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Abstract. Representation theorem and local asymptotic minimax theorem 
are derived for nonparametric estimators of the distribution function on 
the basis of randomly truncated data. The convolution-type representa- 
tion theorem asserts that the limiting process of any regular estimator of 
the distribution function is at least as dispersed as the limiting process of 
the product-limit estimator. The theorems are similar to those results for 
the complete data case due to Beran (1977, Ann. Statist., 5, 400-404) and 
for the censored data case due to Wellner (1982, Ann. Statist., 10, 
595-602). Both likelihood and functional approaches are considered and 
the proofs rely on the method of Begun et al. (1983, Ann. Statist., 11, 
432-452) with slight modifications. 
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1. Introduction and motivat ion 

Let (X °, T °) be a bivariate (X ° and TO are not necessarily independent) 
random variable and let G(x, t) be the joint cumulative distribution of X ° 
and T °. Let G~(x)= G(x, oo) and G2(t)= G(oo, t) denote the marginal 
distribution function of X ° and T °, respectively. Let G*(x, t) be the 
truncated (on X ° _< TO) joint cumulative distribution of X ° and T °, i.e., 

( l . l )  G*(x, t) = P ( X  ° < x, T O <_ t l X° ~ TO). 

Also let G*(x)= G*(x, oo) and G*(t)= G*(oo, t). Then it is obvious that 
G*l(X) = P ( X  ° <_ x l X  ° < T °) and G*(t) = P ( T  ° <_ t l S  ° <_ T°). 

In randomly truncated data  problems, we assume that the bivariate 
random variable (X °, T °) is not observable if X ° > T O and the whole vector 
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(X °, T °) is observed if X ° _< T °. Let (X~, TI), (X2, T2) ..... ()in, Tn) be indepen- 
dent  observations with each (Xi, 7].) having distribution funct ion G*(x, t). A 
basic problem with truncated data  is how to estimate the distribution 
funct ion  Gl(X) of X ° based on the t runcated  observations (X;, T,-), i = 
1,2, . . . ,n .  

The joint  distribution funct ion G*(x, t) can be written as 

(1.2) 

where a = oo oo I (u  <_ o)dG(u,  o) and I(u < o) = 1 if u _< 0 and 0 otherwise. 

Set Ui = inf {x: Gi(x) = 1 }, and define Ui -- oo if the set is empty,  for 
i - - 1 , 2 .  Note that  we cannot  hope to estimate GI if U1 > U2, when we 
observe only the (X, T) pairs, since the probabili ty Xi < T~ _< U2, for all i, is 
one. In this case we will be able to estimate only the condit ional  distri- 
but ion G ( ( . ) =  G I ( . ) / G f f T * )  with T * <  U2. In order to simplify our  
notat ions  and proofs,  we will consider the est imation of G~ under  the 
assumption U~ < U2 -< o~. 

The product-l imit  est imator G~ of G1 is defined by 

[l 
Under  the assumption that  X ° and T o are independent ,  the product-l imit  
est imator was originally derived by Lynden-Bell (1971). Wang and Jewell 
(1985) also derived t~ as the "nonparametr ic  condit ional  m a x i m u m  likeli- 
hood  est imator"  (NCMLE)  of G~. Recently Woodroofe  (1985) also men- 
t ioned an alternative derivation of ~ by first deriving the nonparametr ic  
m a x i m u m  likelihood est imators (NMLE) of G* and G* and then utilizing 
the following equations: 

( 1.4a) G*(x) = a-l f ~  [1 - G2(u-)]dGl(u), - oo < x < oo , 

(l .4b) G*(t) = a -~ f~' G~(u-)dG2(u), - - ~ < / < o o  

to solve for GI and G2, so that  G1 and G2 become functionals of G~* and G2* 
and the associated empirical functionals are natural  estimators of G~*. 
Woodroofe  (1985) argued that  the resulting estimators are N M L E  by the 
invariance properties of MLES.  The es t imator  of GI derived this way 
coincides with the product- l imit  es t imator  G1 in (1.3). Since ~ is the 
N M L E  of G1 we may expect  that  t~l possesses some opt imal  properties;  
but  a general theory in nonparametr ic  m a x i m u m  likelihood is not  available. 
The main  objective of the current  paper  is to show that  d l  does possess 
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some optimalities.  Since the current  t runcated da ta  model  is a variat ion of 
a semiparametr ic  model  (as explained later), the projection technique in 
Begun et al. (1983) with slight modifications applies. 

