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Abstract. Through use of a regression framework, a general technique is 
developed for determining test procedures based on subsets of the order 
statistics for both simple and composite parametric null hypotheses. 
Under both the null hypothesis and sequences of local alternatives these 
procedures are asymptotically equivalent in distribution to the generalized 
likelihood ratio statistic based on the corresponding order statistics. A 
simple, approximate method for selecting quantiles for such tests, which 
endows the corresponding test statistics with optimal power properties, is 
also given. 
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1. Introduction 

It is a common practice to base initial or even final analyses of data 
sets on information obtained from only a subset of the sampled observa- 
tions. Examples of this include various methods for estimating location 
and scale parameters using subsets of the sample quantiles or order 
statistics (see, e.g., Sarhan and Greenberg (1962)). Such estimators are 
known to provide considerable savings in the cost and time of analysis with 
very little loss of efficiency, provided the observation subset is selected 
correctly. In a few cases test procedures based on subsets of the observa- 
tions have also been considered (see, e.g., Cheng (1983)). 

In this paper we derive test statistics, computed from subsets of the 
sample quantiles, that are appropriate for hypotheses about location 
and /o r  scale parameters as well as other simple and composite null 
hypotheses of interest. The proposed statistics are easily computed quadratic 
forms in the selected sample quantiles and are asymptotically equivalent in 
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distr ibut ion to the generalized likelihood ratio statistic (GLRS) based on 
the corresponding order statistics. The problem of optimal quantile selection 
is also addressed and a simple approximate  method  for selecting optimal  
quantiles is provided. 

Let X~,..., X, be independent  identically distr ibuted r andom variables 
with c o m m o n  distr ibution funct ion (d.f.) Fx. Consider  the case where 
Fx(x)  = F (x ;  0), with 0 ~ O, an open  subset of R p, for some k n o w n  
distribution F. In this setting we study the problem of testing the hypothesis 
Hz: 0 = 0o (specified) against the composi te  alternative H~A: 0 # 0o. This is 
accomplished in the next section by using a regression f ramework involving 
the sample quantiles to derive appropriate test statistics. The basic approach 
has its founda t ion  in techniques for testing the specification of a nonlinear  
regression model  due to Hartley (1964). 

The regression f ramework  used for testing H~ can also be extended to 
develop tests for certain composi te  hypotheses concerning the model  
Fx(x) = F((x  - p)/a; O), with O ~ O, - ~ </z < oo, and o- > 0. In this case 
we derive tests for Hz: 0 = 00(specified), a > 0 , -  o. </z < ~ ,  against the 
alternative H2A: 0 ~ 0o, a > 0, - oo </z < oQ Finally, in Section 3, we study 
the p rob lem of optimally selecting the quanti le  subset used for testing H1 
and/-/2. 

2. Test procedures 

Denote  the order statistics associated with X1,...,Xn by X~,n,.. . ,X,,,  
and define the sample quantile function by O.(u) = Xj.,, ( j  - 1)/n < u < j /n ,  
j = 1,..., n. Throughout  this section we assume that  a set of percentile 
points U = {u0,..., Uk+~}, k < n, satisfying 0 = Uo < ul < .-. < uk+t : 1 has 
been chosen. A set of this form is frequently termed a spacing. Inference is 
then to be conducted using only the observation subset 0b  = ((~(u0,..., O(Uk)). 

2.1 A test for  H~ 
Consider testing H~ in Section 1. Define the quantile function associated 

with Fx by Qx(u) = inf {x: Fx(x) >_ u} =- Q(u; 0), 0 < u < 1, and its partial 
derivatives by Di(u; O) = OQ(u; O)/dO:,j = 1,. . . ,p,  0 < u < 1. Assuming that  
Fx admits  a density function f x (x )  = OFx(x; O)/ Ox = f (x; O), we also define 
the density-quantile funct ion fQ(u;  O) = f ( Q ( u ;  0); 0), 0 < u < 1, and adopt  
the nota t ional  convent ions  Qt~ = (Q(ul; 00),..., Q(Uk, 00)), D O = D:(ui; 0o), 
i= 1 .... , k , j =  1,. . . ,p and D u =  {D#}~-~,~. 

