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Abstract. We consider a local random searching method to approxi- 
mate a root of a specified equation. If such roots, which can be regarded 
as estimators for the Euclidean parameter of a statistical experiment, 
have some asymptotic optimality properties, the local random searching 
method leads to asymptotically optimal estimators in such cases. Applica- 
tion to simple first order autoregressive processes and some simulation 
results for such models are also included. 
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1. Introduction 

In this paper we deal with a stochastic estimation procedure for a 
Euclidean parameter in statistical experiments. The main example for 
which these methods are developed is a stochastic process of autoregressive 
type. The method of stochastic estimation was introduced by Beran and 
Millar (1987). The main contribution of the present paper is the idea that a 
root of a specified equation can be achieved by a local random searching 
method. Since such roots, which may be regarded as estimators for the 
parameter of interest, have some optimality properties, the local random 
searching method leads to asymptotically optimal estimators in such situa- 
tions. The methods used in the proofs of this paper follow those of Beran 
and Millar (1987), but the situation to which their ideas are applied is 
different. 

This paper is organized as follows: Section 2 introduces our main 
example  of autoregressive (AR) processes and contains some useful 
properties for easy reference. In Section 3 we give the main results for the 
described local random searching method for arbitrary statistical experi- 
ments, while Section 4 contains applications to the autoregressive case and 
some simulation results. Finally we prove a version of a convergence 
lemma needed in Section 3. 
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2. Autoregressive processes and some characteristics 

Consider real valued and stationary random variables (Xg t ¢ Z = {0, 
+ 1, + 2,... }) which are solutions of the following stochastic difference 
equation 

p 
(2.1) Xt= ?EaiSt-i+et, t~,Z.  

i=1 

The errors (et; t ~ Z) consist of independent and identically distributed 
(i.i.d.) random variables with zero mean and positive variance a 2. Further 
we assume that this model  has the LAN-proper ty  (local asymptot ic  
normality). Assumptions which guarantee this property are contained in 
Kreiss (1987). Especially we need the existence of an absolute continuous 
density f of the dis t r ibut ion of e~, which has to have finite Fisher- 

Information I( f ) = f( f ' / f  )2fd2. 
In the sequel we use the following notations: 

{ " . 
0 = ( a l , . . . ,  ap) E O = ( a l , . . . ,  ap) E RP[ 1 - Y-, aiT.' h a s  n o  z e r o s  

i=1 

with magnitude less or equal to one / " 

"l 

This definition of the parameter  space ensures that stationary solutions 
(Xt; t ~ Z) of (2.1) exist (cf. Fuller (1976), Theorem 2.6.1). 

P,,o = ~(X~-p,..., X, IO), ¢ = - f ' / f ,  X ( j  - 1) = (Xj-~,..., Xj-p) r , 

F(O) = (EsXsXt)s,,=~,...,p denotes the p × p-covariance-matrix of the process if 
0 is the underlying parameter. 

The LAN-property is equivalent to: For all sequences {0,} C O for 
which x/-n(0, - 0) stays bounded, we have (2.2) and (2.3). 

(2.2) 
/ /  

log dP.,O.dP.,o X/%(O,-O) ~r~ X=l~(e:)X(J-_ l) 

1 
+ T x/~(o. - o ) r (o ) / ( f ) x /n (O .  - o) T -  o ,  

in P,,0-probability, where ej = ej(0) = Xj - OX( j -  1). 

(2.3) 7 ~  jZ= , ¢(ej)X (j  - 1) - l ( f )F(O)x/~( O. - o ) r l  P.,o. ) 
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,...¢(o, r ( O ) l ( f ) )  , 

where "m" denotes weak convergence. 
From Kreiss (1987) we have that, under some additional regularity 

conditions on the score-function ¢, asymptotically optimal estimators (in 
the local asymptotic minimax-sense) {0 °pt} for 19 may be characterized 
through 

A.(O°,f t) ~ 0 in P.,0-probability, 

where 

(2.4) 
n 

A.(O) = --7- Z.q)(Xj - O X ( j -  1 ) ) X ( j -  1). 
v n J : '  

Also M-estimators {0~} for 0 in this autoregressive setup may be defined 
through 

~.(OY) --- 0 in P.,e-probability, 

where 

(2.5) 
/1 

= --rr z. ox(j-  1 ) ) x ( j -  1), 
v n J  =, 

and ~u: R --" R denotes a suitable score-function (of. Kreiss (1985)). 
Our aim is to construct an estimator which is easy to compute and 

which is asymptotically equivalent up to order 1 / ~  to an estimator which 
fulfils (2.4) or (2.5). This aim is achieved by a local random searching 
method as defined in Sections 3 and 4. 