The t runcated model  has also been studied by Segal (1975), Nicoll and 
Segal (1980), Bhat tacharya (1983), Bhat tacharya et al. (1983) and Wang et 
al. (1986). 

The following investigations provided some of the motivations that  led 
us to the current  study (for exposit ional  ease, we assume in this section that  
the jo int  probability density funct ion g(x, t) of G(x, t) exists). 

1.1 A useful class o f  functionals and nonunique representation o f  G1 
For  every fixed xo, define a class of functionals {T~(G; xo) : -  oo < c < oo} 

where 

(1.5) Y; Tc(G;xo) = exp - o 
x f~g(x,oo o)do ,ix ] . 

f~.f~ g(u,o)dodu 

Let he(G; t) = d[ log To(G; t)]/ dt, i.e., hc( G; t) = P(X  ° = t ,  T O >_ cl T O > X°). 
The following results can easily be derived f rom (1.1), (1.2) and (1.5). 

(i) If  c > x0, then h~(G; x0) = h,(G*; xo). This means that  the func- 
t ional hc(G; )co) is invariant under  the t runcat ion (on X ° < T°). 

(ii) If  X ° and T O are independent ,  then To(G; Xo)= Gffxo) for all c. 
It says that  all the funct ionals  T~(G;xo), - o o  < c < oo are equal to the 
dis t r ibut ion funct ion G1 at xo that  we are trying to estimate, hence the 
funct ional  expression of Gl in terms of G is not unique. This is a special 
structure under  the assumpt ion  of independence between X ° and T °, but  it 
is not  surprising since G~ is a marginal  distr ibution of G. 

(iii) If X ° and TO are independent ,  then for all c ~ ( - 0% oo) 

L(G; xo) = L(6* ;  xo) = 6~(xo), 

where exp [- hmax,c ] This shows that func- 

tional expression of G1 in terms of the t runcated distr ibution G* is also not  
unique,  and it explains that  the t runcated model  is a variat ion of the 
semiparametr ic  model  (a variat ion since it has no finite dimensional  
parameters  and has only two infinite dimensional  parameters  G~ and G2). 
See Stein (1956), Bickel (1982) and Begun et al. (1983) for a defini t ion of  
the semiparametric  model  and the discussion on p. 434 of the third paper. 

Propert ies  (i), (ii) and (iii) indicate that  there are infinitely many  ways 
of est imating G1 (or G2) and the N M L E  is one of them. In fact, it can be 
shown that  if X ° and T O are independent ,  then the G~(x) funct ional  derived 
f rom (1.4a) and (l.4b) is equal to To(G*; x) with the choice c = x. Note that  
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if G*(x) are not continuous, then the resulting functional Gffx) from (l.4a) 
and (1.4b) is slightly different from Tx(G; x), in this case 

(1.6) 
[ ( o,(u, o,(u,)] 

6,(x) = rx( a,; x) . u :~  1 -  6*(u) 6*(u-) ' 

where Gs is the continuous part of G. The second term on the right hand 
side is obviously one if G*(x) are continuous. 

1.2 Optimal estimate of  Tc( G; Xo) without independent assumption 
The empirical functional T~(d*; xo) (with d* an estimate of G* based 

on truncated data) can still be used to estimate the functional TdG*;xo) 
even if Xi ° and T, .° are dependent but then TriG*; xo) may not be equal to 
Gift). Standard theory (see for example, Beran (1977), Bickel and Wellner 
(1983), among others) implies that under mild regularity conditions any 
regular estimator i"~(x0) of T~(G; )co) (note that xo is fixed) satisfies. 