When fQ(u;  O) is cont inuous  and positive at the ui's, it is well known 
that  under  Hlx/~ (~u  - Qv) ~ Nk(O, Vv), where " d_, ,, denotes  convergence 
in distr ibut ion and Nk(O, Vu) is a k-variate normal  distr ibution with mean 0 
and variance-covariance matr ix Vu having ( i , j ]- th element V o :  Ui(1- 
u:)/[fQ(ui; Oo)fQ(uj; 0o)], i<_j. Thus, under  H1, an approximate  model  is 
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(2.1) ~ v  = Qv + n - m e ,  

where e -- Nk(O, Vv) and " - -  "indicates "is distributed as". 
To detect departures from H1 we fit (in a figurative sense) the alter- 

native model 

(2.2) ~.v = Qv + Dr8 + n - m e ,  

where ~ is a p × 1 vector of unknown parameters. This approach is a direct 
parallel of the goodness-of-fit approach to testing the specification of a 
nonlinear regression model due to Hartley (1964) and others (see Gallant 
(1975)). The usual least-squares estimate of ~ in (2.2) is 

(2.3) 

where 

(2.4) 

~v = ll-~l( U)DbV[~l[(~v - Qv] , 

Ilff U) = D'v Vv1Dv . 

To test the hypothesis that ~ = 0, equivalently H1, standard results from 
regression analysis lead to consideration of the test statistic 

(2.5) Tff U) = n~'v lll( U)~v 

= n[~.v - Qv]' Vv'DvI(~(U)D'v Vvl[~_v - Q v], 

with H1 rejected at level a if TffU) exceeds its upper a percentage point. 
To compute TI(U) it is helpful to note that, since Vv is a patterned 

matrix, explicit formulas for the elements of I l l(U) and Db Vvl[(~u- Qv] 
exist. Specifically, set ao = fQ(ur; Oo)Drj - fQ(ur-1; Oo)DIr-lly and /~r = fQ(u,; 
00)(O(Ur) -- Q(U,; 00)) -- fQ(ur-  I; 00)(Q(U,- 1) -- Q(Ur- ~; 00)). Then the (i,j)-th 
element of II1(U) is 

k+l 
(2.6) Z ( u , -  Ur-O -1 ariarj , 

r=l 

Vv [~.v - Qu] is and, similarly, the i-th element of Db -1 

k+l 
(2.7) E (Ur- ldr-1)-laribr 

r=l 

where it is assumed that fQ(O÷; Oo)Dj(O+; 0o) = f Q ( l - ;  Oo)Dj(1-; 0o) = 0 for 
j = 1 . . . . .  p and, as a result, ~(0) and ~(1) can be arbitrarily defined to b e  

Xl,n and Xn, n, respectively. 
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The asymptotic distribution theory for TI(U) will be investigated 
under both the null hypothesis and a sequence of local alternatives. Conse- 
quently, the following definition is provided. 

DEFINITION. Let/ /be an element o f / ~  - {0} which satisfies 0o + ~n -m 
O for all n _> 1. A sequence {X!nl}~:l, where for each n =2- 1 the X!"l's are 

independent random variables with common d.f. F (.; 00 + [Jn-t/2), is termed 
a sequence o f  local alternatives (SLA) to HI. 

The following assumptions are required for Theorem 2.1: 
(AI) II1(U) has rankp.  
(A2) For i = 1 .... , k,fQ(ui; 0o) > O. 
(A3) For j = l , . . . ,p ,  the Dj(u; 00) are continuous in u for u ~ (0, 1) 

with fQ(0+; Oo)Dj(O+; 00) = fQ(1-; Oo)Dj(l-; 0o) = 0. 
(A4) The functions Do{u; O)= ODi(u; O)/OOj, i, j = 1,...,p, are contin- 

uous in (0, 1) × N, where N is an open neighborhood of 0o. 