The results are also of practical interest, since it is often difficult to 
compute the exact solution of d,(O) =- 0 and to prove x/n-consistency for 
such a solution, for example. 

3. Stochastic estimation for statistical experiments 

In this section we do not refer to the special model considered in 
Section 2, but we consider the following sequence E. = ( .~ , ,~ . , (P . ,0 ;  
0 E 0 C Rk))  of experiments. Here . ~  denotes an arbitrary metric space 
and ._~. the corresponding Borel g-algebra. O is an open subset o f R  k. 

(3.1) T.: ._~x O " * R ' ,  
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denotes a statistic, i.e., T. is measurable with respect to ,.~. ® (O (q Bk), 
which is continuous in 0 for each fixed x e ~ . .  Here Bk denotes the k- 
dimensional Borel a-algebra on R k. 

Assume that we are interested in estimators {O°P'}, which have the 
following property 

(3.2) T.(. ,  O°Pt(. )) ~ 0 in P.,0-probability. 

In the independent situation examples are well-known, while more compli- 
cated examples for dependent observations are considered in Sections 2 
and 4 of the present paper. 

Our aim is to improve a sequence of estimators {0.} which is x/n- 
consistent, via simulation, in such a way that the improved version has 
property (3.2), and is asymptotically equivalent to {0 °pt} up to order I/y/'n. 
To do so, we use a local random searching procedure defined as follows: 

Step 1: Simulate random variables t~,...,tj, according to /.t.(x.,.), 
which denotes a Markov kernel on . ~  ×Bk, where x. represents the 
observation. 

Step 2: As an improved estimator use (ll'll denotes the Euclidean 
norm on R k) 

On ~ -On q- n-1/2tk. , 

if and only if 

I[ T.(x . ,  O. + n-1/z&.)ll = min {[I T.(x.,-0~ + n-1/2ti)tl: l <_ i < j .}  . 

Beran and Millar (1987) introduce a similar local random searching 
method to (among other things) compute the MLE in complicated para- 
metric situations. The main contribution of this paper is the idea that the 
solution of an approximative equation 1".(0) - 0 can be achieved by a local 
random searching procedure as defined above. This result is the content of 
the following theorem. The method of proof follows that of Beran and 
Millar (1987). 

THEOREM 3.1. Assume:  
(AI) There exists a sequence {-O.} o f  estimators,  such that X/%(-O. - O) 

stays bounded  in P..o-probability. 
(A2) sup {11T.(0t) - T.(O) + Sx/Cn(01 - 0)rll" II01 - 011 -< C/n  ~/2-~} -" 0, 

0t 

in P.,o-probability as n --. no,for a suitable m × k -matr ix  S with rank k and  
a suitable constant a > 0 (we say that T. admits  an asymptot ic  expansion).  

(A3) lun(x. , . )  converges in P.,o-probability to /ao, a probabi l i ty  
measure on R k, which is cont inuous  and gives posi t ive  mass to each open 
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set. Further tzn{X] Ilxll > co'n ~} = O, for  all large n. 
Assume that a x/n-consistent sequence {0 °p'} o f  estimators exists, 

which satisfies (3.2). Suppose jn ---, oo as n --, oo. Then for  all e > 0 and all 
n ~ N = {1,2,... }, f2n~ ~ ~ @ Bkj., P~,o @ lt~"(f2,~) >_ 1 - t, exists such that 
for  all sequences {(x ~, tT,..., tf.)}n, (x ~, tT,..., tT.) e {2,~: (3.3) 

(3.3) x/~(On(x ~, t7 .... , tT,) - 0 °p') --" 0 as n ~ oo. 

Remark.  According to the paper of Lohse (1987) the assertion of the 
above theorem is equivalent to 

x/-n(On - 0 °pt) --" O, as n --- 0% in Pn,o @ /l~"-probability , 

if {0n} is measurable. 

The proof of the theorem follows from the following three lemmas. 

LEMMA 3.1. For W.(x,; u) := Tn(x,, O°Pt(x,) + n-l/2u), which is an ele- 
ment o f  C = C(Rk,Rm) for  xn ~ .~;n f ixed,  we have 

(3.4) sup II Wdxn; u) + 2:ull ~ 0 in P,,o-probability. 
Ilull<_n".c 

This implies, o f  course, Wn c. - X u  in P~,o-probability. 

