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Abstract. We propose an alternative approach to the classical "non- 
parametric" test problems, such as the goodness of fit test and the two- 
sample "nonparametric" test. In this approach, those problems are reviewed 
from the viewpoint of the estimation of the underlying population 
distributions and are formulated as the problem of model selection 
between Bayesian models which were recently proposed by the present 
authors. The model selection can be easily realized by choosing a model 
with the smallest ABIC, Akaike Bayesian information criterion. The 
approach provides the estimates of the density of the underlying population 
distribution(s) of any shape as well as the evaluation of the goodness of 
fit or the check of homogeneity of distributions. The practical utility of 
the present procedure is demonstrated by numerical examples. The 
difference in behavior between the present procedure and a density 
estimator GALTHY proposed by Akaike and Arahata is also briefly 
discussed. 

Key words and phrases: Goodness of fit test, two-sample nonparametric 
test, Bayesian model, smoothing prior, nonparametric density estimator, 
model selection, ABIC, AIC, multinomial logistic transformation, B-spline. 

1. Introduction 

We must frequently carry out statistical analyses under conditions that 
we know very little about the shape of the populat ion distribution from 
which the samples are drawn. Many two-sample "nonparametric" test 
procedures have been proposed and claimed to be valid for samples from 
continuous population distributions of any shape. Nevertheless, most of 
conventional test procedures are based on rank statistic, and they cannot 
provide any information on the shape of the populat ion distributions, even 
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(Organizer: N. Wermuth, Johannes Gutenberg University), June 30-July 2, 1986, Wiesbaden, West 
Germany. 
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when much data are accumulated. The rank statistic prevents the data 
analyst from making the most of the information supplied by the data. 

Moreover, in the case of the chi-square goodness of fit test, the 
conventional test procedure has a serious problem in that there is no 
reasonable procedure which gives an initial classification for a set of 
continuous observations. 

Following Akaike (1977), the principle of entropy maximization is 
stated as follows: formulate the object of statistical inference as the 
estimation of a probability distribution from a set of observations and 
attempt to determine the probability distribution that will maximize the 
expected entropy. To put this idea into practice, we must develop an 
estimation procedure for a population distribution of any shape. Akaike 
(1977) and Akaike and Arahata (1978) have developed the program 
GALTHY for an automated density estimation and have shown the 
feasibility of a parametric approach to the goodness of fit test problem. 
However, GALTHY has two problems requiring improvement. One is that 
it sometimes produces final estimates with spurious peaks due to the 
parameterization. It is common to ordinary parametric approaches that the 
estimate obtained is very much dependent on the appropriateness of the 
assumed model class. The other is that the final estimate produced by 
GALTHY is obtained by mixing estimates given by several parametric 
models and no estimate of measure for the goodness of fit of the final 
model itself is provided. This causes, for example, GALTHY to deal 
imperfectly with the "nonparametric" test problem. These two problems 
can be solved by using a Bayesian approach proposed recently by Ishiguro 
and Sakamoto (1984). 

The purpose of the present paper is to rectify these limitations of 
GALTHY, and to show the feasibility of an alternative approach to the 
goodness of fit test problem and to the two-sample "nonparametric" test 
problem from the point of view of the construction of Bayesian models and 
their evaluation by the Akaike Bayesian information criterion, ABIC 
(Akaike (1980)). 

For the convenience of the reader, we shall briefly review the Bayesian 
density estimator in the following section. 

2. A Bayesian density estimator 

2.1 A density estimator G A L T H Y  
Our Bayesian approach borrows an idea from GALTHY: the adoption 

of the transformation y = Q(x) of original data x, where Q is a properly 
chosen distribution function (see also Neyman (1937)). This transformation 
converts the sample space of the original data x into the closed interval 
[0, 1]. If we use r*(y) to denote the true density function of the data y on 
the interval [0, 1], then the density function of x is given by 
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(2.1) f (x )  = r*(Q(x))q(x) , 

where q(x) is the density function corresponding to the distribution function 
a(x). 