THEOREM 2.1. Assume k >_ p and Assumptions (A1)-(A4) are satisfied. 
Under HI, TI( U) L X2(0 ), and, for an arbitrary sequence of  local alternatives 
to n~, TI(U)&Z2p(lJ'IlffU)~), where X2(2) is a noncentral chi-squared 
random variable with p degrees of  freedom and noncentrality parameter/l. 

The proof of Theorem 2.1 is straightforward and hence omitted (see 
Eubank and LaRiccia (1985) for details). 

In the case where 0 is either a location or scale parameter /'I(U) is 
asymptotically equivalent to tests considered by Chan et al. (1972), Chan el 
al. (1973), Ogawa (1974) and Cheng (1980a, 1980b). A somewhat more 
novel application of Theorem 2.1 is provided by the following example. 

Example 1. Assume the Fx has positive support and that Qx(u)= 
aQ(u) ° for some known quantile function Q(.) (e.g., the two parameter 
Weibull or lognormal distributions). Consider testing Hi: (a, 0)= (a0,00) 
v e r s u s  H 1 A :  (0", O) #= (0"0, 00). 

Let fQ(u)= 1/Q'(u) denote the density-quantile function associated 
with Q(.) and define 

Qi = Q(ui), f = fQ(ui), a, = fQi  - fi- 1Qi-l , 

ai2 = fQi  In Qi - f-lQi-1 In Qi-t 

and 

hi  1-8o ~ 1-8o - = f Q i  O(ui) - f  ,Qi-, Q(ui-O. 
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Then set 

KI(U)  = 
k+l 
i~=l (Ui-- Ui-l)-la21, 

k+l 
K3(U) = ~ ( U i -  ui-1)-la]2, 

k+l 
YI(U) : ~ ( U i  -- Ui-l)-lailbi 

k+l 
Kz( U) = X (ui - Ui-l)-lailai2 , 

A ( U )  = K I ( U ) K 3 ( U )  - K2(U) 2 , 

and 

k+l 
Y2(U) = ~ ( u i -  ui-1)-lai2bi. 

It can then be shown that the test statistic for H1 is 

T I ( U )  - - -  

where 

and 

n 
o2o ~o [K'(U)3ffU)2 + 2aoKz(U)3ffU)3z(U) + a2K3(U)32(U)2] , 

3t ( u )  = [ K~( U) Y~( U) - K2( U) Y~( U)]/ ~( U) - ao 

32(u) = [ - K2( U) Y~( U) + K,( U) Y2( U)]/ (~J( U)ao) . 

2.2 Tests for  1-12 
Attention is now focused on the case where Fx(x )=  F ( ( x -  lOla; O) 

and we wish to test 11l of Section 1. First note that in this setting we have 
Qx(u) = lz + aQ(u; 0), 0 < u < 1 and fxQx(u)  = a-lfQ(u; 0), 0 < u < 1. Thus, 
under H2, asymptotic distribution theory for sample quantiles can be used 
to justify the approximate model 

(2.8) O(ui) = It + trQ(ui; 0o) + n-l/2ei, i = 1,..., k ,  

where e =  (el,..., e,)' -- Nk(0, Vu) with Vv defined as before. To detect 
departures from (2.8) we then "fit" the model 

(2.9) 
p 

~(ui) =l.t + aQ(ui; 0o) +j~=l Oj(aDo) + n-mei,  

with Do = OQ(ui; O)lOOjlo=o, and 6 = (~1,..., ~p) '= 0 -  00. 
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Let Qv = (Q(ul; 00),..., Q(uk; 00))% Cu = [lk, Qv], where lk is a k x 1 
vector of unit elements, and let Du be the k x p matrix with (i,j)-th element 
Do. Define the matrices 

(2.10) 

(2.11) 

(2.12) 

I lffU) = Db Vu1Du , 

h2(U) = DbVu1Cv = h f fU) ' ,  

= Cv Vv Cv,  A 2 ( U )  ,, - l  

and 

(2.13) I 11 .2 (U)  = I,,( U) - l I2( U)I221( U) I21(  U )  . 