PROOF. First, because of continuity 

sup{ll Tn(xn, O°P' + n - l / 2 u )  - -  Tn(x~, O °p') + Xull" Ilull -< na.c } 

= II Tn(x~, 0 °v, + n - 1 / 2 a n ( X n ) )  --  T~(xn, 0 °p') + Xdt~(xn)II, say 

-< II Tn(xn, O°P' + n-I/2a~) - Tn(xn, O) + ~rX/~(OgP' + n-1/2~n - 0)11 

+ II Tn(xn, 0 °p') - Tdx~,  O) + -rx/~(O °p' - 0)11 

0 in Pn,0-probability, 

because of (A2). Together with (3.2) this implies assertion (3.4). To see the 
convergence in C, consider Fahrmeir (1973), Satz 2. lb. [] 

(3.5) 

and 

For each A e Bk define the following two empirical measures 

~n(tl,. . . ,t~.;A)= --1 ~ 1A(t~) 
Jr~ V =  1 
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(3.6) /~.~(A) = ki.(la - vrn(0 .  - 0Y ' ) l a  ¢ A}) .  

/~.c is a r a n d o m l y  centered  vers ion  of /J .  wi th  s u p p o r t  {t~ + x/-n(0. - 07')1 v 
{ 1 , . . . , j .}}. Fo r  these discrete measures  the fo l lowing  results hold:  

LEMMA 3.2. 
(i) 12. ~ lto in P.,o (~ lt~"-probability. 
(ii) For all e > 0 and  all n ~ N ,  12,~ ~ ,.~. Q Bkj. exists wi th  P.,o Q 

ld."(12.,) >_ 1 - e such that  f o r  all sequences {(x n, d , . . . ,  t~.)}., (x", t~',..., tT.) ¢ £2.~: 

(3.7) {/2.c(. )}.,U is t igh t .  

PROOF. (i) is s hown  in Beran  et al. (1987). F r o m  (i) we have,  
according  to the paper  of  Lohse  (1987), the existence of  a sequence  I2" ~ .~¢. 
@ Bkj., P.,o ~)/z.J"(g2*,) -> 1 - e such tha t  for  all sequences {(x ", tT,..., tT.)},,N, 
(x", tT,..., tT,) ~ t2*: 

A(tT,. . . ,  tT,;.) ~ Uo. 

N o w  define (l'l deno tes  the s u p - n o r m  o n  R k) 

~,,, = ({x"l vG l& (x " )  - ol <- M, ,  ,,/-AIOY'(x") - OI _< M,}  x ~  j') n ~ * , .  

Because of  ,v/n-consistency of  {0,} and  {07'}  we get P,,o ® #~'(~,~) >- 1 - 2e. 
N o w  we have: F o r  each  sequence  {(x n, tT,..., t~)}~, (x ", t2,..., t~) ~ f2,, and  for  
all g > 0 a c o m p a c t  set K ¢ Bk exists, such that /~,( t~, . . . ,  t~; K)  > 1 - ~ for  all 
n (wi thou t  loss of  general i ty  assume K = [ - x ,  x]k). Let K*  = [ - x -  2M,,  
x + 2M,] k and observe 

K C {k - x/rn(O.(x ") - O°P'(x"))lk ~ K * } .  

F r o m  this fol lows 

f l , ( ik  - x/~(0n(x ") - O°P'(x"))lk ~ K*}) > f tn(K) >_ 1 - 6 ,  

for  all n c N, so tha t  (3.7) holds.  [] 

F o r  the  discrete  p robab i l i ty  measure  /~.~ o n  R k and a c o n t i n u o u s  
func t ion  g: R k --- R m define 

(3.8) A(f l .c ,g)  = tk. + x/rn(-O. -- O~m) , 

if Ilg(tk. + x/-n(O. - 0°"'))11 : m in  {llg(tv + x/%(O. - 0°P'))]I : 1 _< v -<A}. T h e n  
v 

we finally have: 
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LEMMA 3.3. F o r  e a c h  t > 0 a n d  n ~ N a s e q u e n c e  g2., ~ ._~. ~ Bk.j. 

e x i s t s  w i t h  P.,~ ~ j" " " l t .  ((2,~) >_ 1 - e, s u c h  t h a t  f o r  a l l  s e q u e n c e s  {(x", tl,..., t):)}., 
(X ~, tT, . . . ,  t~.) ~ ~'~ne: 

A (l?tnc, W . )  ~ 0 as  n ~ ~ .  