In GALTHY, to estimate r*(y), the fitting of a parametric model 
defined by 

(2.2) rr(y)=exp{~ aky k} K =  0, 1,... 
k=0 

is first tried using the method of maximum likelihood for each K. The final 
estimate of the density function r*(y) is found by the weighted average of 
the estimates of those models with a weight proportional to exp {( - 1 / 2)AIC} 
for each model. 

2.2 A Bayesian model 
For simplicity, we assume that the density is defined on the closed 

interval [0, 1]. The handling of the general case where the support of the 
density function is not necessarily bounded is discussed in the next section. 

The basic assumption here is that r*(y) is well approximated by a 
piecewise constant function defined by 

(2.3) r(y) = Cpj= 
C exp (hi~ C) 
¢ 
5". exp (hk/C) 

k=l 

for dj-1 _< y < dj j =  1,..., C -  1, 

j=C,  

where C is the number of cells and {d:} are defined by 

J (2.4) d1 = --~- j=O, . . . ,C ,  

and h: is a parameter which satisfies the relation 

C-1 
(2.5) hc = -  X hi. 

j=l 

Note that the model (2.3) is flexible enough if it is possible to set C very 
large. Given a set of data {y;; 0 <_ yi < 1, i = 1 .... , n}, the likelihood of the 
model (2.3) as a function of h = (hi,..., hc-O r is given by 
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(2.6) L(h)=Flr(yilh)=j=~{i:l 
c exp (hj/C) 
~2 exp (hk/ C) ' 

k=l 

where nj is the number of observations which satisfy d~- 1 --- y~ < dj (dc- l <- 
yi <- dc fo r j  = C). Although the maximum likelihood estimate of h is easily 
obtained, it is unstable or noisy when C is large compared with n. To 
obtain a smooth estimate of h we introduce the prior density of the 
parameter h defined by 

(2.7) c ,  { l  1 n(hlo2,h-l,ho)=H -~ - -~ -exp  - ~-~o2 ( h i -  2hi-1 + hi-2) 2 , 

where /)2, h-1 and h0 are adjustable hyperparameters. When the values of 
these hyperparameters are fixed, we define the estimate of the parameter h 
as the mode of the posterior density which is proportional to L(h) 
• it (hi 02, h- 1, h0). 

2.3 ABIC 
In this approach the selection of those hyperparameters, v 2, h- 1 and h0, 

is crucial. Akaike (1980) proposed the use of the likelihood of a Bayesian 
model as a criterion for the choice of such hyperparameters. In this case 
the likelihood of the Bayesian model is defined by 

(2.8) f L(h)n(h[o 2, h-1, ho)dh. 

Considering the compatibility with the statistic AIC (Akaike (1973)), 
Akaike defined the statistic ABIC by 

(2.9) ABIC = - 2 log (maximum likelihood of a Bayesian model) 

+ 2(number of estimated hyperparameters). 

For the present case, the ABIC is given by 

(2.10) ABIC= - 2 logf L(h)n(hlv2,h-l,ho)dh + 2 × 3. 

The values of these three hyperparameters, o 2, h- ~ and ho, are to be chosen 
so that they minimize the ABIC. To find the ABIC value we must carry out 
the integration of (2.8), which is difficult. We avoid this difficulty by 
approximating log L(h)n (hip 2, h-1, ho) with its Taylor expansion up to the 
second order term around the maximizing point/~. For further details of 
this technique, see Ishiguro and Sakamoto (1984). 

Note that (2.8) can be viewed as a particular model obtained by 
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specifying the three hyperparameters for {yi}. Thus, the determination of 
the values of these hyperparameters by the maximization of (2.8) is no 
more than the method of maximum likelihood with respect to the hyper- 
parameters. 