(1.7) n'/2[L(xo) - TriG; x0) ---4--a Z~(xo) + W(xo) , 

0 .2 where Z~(xo) is N(0, c(Xo)) and Zc(xo) and W(xo) are independent. The 
random variable W(xo) depends on the estimator ~(xo). The a~(x0) can be 
determined by 

(1.8) d(Xo) = E{[IC(Xi, T,.; G, )Co, c)]2}, 

where IC(s, w; G, xo, c) is the influence (curve) function of the functional 
TriG; xo) at (s, w). By some careful and long calculations, it can be shown 
that 

(1.9) IC(s,w; G, xo, c) = 

Tc( G; xo) ( ~xo ~ dx + fc w fx(x) "x } 
if s < w ,  w>c_>)Co and 

1 f ~ f . ( x )  
-T¢(G; xo) { ~ s  -as (M;) - - - - - I  dx } 

if s < w, x > c > xo , 

s < x o ,  

;L f7 where M x oo = c = g(u, o)dodu and fc(x) g(x,y)dy. Note that it suffices 

to consider c >_ )Co since 2P~(G; xo) = ~(G;  xo) for all c < x0. Thus 

(1.10) ac2(Xo) = ff T~(G; Xo)[[c fc(x) dx rw fx(X) ]2 ,x0(M~92 +3c (--M'~2)~ dx g(s, w)dsdw (1) 
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+ ff T~(G; xo) { _ ~ , _ f i ( M ; )  ~ f~(x) dx }2 g(s, w)dsdw, (2) 

where the integrals in (1) and (2) are over the two regions in (1.9). It can be 
shown tha t  the es t imator  f"c(Xo)= T~((~*;xo) with d*  being the jo in t  
empirical distr ibution based on t runcated da ta  (X~, T~), i = 1,2, . . . ,  n, has 
asymptot ic  variance a)(xo). It means asymptotically Tc((~*, xo) is opt imal  in 
the sense that  any other est imator  is at least as dispersed as Tc((~*, xo). This 
is obvious f rom (1.7). We may want  to use a smooth  version of d*  to 
estimate G*. 

1.3 The best possible functional under independence assumption 
Under  the assumpt ion  that  Xi ° and T~ ° are independent  we have 

To(G; xo) = Gx(xo) for all c and Tc(G; xo) = Tc(G; xo) = Gffxo) for all c > xo. 
Consider  the est imation of ~'c(G;xo) based on the t runcated data: it is 
natural ,  according to (iii) in Subsect ion 1. I and the est imation of To(G; xo) 
discussed above, to estimate Gffxo)= ~ ( G ;  xo) by ~c(Xo)= ~ ( ~ * ; x 0 )  with 
c being any constant  not  less than  xo. It can be shown that  T~(G;xo) is 
constant  for all c > xo and k'(c) > 0 for c > xo, where 

(1.11) dx ( M l ) 2  . 

These with (1.10) imply by some careful calculations that  

0.12) Cr~o(Xo) = min crY(x0) over c _> xo, 

and 

(1.13)  x o(Xo): c (xo).f  o dx (M]) 2 

® f?g(x,y)dy 
= G((xo). fSg(u, o)dodu d x .  

We call Txo(G; xo) the "best funct ional  representat ion"  of Gl(xo) since (a) 
tr2o(Xo) minimizes the value of a)(xo) over c _> x0 and (b) the best possible 
asymptot ic  variance a2o(Xo) in (1.13) coincides with the covariance structure 
of PLE (or NCMLE)  given in Wang et al. (1986), since if c = Xo and Xt ° 
and T, .° are independent ,  then Txo(G*;xo) coincides with the functional  
G~(xo) derived f rom (1.4a) and (1.4b) and this functional  produces the PLE 
in (1.3), but  the starting viewpoint  of our  derivation is different f rom theirs. 
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So far we have shown that in the class of estimators which are induced by 
~c(G; x), an invariant functional under truncation (on X ° _< T°), ~z(G*, x) 
is asymptotically optimal as an estimator of Gffx) for every given x. Two 
questions remain to be answered: (1) is ~x(d*; x) still an optimal estimator 
among all possible estimators of G~(x) and (2) what are the properties of 
the entire process {~t(~*; t): t > -  ~}, for instance, what is the covariance 
structure of this process? The main objective is to develop lower bounds for 
limiting processes of estimators of G~ and to show that the product-limit 
estimator is asymptotically optimal in some senses. Some properties of the 
process (or its modification, the PLE) have been studied by Woodroofe 
(1985), Wang et al. (1986) and Chou and Lo (1988). Our previous discus- 
sions are based on the "functional approach". In the following section we 
derive some optimalities of the PLE (or NCMLE) based on the "likelihood 
approach". 