Thus,  as before, results f rom regression analysis suggest that an "est imator" 
of ~ in model  (2.9) is 

(2.14) 3(U) = I~1.2 ( U)[Db - 112( U)h~l(U) C%] V[:'O.v/a, 

and that  the quadrat ic  fo rm n3(U)'I~,.ffU)](U) could be used to test H~. 
This quanti ty involves the unknown  parameter  a 2, which we replace with 
any consistent est imator 62 to obtain the proposed test statistic 

(2.15) TffU) = O.'oV[:' [Dv - Cv ]221(U)I21(U)]II~.2(U) 
• [D%- I12(U)I2-21(U)C%]V[:~O.v ~-2. 

The asymptot ic  dis tr ibut ion theory for T2(U) is summarized in the 
following theorem whose proof  can be found in Eubank and LaRiccia 
(1985). For  this case a set of r a n d o m  variables is called an SLA to //2 if, 
for each n _> 1 and arbitrary/~, a, and fl satisfying - oo < ~t < 0% a > 0, ll 
R p -  {0}, and 00 + n-I/2lJ ~ O, XI"I,...,X~ "1 are independent  identically 
distr ibuted r andom variables with distr ibution function F ( ( x -  lO/a; Oo + 
n-l /2~) .  

THEOREM 2.2. Assume that i ) f o r  any SLA to H2, 62 converges in 
probability to a 2, ii) Ill.2(U) has rank p, and iii) Assumptions (A2)-(A4) 
are satisfied. Then, under HE, T2(U) & X~(0) and, for  any sequence o f  local 
alternatives, I"2(U) ~ X~(JI'Ill.2( U)~). 

Remark 1. It is easily shown that  

(2.16) ~1 = [0, 1 ] [h2 (U)  - 12 ~( W)ll l l (  U)Ii2( U)]  -l 

• [C% - I2,( U) I I ; ' (  U)D%] VuI~u, 
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is a consistent estimator of o- for any SLA to/-/2 and can therefore be used 
to compute T2(U). 

Remark 2. Only slight modifications of T2(U) are required to obtain 
tests for the case where Fx(x) has the form F(x/a; e) or F ( x -  It; 0). A 
specific example of such a test is given below. 

Remark 3. One can show that, subject to regularity conditions, both 
TffU) and T2(U) are asymptotically equivalent in distribution, under the 
hypothesis and any SLA, to the corresponding generalized likelihood ratio 
statistics based on ~v. 

Remark 4. By modification of the proof of Theorem 2.2 it is possible 
to obtain a parallel of T2(U) for testing composite hypotheses about either 
the location or scale parameter. Examples of tests derivable from this 
perspective include those studied by Ogawa (1951) and Chan and Cheng 
(1971). 

Example 2. Let Fx have positive support with Qx(u)= aQ(u) ° for 
some known quantile function Q(.). We wish to test / / 2 : 0  = 00, a >  0 
against H2A: 0 ~ O0, a > 0. Thus, we consider a variant of Example 1 where 
a is viewed as a nuisance parameter whose precise value is not of interest. 
This gives a test for exponentiality when Q(u) = - In (I - u) and 00 = 1. 

Using the notation of Example 1 and Remark 2 it is seen that 

T2( U) = n[ K ff U) Y2(U) - K2(U) YI(U)]2/[K,(U)A(U)&2], 

d 2 for ¢~2 any consistent estimator of 0 "2. By Theorem 2.2, T2(U) ZI(2) with 
2 = fl2A(U)/KI(U). Also, for this case, 62 of (2.16) is given by 

= [ K 3 ( U )  Y , ( U )  - K , ( U )  Y2(U)]2/A ( U )  2 . 