2.4 Estimation procedure for  the general data set 
Given original data x l , . . . , x , ,  each of which does not necessarily 

belong to the interval [0, 1], we adopt the following estimation procedure. 
Step 1: To transform those data xl,..., x, b y y =  Q(x). 
Step 2: To find the Bayesian estimate ~(ylh) ofy. 
Step 3: To obtain a second-order spline estimate ~(ylh) by substi- 

tuting the basis of second-order B-spline of ~(ylh) for the corresponding 
0-th order B-spline basis. Here, we keep the coefficients intact. 

Step 4: To estimate the probability density function of x by 

(2.11) f (x) = 7(Q(x) lh) q (x ) .  

In the Step 1, Q(x) is chosen by the minimum AIC procedure among 
familiar distributions, such as the normal distribution, the log-normal 
distribution and the exponential distribution. We use 0(x) to denote the 
density function chosen by this procedure and temporarily call it a reference 
distribution. 

The Step 3 is laid down to avoid the difficulty of the final estimate of 
f ( x )  being saw-toothed if ~(ylh) is adopted instead of ~(ylh) in (2.11). Here 
the second-order spline function ~(Yl h) is given by 

c 
(2.12) ~(ylh) =j__E 1 C/~j Sj(y), 

where/~i is obtained by substituting/~j for hj in the second equation of (2.3) 
and Sj(y) is defined by 

(2.13) Sy(y) = 

3 
0 y < b j  

2 C '  

1C(  3)2 3 1 
- - < y < b j  --f y bj + ~--~ bj 2 C -  2 C '  

1 3 1 < y < b j + - - ,  
- C3(Y - b~)2 + T C bj 2C 2C 

1 c' (  2@) 2 l 3 
' ~  y - bj - bj + - ~  <__ y < bj + 2----C ' 

3 
y> bj+ 2---d" 
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Here bj denotes the mid-point of the p th  class. 
We define the ABIC for the original data xl,..., x, by 

(2.14) 
f 

ABIC = - 2 logJ L(h)rc(hlvZ, h-l,ho)dh + 2 x 3 

+ ( - 2) log (likelihood of 0(x)) 

+ 2 x (the number of free parameters of t~(x)). 

Note that the third and fourth terms on the right-hand side in (2.14) 
correspond to the AIC for a reference distribution ~(x) (see the Appendix 
for the reasoning which leads to this expression of ABIC). If the value of 
this ABIC is larger than that of AIC for the reference distribution, that is, 
the first and second terms of the right-hand side in (2.14) take a nonnegative 
value, then we adopt the estimate given by the model with the minimum 
AIC as our final estimate. 

2.5 Behavior o f  the estimation procedure 
To demonstrate the behavior of the present procedure, we shall 

consider the following experiment. Two probability distributions are defined 
as  

(2.15) 

(2.16) 

1 1 
f*l(X) = "~ 9(x - 5) + -~- 9(x - 9), 

1 1 
f*(x)  = ~ ~(x - 5) + -~- 9~(x - 8), 

where 9 ( x -  m) denotes the density function of the normal distribution 
with mean m and variance 1. From each distribution, random samples of 
size 200 were generated and the Kullback-Leibler information quantity (K- 
L information quantity) between the true density and the final estimate 
obtained by the present procedure was calculated. From these operations, 
repeated 100 times for each case, we obtained 0.0283 and 0.0266 as the 
respective averages of the K-L information quantities. On the other hand, 
GALTHY gave 0.0342 and 0.0306 for the same data sets. Although these 
values indicate the comparative superiority of our approach over that of 
GALTHY, the difference of the K-L information quantities between the 
two procedures is not so large when we take into consideration the sample 
size of 200. For example, the difference between 200 × 0.0283 and 200 x 
0.0342 equals -1 .18  which is not so large as to prove a significant 
difference in the goodness of fit to the data (see, Sakamoto et al. (1986), 
pp. 84-85). However, there is a remarkable gap in the stability of estimates 
between these two procedures. The solid line in Fig. 1 shows the distribution 
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Fig. 1. Density functions estimated from the K-L information quantities. 