The current result can also be considered as a generalization, specially 
in estimating distribution function under random truncation, of convolu- 
tion type results for limiting distributions of regular estimators developed 
(among others) by LeCam (1969), Inagaki (1970), Hajek (1970) and Beran 
(1977). 

2. Main results 

Let v be a measure on R = ( - ~, oo) with respect to which G1 and G2 
have densities gl and g2, respectively (the measure v induced by G~ + G2 
always works). Then it is easy to see that the observed pairs (Xi, T~) have a 
common densityfwith respect to/1 = v × v on S = {(x, t)lx <- t} given by 

(2.1) f (x ,  t; gl, g2) = g,(x)g2(t)/ao (x, t) ~ S ,  

where ao = a0(gl ,g2)--p(X< T)=ffgl(x)g2(t)dl.t(x,t). When it causes no 
s 

confusion we will usually writef(x,  t) and ao forf(x,  t; g~, g2) and ao(g~, g2), 
respectively. In this section all the results are based on the assumption that 
X and T are independent. 

Let L2(~) = L2(S,I~) and L2(v) = LZ(R, v) denote the usual L2-space of 
square-integrable functions and let <-,. >, (11" I1~) and <.,->~ (l[. II v) denote the 
usual inner products (and norms) in i f (p)  and LE(v), respectively. Thus 
f l /2~ L2(g), g)/2E L2(v), i= 1,2 and Ilfz/21l,--IIg)/211 = 1, i=  1,2. We will 
usually write <. , . )  for <.,.)~ and <.,. >v (and similarly for norms) when it 
causes no confusion. 

Let ._~'(/1) (._~'(v)) denote the set of all densities with respect to/~(v) on 
S(R). Let ci~(f, a) denote the set of all sequences {f,},>_l with jr, ~ .~r(/t) 
such that 
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ilnl/2(f2n _f l / z )  _ all  --" 0 as n -- ~ ,  

for some a • L2(/z). Similarly let ~ I(gl, g2; Pl, P2) denote the set of  sequences 
{(gl,, g2,)},_>1 with each gi, • ,~(v)  and 

iln~/2(g~/2 _ g)/2) _,B, II - "  0 as n - ~ ,  

for some fl, e L2(v). It is obvious that ( a , f  '/2) = 0 and (fli, g~/2) = 0 for 
i = 1,2. Also let ~ = {(fl, f12): fli • L2(v), (fli, g~/2) = 0, i = 1, 2}, /~¢= {a: a • 
L2(IO, ( f r o ,  a> = 0}, c~a(g~,g2) = U{C~l(gl,g2;~l,fl2): (fl~,fl2) • .-~}, and 
~ ( f )  = U{~( . f ,  a): a • :~¢q}. 

We say an est imator G~, of G1 is regular at f if, for  every sequence 
{f~} = { f ( ' , "  ;gl.,g2.)} with (gln, g2n) • (~l(gl,g2), the process nl/2(Gln - G1.) 
converges weakly on C( - ~ ,  U1] to the same limit process ~': n~n(G~,, - G~,,) 

Z, on C( - ~ ,  Ul] (under  f . )  where the law of  2 on C( - 0% UI] depends 
only o n f f o r  all sequences {f.}. The sequence of distribution functions G~. 
corresponds to the sequence of densities g~.. 

Let Z =  { Z ( x ) : -  ~ < x_< U~} be a mean zero Gaussian process on 
( - oo, U~] with covariance function 

(2.2) C o v  (Z(s), z(t)) = C, (S)ClCt )  fi , dC*(x) 2 

The following theorem extends the result of  Beran (1977) and Wellner 
(1982) to the case of randomly truncated data. 

THEOREM 2.I. Suppose that G~, is a regular estimator o f  GI in the 
random truncation model with limit process ~, then 

(2.3) 2 = Z + W,  

in distribution where Z is a mean zero Gaussian process with covariance 
function given by (2.2) and the process W is independent o f  Z. 

To see that  the product-limit est imator t~l, defined in (1.3) is asymp- 
totically optimal, recall that, by Theorem 6 of Wang et al. (1986), the 
process 2,, = nl /2(t~l ,-  G~) converges weakly to the process Z. Hence the 
product-l imit  est imator is optimal in the sense of the convolution-type 
representation theorem above. We omit the discussion of "regularity" of 

ln. 

