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Abstract. Consider the problem of constructing an estimator with a 
preassigned bound on the risk for a mean of a normal distribution. The 
paper shows that the usual two-stage estimator is improved on by 
combined estimators when additional samples taken from distributions 
with the same mean and different variances are available. 
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1. Introduction 

Let XI, X2,... be a sequence of mutually independent random variables, 
each having normal distribution N(/~, ~ )  with unknown parameters/t  and 
a~. Given a preassigned number  B >  0, we consider the problem of 
constructing estimator fi of/t such that 

(1.1) g(p) = E[(p -/0 ~] _< B, 

uniformly with respect to unknown parameters. If a sample of size n is 
taken, then sample mean X ,  has risk R(X,) = a2/n. When ~ is known, the 
risk can satisfy the required condition (1.1) by taking n = n* = ~ / B  where, 
for simplicity, n* is assumed to be an integer. However, when 0 .2 is 
unknown, there does not exist any fixed sample size such that R(X, )  < B 
for all a~ > 0. Then the following two-stage estimation rule is proposed (see 
Rao (1973), pp. 486-487): 

(i) Start with an initial sample X1,..., X,, of size m ( ___ 4). 
(ii) Define the stopping number by 

(1.2) ( N = m a x  m, B(m--3)  +1  , 
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where $1,. = ~2 ( X j -  Xm) 2, X , , , -  Z Xi/m,  and [u] denotes the largest 
j : l  - - j : l  

integer less than u. 
(iii) Take another sample X,,÷I,..., AN. Then estimate p by 

N 
XN= N-I Z Xj 

j=l 

which has the risk not larger than B. 
In this paper, we assume the following situation: The above two-stage 

sampling procedure is carried out for the principal estimation of/t ,  while 
some supplementary observations are obtained before or after its two-stage 
sampling, and these observations seem to be particularly distributed with 
the same mean g. In this case, of great interest is to investigate whether 
their additional observations are available for estimation of/z, which is just 
our purpose. 

From a decision-theoretic point of view, sequential estimation have 
two kinds of domination problems, that is, improving on the estimation 
procedure and making the stopping number smaller. The former problem 
has been resolved by Ghosh and Sen (1983), Takada (1984), Ghosh et al. 
(1987) and Nickerson (1987), but little is known about analytical study for 
the latter problem, which seems to be not easy. Here the former domination 
problem is discussed. 

Section 2 deals with two-sample problem. In addition to the sample 
obtained by the above two-stage sampling rule, we assume that a random 
sample of fixed size I is taken from N(p, o'~) with unknown a 2 possibly 
different from trY. Using information of the additional sample, we consider 
the class of combined estimators which have been, in the fixed sample size 
case, investigated by Brown and Cohen (1974), Khatri and Shah (1974), 
Bhattacharya (1980) and Kubokawa (1987a). Then the condition under 
which the two-stage combined estimators dominate XN is developed. It is 
noted that this domination result holds when the size 1 is at least 3. In 
Section 3, we discuss k-sample problem and obtain the condition which 
ensures that Brown and Cohen's type estimator (1974) has a smaller risk 
than XN. 

2. Two-sample problem 

Following the stopping number N given by (1.2), sample X1,..., XN is 
taken from N(/~, ~).  We further assume that random sample Y1,..., Yl of 

N 
N 2 = fixed size l is additionally taken from (~, az). Denote S1N j_E ( X j -  

l l 
~ ) 2 ,  y = 1-1 j:I]E yj and $2 =~1-- ( Yy - F)2" Then it is shown that the usual 
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two-stage estimator XN is improved on by using information from YI,..., 16. 
Let a be a positive constant, and let bN and cn be nonnegative functions of 
N such that bN > 0 and bN >_ Cn >-- O. The combined estimators we consider 
are of the form 

(2.1) fiN(a, bN, CN) = X N 4  a ( y  _ X~v) , 
1 + R N  

where RN = {bNS2/I + CN(XIv-- Y )2} / (S In / N ) .  By the symmetry of the 
- -  - -  A conditional distribution of XN -- Y given Slm, it is seen that ltN(a, bn, CN) is 

an unbiased estimator of p. 