of 100 estimates of the K-L information quantities, each of which was 
calculated from the final estimates obtained by the present procedure for 
the first distribution in this experiment. The corresponding density function 
for GALTHY is shown with a dotted line in the same figure. From this 
figure, we can see that the density function for GALTHY has a longer tail 
than that for our procedure. This illustrates that the estimates by GALTHY 
have a larger variance than the present procedure. These observations 
imply that our procedure based on a Bayesian model produces moderate 
estimates compared with GALTHY, which is based on an ordinary para- 
metric model. 

For more numerical examples of the present procedure, see Ishiguro 
and Sakamoto (1984). 

3. A Bayesian approach to statistical test problems 

3.1 Goodness of  fit test problem 
The chi-square goodness of fit test has been widely used to evaluate 

the fitting of theoretical distributions to observations. The test statistic is 
based on the squares of differences between observed and hypothetical 
frequencies falling into properly fixed classes. This implies that this test 
procedure is interpreted as the comparison between constrained and uncon- 
strained multinomial models (Sakamoto et al. (1986)) and that it involves 
some serious problems. For example, the decision depends significantly on 
the method of initial classification. The procedure proposed in the preceding 
section is not seriously affected by this problem and provides an effective 
approach to the goodness of fit test problem. 

Suppose that we wish to test the null hypothesis that a set of data was 
drawn from a distribution having a density function~(x). If we assignS(x) 
for q(x) in the Step 1 in Subsection 2.4, this test can be viewed as the test 
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of the hypothesis r(y) = 1 (0 <_ y <_ 1) in the expression 

(3.1) f ( x )  = r(y)q(x) , 

against the alternative r(y) :~ 1. To deal with this problem, we assume the 
following models. 

(3.2) MODEL(0):  re(h) = 6(h - (1,..., 1)), 

and 

(3.3) MODEL(I ) :  r~(h) = z(hlo  2, h- 1, h0), 

where zc(h) denotes the prior  dis tr ibut ion of h, 6(h - (1,..., 1)) is the delta 
funct ion with mass concentra ted at h - - ( 1 , . . . , l ) ,  and zc(hlo2, h-l,ho) is 
defined by (2.7). F rom the relation 

f { ~ r ( y i l h ) } r t ( h ) d h = f { ~ r ( y i l h ) } 6 ( h - ( 1 , . . . , 1 ) ) d h  

c {  C e x p ( 1 / C )  }°, 
= fi  r(yilh = (1,..., 1)) =j__FI c = 1,  

i=1 k=~l exp (1 /C)  

we can see that  under  MODEL(0) ,  the ABIC for f ( x )  degenerates to the 
AIC for q(x). Thus,  if fo(x) is, for example,  a normal  distr ibution,  the 
statistic ABIC(0) to evaluate the goodness of fit of the MODEL(0)  is given 
by 

(3.4) ABIC(0) = AIC(0) = n log 2re + n log 6 2 + n + 4 ,  

where #2 denotes the m a x i m u m  likelihood estimate of variance. It is clear 
that  the ABIC for M O D E L ( l )  is given by 

(3.5) ABIC(1) = ( - 2) log g(Yl ~2, ~_ 1, f*o) + 2 x 3 

+ {n log 2zE + n logt~ 2 + n + 4},  

where 

(3.6) g(ylo 2 , h- 1, ho) = f L(h)~ (hlo 2, h- l, ho)dh . 