3. Selection of quantile subsets 

It will often be possible to select, a priori, the quantile subsets to be 
utilized in TI(U) and T2(U). When this is feasible, the spacing should be 
chosen to maximize (asymptotic) power. We now turn our attention to this 
problem. It should be noted that, as a consequence of Remark 3, the 
following results are applicable to the selection of optimal spacings for tests 
based on the GLRS as well. 

All the tests considered in Section 2 had asymptotic noncentral chi- 
squared distributions, under local alternatives, with noncentrality parame- 
ters of the form ffA(U)/I, for some positive definite matrix A(U) (e.g., 
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A(U) = II1(U) or A(U)  = II~.E(U)). Consequent ly,  their asymptot ic  power 
is a m o n o t o n e  funct ion of ffA(U)~.  Thus,  if it is possible to choose the 
spacing U, it should be selected to maximize some function of A(U).  

An argument  for the maximizat ion of I A(U)I (equivalently, the mini- 
mizat ion of IA(U)-~I) is as follows. Consider  the ellipsodial region {~: 
f fA(U)#  <_ c 2} for some constant  c. Vectors outside this region correspond 
to higher power. Thus U should be selected to minimize the region's size. 
The volume of this region is propor t ional  to IA(U)I -t/2, so an optimal  U 
should minimize I A(U)-~I. Similar types of arguments  can lead to the 
considerat ion of other optimali ty criteria. These will not be explored here, 
but  many  are amenable to analysis using the same basic methodology  
developed in this section. 

The selection of a spacing to minimize IA(U)-11 is a nonlinear  opti- 
mizat ion problem that  is quite difficult. Thus, we will instead provide a 
simple, general, approximate  solution that  will work well for larger values 
of k, e.g., k_> 7. 

3.1 Spacing selection for  tests o f  H1 
Let gi(u) =fQ(u; Oo)Di(u; 00), i = l , . . . ,p ,  and define I~ as the matr ix 

f0' with (i , j)-th entry (gi, gj)= g~(u)g~(u)du, i, j = 1 .... ,p. The change of 

variable x = Q(u) shows that  for full samples Ix~ is the Fisher informat ion  
matrix for 0 evaluated at 0 = 0o. Similarly,/1 ~(U) is the informat ion matr ix 
for the order  statistic subset corresponding to U. Thus,  f rom a regret point  
of view, the character of U can be evaluated in terms of the disparity 
between I1~ 1 and I~I (u ) .  

Let Sk = { U =  (uo,..., uk+~): 0 = u0 < u~ < ... < uk < Uk,~ = 1} denote the 
set of all k-element spacings. An optimal  k-element spacing is one which 
attains the bound  inf L / ~ ( U ) I .  We therefore  say a spacing sequence 

U~S, 

{Uk}~=~, Uk ~ Sk, is asymptotically (as k ~ ~ )  optimal  for minimizat ion of 
I II~I(U)I if 

(3.1) lim [II-tl(uk)l- 1II1~1 = 1 
k-~ inf II,?(U)l- 1I,~11 " 

U¢Sk 

Thus,  if { Uk}~: ~ is asymptotically (as k ~ ~ )  optimal,  Uk may be used when 
k is large instead of an opt imal  spacing without  an appreciable loss in 
power. 

The task of construct ing asymptotically opt imal  spacing sequences 
may seem equally formidable  to that  of minimizing I I~(U)l.  However,  
simplifications occur if at tent ion is focused on spacings generated by a 
density, h, on [0, 1]. A spacing sequence {Uk}~:1 is said to be a regular 

U ,  oo ", sequence generated by h, denoted { k}k:l is RS(h), if Uk = {u0k,.. Ulk+llk} 
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has elements satisfying 

f~" h(u)du = i /(k + 1), i = 1,..., k .  