To state a local asymptotic minimax bound,  we let l: C( - ~ ,  U~] --" 
[0 ,~ )  be a subconvex loss function such as l (x )= Ilxll® = s u p  IIx(t)l l  or 

l(x) = f x2(t)dt. 
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THEOREM 2.2. Let  l be s u b c o n v e x  a n d  B , ( c ) =  {f,  e ~ ( f ) :  n 1/2 
• II f2/2 _fl/211 _< c}, then 

(2.4) lim lim inf sup EI.I[nl/2(GI, - GO] -> E l ( Z ) ,  
, . -~  n - ~  G, f,~a.(c) 

where Z is the mean zero Gaussian process  on ( - oo, U1] with  covariance 
f u n c t i o n  given by (2.2). The i n f i m u m  in (2.4) is taken over the class o f  
"general ized procedures" ,  the closure o f  the class o f  r a n d o m i z e d  procedures  
as, in Mil lar  ((1979), p. 235). 

3. Proofs of Theorems 2.1 and 2.2 

We begin with two lemmas. The density g2 in f ( - ,  .; g~,g:) is treated as 
a "nuisance nonparametr ic  component"  of the model and the function G1 
(or equivalently gl) is the parameter  of interest. The first lemma provides 
the "derivative" o f f  at (gl, g2) and the second lemma gives an orthogonal  
decomposition of the "partial derivative" o f f  with respect to g~. 

LEMMA 3.1. Le t  b o u n d e d  operators  Ai: L2(v) --* L2(/2), i = 1, 2, be 
defined, respectively, by 

(3.1) a I~I(X, t) : f l /2(X, t){gl 1/2(X)flI(X) -- O~ ID1(fll; gl, g2)} 

and  

(3.2) -1/2 t A2fl2(x, t) = f l /2(x ,  t)lg2 ( t)fl2( ) - aol D2(fl2; gl, g2) } , 

where  D,( f l ;  gl ,  g2) - f f  gl /2(u)f l(u)g2(o)dp(u,  0), D2(fl; gl ,  g2) - f f  g , (u) .  
b~<O ld<~O 

1/2 g2 (o)fl(o)dl2(U, o), and  fll a n d  fl2 are in L2(v). Then with  f~ = f ( . , - ; g l n ,  g2n), 

II f2/2 _ f , /2  . . . .  _/.l lWkglnA 1_1/2 g~/2) ~l-2~.~2nA :_1/2 g21/2)[[/1 
(3.3) _la ~ 0 as n --- o o  

gl, - g]/2llv + Ilg21/2 - g~/2llv 

1/2  f o r  all sequences I gi. - g]/21l ~ 0, i = 1,2, as n --- o~, in L2(v). 

PROOF. First note that 

(3.4) II f u2 (  . _ f l / 2 (  . A .1/2  • , . , g l , , g 2 )  •, • , gl,g2) - - g l / Z ) l l  

_- o(llg[/~ 2 - gl/2tl) 

and 
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I I  f ' : ( . ,  .; gl,g2n) _ f V 2 ( , , .  ; g l ,  g2) -- ,'12tg2,A ,_,/2 _ g~/2) II 

= o ( l l g ~ / , ,  ' - g ~ / 2 1 1 ) ,  

for every fixed gl and fixed g2, respectively. The verification of (3.4) is 
similar to L e m m a  1 of Begun and Wellner (1983), so we omit  the details. 
Let ( A l , f l l ) ( . ,  .)  be the sequence of (A l f l l ) ( . ,  .)  operators  with g2 replaced 

by g2. in A l f l l ( ' , "  ) and let G2.( .)  = f ~ g 2 . d v .  Then 

(3 .5)  Ilht,fl - A,fll[ 

I [ [ f ' / 2 ( . , .  ; g,,g2,) _ f1 /2 ( . , .  ;g , , g2 ) ]"  [~l/2 fl _ c~' D,(fl; gl,g:)]ll 

+ II f r o ( . , .  ;g~, g2,)[D,(fl; g,, g2,)  - Dx(fl; g~, g2)]/ao(g,, gz,)II 

+ [[ f l / 2 ( . , .  ;g,,g2,,)D,(fl;gl,g2,,). [a~ l (g , , g2 )  - a~l(g,,g2,,)]l[ . 