Here L(h) is defined by (2.6) and g(ylf~ 2,/~-1,/~o) denotes the model  which 
attains the min imum ABIC. Note that  the AIC for the reference distribution 
is commonly  included in these two ABIC's. 
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The performance of this procedure is illustrated by the following 
experiment. When the true distribution f* (x )  is 0 .5~(x-  m0)+ 0 .5~(x-  
(m0-  4)), the frequencies at which ABIC(I) takes a smaller value than 
AIC(0) are 172 out of 500 times for n = 50, 427 out of 500 times for 
n = 100, and I00 out of 100 times for n = 200. Although the performance 
of the procedure depends on the sample size and the complexity in shape of 
the true distribution, our procedure seems to serve for most practical uses 
as the sample size increases. Note that the present procedure frees the data 
analyst from arbitrariness in the choice of an initial classification. 

Of course, GALTHY has shown another approach to the goodness of 
fit test problem. However, GALTHY does not provide the estimate of 
measure for the goodness of fit of its final estimate, or of the final model 
itself, and the goodness of the final estimate cannot be compared with that 
of estimates obtained by any other models. This problem can be solved by 
the consistent use of the statistic ABIC, or AIC. 

3.2 Two-sample "'nonparametric'" test problem 
3.2.1 Model  and procedure 

For simplicity, two sets of samples yl = (y~l),...,y(p) and y2 = (yt2),..., 
y~)) are temporarily assumed to be included in the interval [0, 1]. We 
assume that those data sets are drawn from two populations having 
unknown probability density functions r(y lh  (~)) and r(ylh(2)), respectively. 
Suppose that we wish to test the hypothesis 

(3.7) Ho: h (l)= h (2) , 

against 

(3.8) Hi: h (1) ~ h (2) . 

To deal with this problem we assume the following models: 

(3.9) 

and 

MODEL(0): Ir(h I1), h ¢2)) = lr(h(1))6(h (1) - hi2)), 

(3.10) MODEL(l):  zr(h (1), h (2)) = Ir(h(1))lr(h(2)), 

where the prior distribution is defined by 

(3.11) = `'llo z), h%,  

c 1 
= l-I 

j=l W/~ 0(1) - -  20 l) - -  + 
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l = 1 , 2 .  

MODEL(0) means that its parameter space degenerates to the sub-space 
{(h li), h~21)lhll) = h 12)= hi°)}. Under MODEL(0) the likelihood of the Bayesian 
model is given by 

(3.12) ff{ ~ r(yl.l)lhll))]{ Dlr(y~2lih<2')} ~,(h(1),h(2))dh(lidh `2) 

=Sf{ ,0, rO,~",,,">)}{ ~J:lr(yJl)ih<l>)} =(h(1))~(h(1)-h(2))dh(1)dh(2) 

Thus, the ABIC(0) for the MODEL(0) is given by 

(3.13) ABIC(0) 

=(-2) l°gf{rlr(y!l}lhm))}{~Ir(y~2)lh[°))} k = l  

-= ( - 2) log gl°~(yl ~01,/~to~,/~o~m) + 2 × 3.  

Of course, rr(h m)) in these expressions is defined by putting 1 = 0 in (3. I 1). 
On the other hand, ABIC(1) for the MODEL(I)  is given by 

(3.14) ABIC(1) = ( - 2) log g~ll(yl~3~ll,/~1~-I1,/7o{1) ) + 2 × 3 

+ (  2) ~2) ~2 -121 - logg  (y[o(2),h-l,h(o2))+2×3, 
where 

(3.15) g(;)(yl h(-;),, t)) 

=f{ fi r(y!l)lh°')} n(hlt'lo~;,,h~ h~l))dh (1) l = 1 , 2  
i = I  ' ' " 

Here the likelihood for each data set is defined by 

_ {i { C exp (hY'I C) } ";'' 
c , 1 = 1 , 2 .  (3.16) ~ r(Yl~lhl°) -j--1 kE1 exp (h~ll/C) 

As seen from the discussions in the preceding sections, this procedure 
can be easily extended to the general case where each observation does not 
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necessarily belong to the closed interval [0, 1]. Suppose that we have two 
sets of data x! ~1, i =  1,...,nl and x~ 21, k = 1,...,n2 and we denote the 
reference distributions chosen by the minimum AIC procedure for the first, 
second and pooled data sets by ~lll(x), ~121(x) and ~t0}, respectively. By a 
reasoning similar to that in (2.14) or (3.5), we define the ABIC's for this 
case as follows: 