The following theorem provides a density which generates an asymptotically 
optimal spacing sequence for minimization of Illi1(U)I. Its proof is imme- 
diate from the Corollary on p. 62 of Sacks and Ylvisaker (1968). 

THEOREM 3.1. Assume that the gi are twice continuously differentiable 
on [0, 1] with g,.(0 +) = g/(1-)= 0, i =  1,...,p. Let ~I(U)= (g'~'(U),...,g~(u))' 
and define the density 

(3.2) hffu) = [~1(u)'Ill 1 I//I(U)] 1/3/Jl [lill(S)'Illl IIIl(s)]l/3ds" 

The sequence {U~11}~--1 that is RS(hl) is asymptotically (as k ---" ~)  optimal 
for minimization o f  Illil(U)J in the sense of(3.1). 

Determination of optimal spacings for tests of simple parametric null 
hypotheses is equivalent to optimal spacing selection for estimation of O by 
an asymptotically best linear unbiased estimator based on the quantiles 
corresponding to U. Thus, for joint or separate tests about p and tr 
examples of spacing densities and comparison with optimal solutions can 
be found in Eubank (1981). For a three parameter example reference may 
be made to Carmody et al. (1984). 

3.2 Spacing selection for  tests o f  H2 
Define the two additional functions gp+ l(U) = fQ(u; 0), gv÷2(u) = fQ(u; 0) 

• Q(u;O), and let 112 =/'21 and 122 denote the matrices having elements 
(gi, gp÷j), i = 1, . . . ,p , j  = 1, 2, and (gp÷i, gv+J), i , j  = 1, 2, respectively. We now 
focus on the disparity between Ill.2(U) and 111.2 = 111 - 1121221121. A spacing 
sequence { Uk}k~l is termed asymptotically optimal in this case if 

lim IIS~.z(U)I- IIS~.zl 
_ i _  1 = 1 .  k-® inf [IS~.2(U)I I 11.21 UeSk 

A density which generates such a sequence is provided by the next 
theorem, whose proof can be obtained by straightforward modifications 
of arguments in Sacks and Ylvisaker (1968). The details are provided in 
Eubank and LaRiccia (1985). 

THEOREM 3.2. Assume that gi, i= l , . . . ,p  + 2, are twice continu- 
ously differentiable on [0, 1] with gi(O ÷) = gi(1-) = 0. Let ~1(u) = (g'((u),..., 
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g~(u))', q/2(U) ---- (g~+l (U), g~+ 2(U))' and define 

I -1 1~l.2(U) = ~ 1 ( U ) -  12h2 ~12(U) . 

Then, the sequence {U~ 21} that is RS(h2) for 

,i-1 1/3/ f l  S '1-1 u3 h2(u) = [I//1.2(/,/) 11.2 I/,gl.2(u)] [ JO [~,.2( ) 11.2V1.2(s)] ds 

is asymptotically optimal for minimization o f  lI{~.2(U)l provided the support 
o f  h2 is [0, 1]. 

Example 3. Consider  the test discussed in Example 2. To maximize 
the asymptotic power it suffices to minimize KI(U)/A(U). 

As a specific example consider the case of a Weibull distr ibution 
where Qx(u) = a{ - In (1 - u)} ° andfxQx(u) = (10)-1{ - In (1 - u)} 1-°. Thus  
Q(u) = - In (1 - u) andfQ(u) = 1 - u. To test for exponentiali ty (HE: 0 -- 1, 
a > 0) against a general Weibull alternative the opt imal  spacing density is 
found to be proport ional  to 

(3.3) I( - .577216 + .4228[1n ( -  In (1 - u)) + (In (1 - u))-l])/(1 - u)[ 2/3 

In this case  h2 must  be tabulated numerically. 

The efficacy of spacings selected according to (3.3) may be studied by 
examining the ratio I11.ffUtk21)/I11.2. For  k = 7 and 9 this has the values 0.91 
and 0.97, respectively. 
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