~1/2 It can be shown that  the first term goes to zero as g2, - gl/211 --" 0 and the 
sum of the last two terms is less than or equal to 

s u p  I Gz,(t)  - G2(t)l  • tlflll ~ ' ( g ~ , g 2 . )  
g 

+ sup I G z , ( t ) -  G2(t) l .  Ilflll" aol(g~,gz) • c~'(gl,gz,)--" O, 
t 

for  any f l e  L2(v), as Jig21/2- g21/211- 0 by the facts tha t  ao(g~,g2,)---  
i / 2  Ct0(gl,g2) = Cto > 0 and sup [G2,(t) - G2(t)l --" 0, as g2, - g21/2ll --" 0. There- 

fore, for any given e > 0, there exists 61 such that  IIA1, - A~II < e for every 
1/2 g~ with g2, - g~/2]l < 61. Writef~ t/2 _ f~/z = f t / z ( . , .  ;gl,,g2,) _ f~ /2( . , .  ;gl,g2,) 

+ f l / 2 ( . , .  ;gl,g2,) _ f r o ( . , .  ;g~,g2). For  the given E > 0, (3.4) implies that  
1 / 2  there exists 62 > 0 such that  for g2, - g~:]l < ~2, 

A [_I12 I/2 II fx/2( . , .  ;gl,g2,) _ f l / : ( . , .  ;gl,g2) - 2tg2, - g~2/Z)ll < ~llg2,  - g~/Z[I . 

On the other  hand,  for each g2, with Jig2 m - g~/2lj < 63 we can apply (3.5) 
and the mean value theorem (see (8.5.2) and (8.6.2) of  Dieudonn 'e  (1969), 
pp.  160-162)  to the  m a p p i n g  f l - - . f ( . , . ; f l 2 , g 2 , ) - A l o f t .  This  gives 

~_1/2 1/2 l[ f l / 2 ( . , .  ;gln, g2n) _ f l / 2 ( . , .  ;gl ,g2,)  - AI,~r,1, - gV2)[I < ellgl,  - g]/211 for 
all g2, with IIg~/~ 2 - g~/2ll < &. Also f rom (4.5), we have 

i lA l , (g l /2  gI:2) A , J / 2  
_ _ ,~l~g~, - gl/2)ll  < ellgl/~ 2 - gl/211 , 

~I/2 for all g2, with ~2. - g~/211 < 64. 
1/2 Hence, for all g2" with g2, -g~/211 < min (c~l, 62, 63, c~4), we have 
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/-1/2 f112 A i_1 /2  A t_1 /2  I1.,. . . . .  ~ , u : ~ .  g i  n )  ~2t~2~ - g21/2)11 

_ _  • • A " 1/2 < II fit2( ' , . ,  gin, g2n) _ f l12( . , . ,  el, g2n) - nlntgln -- gl/2) II 

+ II a l,(gl~ - gi/2) - h ~(gl~ - gl/2) ll 

+ II f l / 2 ( .  , "  ; g l ,  gz,) _f1/2(. ," ;el, g2)  - -  a2(g91/2 - gl12) ll 
_1/2 1/2 < 2e. ( ~ln - -  gi/211 + g 2 n  - -  g~/2ll) • 

This completes the proof of Lemma 3.1. 

Remark 1. In order to apply the results of Begun et al. (1983) to our 
model, we make the following slight modifications of the statements in 
Section 4 of Begun et aL (1983): the "score" A1 for gl, the "nonparametric 
component" of interest, must first be projected onto the "score" A2 for the 
"nuisance nonparametric component" g2. Define A1.2 = (A~ - A 2 ( A * A 2 )  - !  

• A ' A , ) ,  then AI.: and A2 are orthogonal and A~.: is the "effective score" 
for gl in the presence of the nuisance nonparametric component g2, where 
A*: L2(p) --- L2(v) denote the adjoint of the linear operator A2. It can also 
be argued in terms of the notion of tangent space (in the sense of Pfanzagl 
(1982) and the forthcoming monograph by Biekel et al. (1987)). 

LEMMA 3.2. Let B be a linear operator f rom L2(v) to L2(/0 which is 
defined by 

(3.6) (Bfl)(x, t)= f'12(x,t;gl,g2) { gT'12(x)fl(x)- f/oogil2fldv/ G,(t) } . 

Then A1.2  = B .  