THEOREM 2.1. The combined estimator fiN(a, b~v, cN) dominates the 
two-stage uncombined estimator X N relative to the mean squared error loss 
and has a risk bounded by a preassigned positive constant B i f  the 
fol lowing conditions hold f o r  m > 4: 

(a) l>_ 6 / fc~  = 0, or l>  3 i f c n >  O. 

(b) nb 2 is nondecreasing in n f o r  n >_ m and Y. (nb,) -2 < oo/f cn = 0, 
t l = m  

2 
or b,/  n and c,/ b, are nondecreasing in n f o r  n >_ m i f  cN > O. 

(C) a, b, and c, satisfy that 

(22, a<min[12in,{ , 5  
,>-m 2n - m + 1 

or that 

(2.3) a <  rain[ 1, 2 . i n f  { l - - 2  
- ._>.1 2 n - m + l  

/ 1 + ( 1 -  1)(b  - 
o ] /f bN>--cN>O. 

Example. (i) Brown and Cohen's type estimator (1974) fiN(a, ( N -  1)/ 
(l + 2), ( N -  1)/(l + 2)) is better than XN provided l _> 3 and 

a_< min {1, ( l -  2)/(•+ 2)}, 

by Theorem 2.1. 
(ii) Khatri and Shah's type estimator (1974) ;iN(I, ( N +  1) / ( l -2 ) ,  

(N+  1) / ( / -  2)) is always better than XN for I___ 3 by Theorem 2.1. 

PROOF OF THEOREM 2.1. We shall prove that fiN(a, bN, CN) is better 
than Xn  under the mean squared error loss. Let p = a2 /~ ,  and let T~X] ,  
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that is, a random variable distributed as a chi-square variate with 3 degrees 
of freedom, being independent of (&r,,, S~,, &) for any n _> m. Denote 
R~v = {(b~vN/l)& + cN~(1 +pN/1)T}/Sz~v. Then according to Brown and 
Cohen (1974) and Khatri and Shah (1974), the risk of/~N(a, bN, cN) is 
written by 

(2.4) R(~N(a, bN, cu)) 

[ , {  = R(XN)+aa~E --~ (1 +pN/l )  
o 2 ) ]  

( I + R N )  2 I + R N  ' 

m 

which gives that R(/~N(a, bN, cN)) < R(XN) if and only if the second term in 
the r.h.s, of (2.4) is not positive. Here, observe that for 0 < a < 1, 0 > 0 and 
X >  0, 

(1 + O)a 2 a 
< - -  (aX -2 _ 2X -1) 

(2.5) (1 + 0X) 2 1 + OX - 1 + Oa ' 

which follows from the inequality 20X(X  - a) 2 + (aO + 1)(1 - a)X 2 + (X - 
a) 2 _> 0. Putting 0 = pN/l  and X = RM/(Np)  in (2.5), we see that 

o 2 }] 
E ( l + p N / l )  ( I + R N )  2 I + R N  

a 

<_E N(l  +apN/l)  
{a(pN/l) 2 RN 2 - 2(pN//)R;, l } ] .  

Hence it is sufficient to show that 

(2.6) I { (pN/l)2 R~2 
h(~,a~) ded E N(1 + apNll) 

- (21a)(pN/l)RN t} ] <<_ O, 

for any rr~, a 2 2 > 0. This is also represented as 

(2.7) h(a~, o'~2) = ~ 1 
.=m n(1 + apn/l) 

E[ {(pn/ l)2 R-, 2 -  2a (pn/l)R--'l} ItN=,] ] 

I [ (pn/l)2 Ivv=,j ] 
= n=m £ n(1 +apn/l) E R,-----------T- 
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• {1 2 
a 

E[(pn/ l)'R~'l ltu=nl] } 
E[(pn/ l)2 ~-.2 ltl~=.fl ' 

where for n _> m + 1, Itu=.] = ItB(m-3Xn-l)<S~,.<-B(m-3)n] and ltu=,.] = I[s,.<_B(m-3)m]. 