(3.17) 

(3.18) 

ABIC(0)=(  2) (o) ~2 -(o) ~t0) - l o g  g (yl O(ol, h - 1, h o ) + 2 × 3 

+ ( - 2) log (likelihood of ~lol(X)) 

+ 2 x (the number of parameters of qlol), 

ABIC(1) = ( - 2) log gl~)(y[O~ll, f~o_~, ~Oo) ) + 2 x 3 

+ ( - 2) log (likelihood of ~lll(X)) 

+ 2 x (the number of parameters of ~111) 

+ ( - 2) log gl21(y]~21,fTI2~ , flt2o I) + 2 × 3 

+ ( - 2) log (likelihood of ~121(x)) 

+ 2 × (the number of parameters of ql21) • 

As seen from (3.12), MODEL(0) shows the fitting of a particular 
model to the pooled data. On the other hand, MODEL(l)  shows the fitting 
of different models to every data set; its ABIC is defined as the sum of the 
ABIC's for each data set. This procedure can be easily extended to the case 
of the k-sample "nonparametric" test problems. If we have, for example, 
data drawn from three populations, we have only to assume five possible 
models and choose the model with the minimum ABIC value from among 
them. Also, in this case, the necessary ABIC is defined as the sum of the 
ABIC's, if not all the population distributions are assumed to be homogeneous. 
3.2.2 Numerical  examples 

The first example is two sets of data concerning the glucose concentra- 
tion measured by the reference and test methods, each of which consists of 
46 measurements (Leurgans (1980), pp. 216-217). For this data set, our 
procedure has given ABIC(0)= 1026.71 and ABIC(1)= 1044.81. Clearly, 
ABIC(0) is smaller than ABIC(1). This result indicates that the two 
underlying distributions are not distinguishable. Each data set follows an 
identical distribution which is shown in Fig. 2. 

We shall next turn our attention to measurements of the sepal length 
of the flowers of fifty plants from each of the three species, Iris setosa 
(denoted by G1), Iris versicolor (G2) and Iris virginica (G3), which are 
given in Table 1 in Fisher (1936). We tried to check the homogeneity of the 
population distributions of these three species. For this data set, we 
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Fig. 2. Density function estimated from glucose data. 

obtained the results shown in Table 1. This table shows five possible 
models rearranged in increasing order of the value of ABIC. In this table, 
for example, the sign (G1, G2 + G3) in the second row represents the 
model which assumes that G2 and G3 have an identical population 
distribution, but that G1 has another distribution. Since a model with a 
smaller ABIC value is expected to be a better model, this result suggests 
that the best model is (G1,G2,G3), which assumes that the respective 
distributions of the three species are mutually different. 

These examples may not persuade the reader of the practical utility of 
our procedure since their true density functions are unknown. We shall 
clarify the behavior of our procedure by the following experiment. 

Suppose that the first and second density functions ft~) and fI2) are 
identical and are defined by 

Table 1. Analysis of Fisher's Iris data. 

Rank MODEL ABIC 

1 (G1, G2, G3) 218.77 
2 (GI, G2 + G3) 243.26 
3 (G1 + G2, G3) 294.04 
4 (G1 + G3, G2) 348.89 
5 (G1 + G2 + G3) 368.00 
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(3.19) 
I 1 f"l(x) =f~21(x) = ~-  ~(x - 8) + ~-  ~(x - 12), 

and that the third one is defined by 

(3.20) fOl(x) = 1 ~0((x- 10)/a), 
o" 