PROOF. 

(3.7) 

For any ill, fiE e L2(v), 

(Bfli,A2fl2) = f f  f ( x , t )  { g71iE(x),&(x) - f__' gl/'~ld,'/~,(t) / 
x_<l 

• -1 o {g21/E(t)fl2(t) - ao fffl2, gl, g2)}d~(x, t) 

= ao I f ~  gE(t)[g-21/E(t)f12(t)- o~ ID(~E,gl,g2)] 

f. t 1/2 
• L~ g l ( x ) f  (x, t)(B#l)(x, t)dv(x)dv(t) 

= 0 ,  

orthotonal. 
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t 1 
For every El c L2(v), let ]~°(t)=-g~/2(t)f~,gl/2~ldV/Gl(t). By direct 

calculation we have 

A2fl°(x, t) = f ( x ,  t){g21/2( t)fl°(t) - D2(/~°; gl, g2) / ao} 

t 1/2 
=f(x, t){f_oogl  ~ldv-  Dl(~l;gl,g2)/Ol.o} 

(3.8) = (al  - -  a ) ~ l ( X ,  t). 

Now (3.7) and (3.8) imply that (Bfl~, A 2 ~ l )  -- 0 and (B]~, ( A l  - B)f l l )  = 0 for 
all ,81 e L2(v). Hence the lemma follows from the uniqueness assertion of 
the projection theorem. 

PROOFS OF THEOREMS 2.1 AND 2.2. It is easy to see that Assump- 
tion S of Begun et al. (1983) holds and our Lemma 3.1 implies Proposition 
2.1 of Begun et al. (1983). From Remark 1 after Lemma 3.1 and the 
effective score given in Lemma 3.2, the main work to complete the proof is 
the computation of (B'B) -1 and K(s, t) - <Gls, (B 'B)  -1Gu>, where Gv,(. ) = 
[I( - oo < .  < u) - Gl(u)]gl/2( • ). 

Direct calculations (as in Luenberger (1969), pp. 150-153), yield 

M(t) 
(B*B)fl(t) = Rfl(t) GI(t----S 

oo M 

where Rfl(t) fl(t)~l/2(t) -ff~gll2dvl Gl(t) and M(t)  G*(t) * t- - -  -= - G 2  ( ) .  It is 
straightforward to verify (as in equation (6.4) of Begun et al. (1983)) that 

(B*B)-lfl(t) = Rfl(t) g ( t )  --M G----~ " 

By some careful calculations we find that 

( B)-I G . (  . ) 

=-Gi f t ) {  I(t <" <- U1) - f  U' I(t  < x <  UO dGffx)  } gl/2(. ) 
M ( .  ) " M(x)Gl (x )  

and hence 

K(s, t) 

) f_u, = G i f t  ~ , [ 1 - I ( s < y <  UO - Gffs)] 
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. [ f f ,  - I ( t  < x <  Ul) dGffx) ] gffy)dv(y) 
M(x)  Gl(x) 

aa, u, [ a , -  al(S)] M C---S 

f f ,  dG1 = Gffs)Gl(t) ~, MG1 

f o . . .  (3.9) = GI(s)GI(t) v, M 2 ' 

by the facts that d G * / M =  dGI/G1 and inf {x: G*(x) = 1} = U1. The func- 
tion K(s, t) equals the covariance function in (2.2). Theorems 2.1 and 2.2 
follow by similar arguments used in Begun et al. (1983). 

Remark 2. Note that ~(s)  in (1.13) is equal to K(s,s)  in (3.9). That 
is, both the "functional approach"  and the "likelihood approach"  provide 
the same covariance structure of the Gaussian process {Z(x): - ~ < x < U1} 
in the representation theorem. Also K(s, t) coincides with the covariance 
function of the asymptotic distribution of process  r/1/2(~ln - GI) where (~1, 
is the product-limit estimator of G1 defined in (1.3). 

Remark 3. Under  independence assumption, the effective score in 
(3.6) can be used to set up the nonparametr ic  effective (or efficient) score 
equation. The equation can then provide functional representation (1.5) (in 
Section 1) and its estimate, and representations (7) and (8) of  Wang et al. 
((1986), p. 1601), and representations (4) and (7) of  Woodroofe  (1985). See 
Huang (1986) for a discussion of this relationship. 
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