacks and Ylvisaker (1968). The details are provided in
Eubank and LaRiccia (1985).

THEOREM 3.2. Assume that gi, i=1,...,p+ 2, are twice continu-
ously differentiable on [0, 1] with g(0") = g:(1) =0. Let yi(w) = (g7(w),...,
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g5(W), va(v) = (g5+1(1), g5+2(w)) and define
l[ll.z(u) = un(u) - 1121251‘4’2(“) .

Then, the sequence { U™} that is RS(hy) for

o) = [yt T2y o] [, Do) Filawa (]

is asymptotically optimal for minimization of | I:12(U)| provided the support
of hy is [0, 1].

Example 3. Consider the test discussed in Example 2. To maximize
the asymptotic power it suffices to minimize Ki(U)/4(U).

As a specific example consider the case of a Weibull distribution
where Qx(u) = of — In (1 — w)}’ and fxQx(u) = (66) '{ — In (1 — w)}'’. Thus
O(u)=—In (1 ~ uw) and fQ(u) = 1 — u. To test for exponentiality (H,: 8 =1,
o > 0) against a general Weibull alternative the optimal spacing density is
found to be proportional to

(3.3) (- .577216 + .4228[In (— In (1 — w)) + (In (1 — w)) "' D/ — w)|** .
In this case h, must be tabulated numerically.

The efficacy of spacings selected according to (3.3) may be studied by
examining the ratio I1,.2(Ut”)/ I11.2. For k = 7 and 9 this has the values 0.91
and 0.97, respectively.
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