where a 2 = 5 and f~3~(x) means the density function of the normal density 
distribution with mean 10 and variance 0 -2. The dotted line in Fig. 3 shows 
the density function for the former, and the solid line, that of the latter. 
Clearly, the density functions (3.19) and (3.20) have equal means and 
variances but different shapes. We generated random samples of size 100 
from each distribution and checked whether our procedure detected the 
true structure, i.e., that the density functions f u) and f 121 are identical, but 
t h a t f  °1 is different f r o m f  "1 o r f  t2). The tests were repeated 100 times and 
the results shown in Table 2 were obtained. The abbreviation for the 
models in this table is the same as in Table 1. In this table, an empty cell 
represents the zero frequency. This table shows that our procedure detected 
the true structure in 98 out of 99 cases in which the K-L information 
quantity between an estimated and the true density functions took the 
minimum value. This means that the decision by our procedure for this 

. 
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Fig. 3. flU(x)=fl2)(x)='-~9(x-g)+-~9(x-12), fl31(x)=--9((x-lO)/a),a:=5. 
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Table 2. Frequencies of the minimum of the K-L information and ABIC value. 

Frequency Frequency of minimum K-L information 
of minimum 
ABIC (G 1, G2, G3) (GI, G2 + G3) (G1 + G3, G2~ (GI + G2, G3) (G 1 + G2 + G3) 

(G1, G2, G3) 
(G1, G2 + G3) 
(GI + G3, G2) 
(G1 + G2, G3) 
(G1 + G2 + G3) 

1 98 
I 

experiment has coincided very often with the indication of the K-L 
information. In addition, the average of these 100 ABIC values has taken 
the minimum value at the true structure. It is clear that the performance of 
the procedure depends on the structure and the sample size. However, this 
results is a typical example which illustrates the behavior of the present 
procedure and seems to imply that our procedure is practical if the sample 
size is sufficiently large. 

4. Conclusion 

The advantage of the classical test procedures is that they are very 
simple to handle if we ignore the problems that the conventional test 
procedures do not have grounds for a reasonable determination of a level 
of significance and that it is practically impossible to deal with multiple 
hypothesis situations. On the other hand, the advantage of our procedure is 
that it can evaluate the goodness of fit of each model over all the assumed 
models and that it can provide the estimate of the underlying population 
distribution, if necessary. 

Recently, we have reviewed standard statistical procedures from a 
consistent viewpoint, namely, the construction of a parametric model and 
its evaluation by the Akaike information criterion, AIC (Sakamoto et al. 
(1986)). This viewpoint frees our method from individual theories of 
sampling distributions and various statistical tables. However, alternative 
approaches to the "nonparametric" test problems have not been included in 
the book since such problems can rarely be solved by ordinary parametric 
models. The procedure proposed in the present paper shows the feasibility 
of a consistent parametric approach to problems which have conventionally 
been dealt with by the "nonparametric" test procedures. 
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Appendix 

Suppose  that  a true density funct ion f*(x) of original data  x and its 
es t imatef (x)  are expressed as 

f*(x) = r*(Q(x))~(x) , 

and 

f(x) = f e(O(x)lh)rc(h)~(x)dh , 

respectively. We then evaluate the goodness of  fit o f f (x )  t o f * ( x )  by 

f f*(x) logf(x)dx 

= ff*(x) log f e(Q(x)lh)~(h)dh#(x)dx 

= f f*(x)  log f ~(Q(x)lh)rt(h)dhdx + f f*(x)  log Ct(x)dx 

--- f logf ~(Q(x)lh)Tr(h)dhdx + f f*(x) log #(x)dx . 

Using y = Q(x) and dy = ?t(x)dx, we have that  

f,* log f ~(Q(x)lh)ze(h)dhdx = f r*(y) log f ~(ylh)rc(h)dhdy . 

Hence, we finally obtain 

f f*(x)  logf(x)dx = f r*(y) log f ~(ylh)zr(h)dhdy + f f*(x) log ~(x)dx. 

which shows that  the goodness of fit o f f ( x )  can be evaluated by the sum of 
the two terms measuring the goodness of fit of f'(y) and that  of t](x). 
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