To prove the inequality (2.6) by use of (2.7), given N = n, we express 
.~, by other mutually independent random variables whose distributions do 
not  depend on unknown parameters. For n >__ m + 1, let Qt, = St, - S~,, 
and denote U1 = S~m/a~ and U2. = Q~,,/a~. Also let V =  $2/~  + T and 
W= T(S2 /~  + T) -~. Then it is seen that 0"1, U2., V and W are mutually 
independent,  and that Ua ~Zm2-1, URn ~ 2 V 2 Zn-m, ~ Zt+2 and W ~  beta {3/2, 
( l - 1 ) / 2 } ,  that is, a random variable having a beta distribution with 
parameters {3/2, ( l -  1)/2}. Note that V=  S2/a~ + VW. Then 

pn/ l U} + U2. 
R. - {b.(1 - W) + c,,W+ c,,Wl/(pn)}V 

By using this expression, the ratio of expectations in (2.7) is rewritten as 

E[(pn/1)_~-11tu=.l] 
E[(pn/0 2 ~ 2  Itu=.~] 

E[{b.(1 - W) + c. W+ c. Wl/ (pn)}-l]E[V -1] 
E[{b.(l - W)  + c. W +  c. W l / (pn) }-2] E[  V -2] 

E[(UI + U2.) It,,=.fl 
E[(  U1 4- U2n) 2 Itu=.fl " 

From Proof  of Theorem 2.1 in Kubokawa (1987b), we observe that 

e[ /b . (1  - W )  + c .  W +  c .  W l / ( p n ) } - ' ]  

E[{b.(1 - W) + c,, W+ Cn Wl/(pn)} -21 

E[{b.(1 - W) + c. W+ c. Wl/(pn)} -1] 
> 

- E[{b.(1 - w )  + c .  W +  c.  W t / ( p n ) } - ' { 6 . ( 1  - W )  + c .  W]-'] 

E[{b.(1 - W) + e. W} -1] de=f u(bn, c,,; 0),  
>-- E[{b.(1 W) + c. W1-2] 

where u(b,,, c,; 0) is the notat ion corresponding to (2.2) of Kubokawa 
(1987b). In other words, the second inequality follows from Theorem 2.1 of 
Bhattacharya (1984) and the fact that both {b,(l - W) + c,, W}/{b,,(1 - W) + 
cnW+ cnWl/(pn)} and b,(1 - W) + cnW are nonincreasing in Wfor  bn -> cn. 
Also observe that E[  V-1]/E[V -2] = l -  2. Thus from (2.7), we have 

2 (2.8) h(~ ,  ~ ) <  Z an{E[(U1 + U2.) I[u=.]] 
/ l  = r t l  
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- ( 2 / a ) ( l -  2)u(b, ,  c,; 0)E[(U~ + U2,)ltu=,l]}, 

1 E[(pn/I)2R--,21EN=,,1] 
(2.9) a ,  = 

n(1 + apn/ t )  E[(U~ + Uz,)2Itu=,~] " 

Since U~ and U2, are independent ,  we see tha t  

(2.10) E[(U~ + U2.)2ItNo.~] = E[U2ItN=,,1] + 2(n - m)E[U, It,v=,,fl 

+ (n - m + 2)(n - m)E[ltu=,,l]. 

Here, writ ing tim-1 = 0, ft. = B(m - 3 ) n / ~ ,  for  n > m, we define q.r(n) by 

qy(n) = P{i~n-1 < X2f < ~n}  , 

for  positive i n t e g e r f  Then,  P ( N  = n) = q,,-l(n). Also, note tha t  i ffk(x) is a 
ehi -square  densi ty  wi th  k degrees of  f reedom,  xr . f k (x )=  2r{F(k/2 + r)/ 
F(k/2)}fk+z, for real r. Thus f rom (2.10), 

(2.11) 

Similarly, 

(2.12) 

E[(Ul + U2.)2ltu=.l] = (m + 1)(m - 1)q,.+3(n) 

+ 2(m - 1)(n - m)q,,,+l(n) 

+ (n - m + 2)(n - m)q,,,-l(n). 

El(U1 + U2n)Ibv:n]] = (m - 1)qm+,(n) + (n - m)qm-l(n) . 

F r o m  (2.8), (2.11) and (2.12), we get 

(2.13) h ( ~ , ~ )  < (m + 1)(m - 1) 

• ~., a,, [ q,,,+3(n) 2 
n=m m@ 1 

- -  { (1-  2)u(b.,  cn; O)/a 

n - m  
- (n - m)}q,.+l(n) + 

(m + 1 ) ( m -  1) 
"1 

• {(n - m + 2) - 2 (1 -  2)u(b.,  c.; O)/a}qm-1(n) [ .  
.I 

By L e m m a  2.2 of  K u b o k a w a  (1987b), observe tha t  
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u(bn, c,,; O) = ( l -  5)b,,/(l- 2) for c, = 0 ,  

{ ( l -1 ) (b , , - c , , ) }  
u(bn, cn, 0)-> I+  i i T g ~  cn for b,_>c~>0. 

Combining these relations and the conditions (a) and (c) of Theorem 2.1 
can show that 

(l - 2)u(b,, cn; O)/a - (n - m) > (m + 1)/2, 

n - m + 2 < 2 ( l -  2)u(b,, c~; O)/a. 

Hence from (2.13), the inequality (2.6) can be proved if 

(2.14) ~ an{qm+3(n) - qm+,(n)} < O . iI=m 

Since a, given by (2.9) is rewritten as a,,=(p/l)2(l +apn/l)-l(b~/n) -l 
• E[{(pn/l)x2-1 + (c,,/b,,)(1 +pn/1)T}-2], we can show that a. is decreasing 

in n from the condition (b), and that E a, < oo. Finally, from Ghosh and 
n=m 

Sen ((1983), p. 363), we have 

(2.15) ~ an{qm+3(n) - qm+l(n)} n=m 

=,~=m{j~=,(aj-aj÷~)}{qm÷3(n)-qm÷ffn)} 

:j~m[,,=Em{qm÷a(n)-qm÷ffn)}](aj-aJ÷O 

= P{x=+3 -</~A - P{Xm+l <-- ~ j }  (a j  - 
j=m 

< 0 ,  

~j+ 1) 

which proves (2.14). Therefore the proof of Theorem 2.1 is complete. 

3. k ( _> 3) sample problem 

In this section, k ( _  3) sample problem is discussed. Following the 
stopping number N given by (1.2), sample XI~,...,XIs is taken from 
N(la,~). We further assume that independent random samples (X2~,..., 
X212),..., (Xkl,..., Xkt,) are additionally taken, where each Xo has N(/z, ~.). 

_ N -  1 N ~ t, 
Denote X 1 N :  / =1~ Xlj ,  SIN=/=l'= ( X l j -  gIN)  2, S.i  = lilj=~ 1 XIj and Si = 
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E ( X i j -  Xi)  2 for i = 2,..., k. Let a2,.. ak be positive constants, and let 
j = l  "' 

bEN,..., bkN be functions of N. Consider the combined estimators based on k 
samples of the form 

(3.1) 
J 

~ljN ~- X1N "~- ~ ~ i N ( X i -  XIN) j = 2,.. k 
i=2 " '  ' 

where 

aiSlN 
4~iN = i = 2,...,  k . 

S m  + biN(N~ li)Si 

The unbiasedness of /~jN easily follows. This type of estimators was 
introduced by Bhattacharya (1980) extending a particular case [namely, 
biN= ( N - 1 ) / ( l i - 1 ) ] ,  proposed by Brown and Cohen (1974), and was 
recently treated by Sugiura and Kubokawa (1986) in the problem of 
estimating common parameters of growth curve models. 

THEOREM 3.1. A s s u m e  that 12 >- 6,.. . ,  lk > 6, and that the fo l lowing  
conditions hold  f o r  j = 2,. . . ,k.  

(a) nb~, is nondecreasing in n f o r  n >_ m and ~ (nbj,) -2 < ~ .  
t ~ = m  

(b) 0 <  a2 < man [ 1, 2 .  inf { /2--5 b2n}] 
- n_>m 2 n  - m + 1 ' 

O< l - a 2  .~_m 2 n - - m + l  ' 

0 < 1 - a 2  . . . . .  a k - 1  ,~-,, 2n - m + I 

Then we have 

m 

R(l~k#) <-- R(:k-I ,N) < "'" < R(I?t2N) < R(X~N) < B ,  

f o r  a preassigned constant B > O. 

PROOF. Let Cj = aj/(1 - aj . . . . .  aj-1); RjN = b m ( S j l l j ) / ( S m / N ) ;  
tjN= X~N+ Q ( X j -  XIN)/(1  + P,4N), j =  2 , . . . , k .  Then the result follows in 
the same way as in Brown and Cohen (1974) once it is noted that for each 
j >_ 2, R(tm) <- R(X~N) in view of Theorem 2.1. 
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Remark. It is interesting if we could show that Shinozaki's estimator 
(1978) dominates X1N. 
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