PROOF. For  t > 0 and n ~ N choose I2,, such way that for all 
sequences {(x ~, tT,..., ~)},, (x ", tT,..., t~)~ t2,~ the assertions of Lemmas 3.1 
and 3.2 hold and that v/-n(0,(x n) -0°Pt(x")) stays bounded (cf. Lohse 
(1987)). 

Under  these assumptions we can conclude that each subsequence 
{nl} C {n} contains a further subsequence {m} C {n~} such that for a 
suitable probability measure/ t  on R k 

(3.9) 

and 

(3.10) 

~m(t[n, . . . ,  t~ ,  {a -- V/--'m(-Orn(X m) -- O°mm(xm))la e .  }) ~ ~,  

X z  := X/~(0m(X m) -- 0~'(xm)) --" Xo as n --* oo. 

We have for each (s, t] C Rk: (Assume that Ilxo- Kml[-< ~ holds for m > 
mo(~) )  

It~,n{a - XmlS < a <_ t} - ~m{a  - XolS < a < t}l 

= I lJm (S - Xm, t - Xm] - flm(S - r.o, t - Xo]l 

<- lam(S - Xo -- ~, t -- Xo + ~] -- ftm(S -- Xo, t -- Xo] for m > mo 

= IJm(S - Xo - 6, S - Xo] + IJm(t - Xo, t - Xo + ~] 

< ~ for m large enough, because of Lemma 3.2 (i) and the 
continuity of/ to.  

From this and Lemma 3.2 (i) we conclude 

(3.11) /Jm{a - xr, la c . } m lZo{a - x o l a  ~ . } .  

Additionally we have (cf. (A3)): 

supp (fimc) := {t~ + ~/m(O,,(x m) - Om°P'(xm)): v = 1,...,jm} 

C {x[ Ilxll -< co 'm a + 2Xo}. 

Moreover, Lemma 3.1 yields 
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JENS-PETER KREISS 

sup {11W,,(x"; u) + 27ull,u e g.}  ~ 0 
u 

for K. = {ul Ilull -< Cn°}, 

and X u  = 0 ¢~ u = O, because of (A2). 
The convergence lemma (cf. Appendix) implies 

(3.13) A (l~,,c, Win) --" O, as n -- ~ .  

Since for each subsequence {hi} C {n} there exists a further subsequence 
{m} C {n~} such that (3.13) holds, the whole sequence A(l?t,,c, IV,) converges 
to zero. [] 

Now we are ready to give 

PROOF OF THEOREM 3.1. /2,c has the following support {tv + 
• (0, - 0°m): v = 1,...,j,]. From the definition of W, (cf. Lemma 3.1), we see 

(3.14) A(/~.c,/4'.) = tk. + x/n(0.(x.) - 0°P'(x.)), 

where tk. is defined in Step 2 at the beginning of this section. Recall the 
definition of {0.} to observe 

A(/~.c, W.) = x/n(0.  - 0 U ) .  

Now Lemma 3.3 gives the assertion. [] 

R e m a r k .  Under suitable regularity conditions it is often possible to 
prove the following central limit theorem for {0°Pt}: 

(3.15) ~ ( , , / % ( 0  ° ' '  - O)lP,,o) ~ ~ ( 0 , r ) ,  

for a positive definite k × k-matrix F. Theorem 3.1 says that for the 
stochastic estimator {0,}, which is defined on ~ × R k'j', the same asymp- 
totic distribution appears, more exactly 

(3.16) ~ ( x / ~ ( 0 .  - 0)l P.,o @ pJ~) ~ .///(0, F ) ,  

if {0.} is measurable. 

The following section is devoted to an application of the above result 
to a simple autoregressive model of first order. 
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4. Application to first order autoregression 

In this section we consider real valued random variables {Xt; t  ~ Z }  
which are stationary solutions of 

(4.1) Xt = OXt-l + et, t e Z, 101<1, 

where the i.i.d, r andom variables {et; t ~ Z} are as in Section 2. O = (-1,  1). 
We are interested in estimators {0 °p'} which fulfil 

1 n opt 
(4.2) A.(O °p') = ~-~j~=~(v(Xj - O. Xj-~)Xj-, ---. 0 in P.,0-probability, 

o r  

(4.3) 
I . opt 

~(Oop,) = ~r~E I ~u(Xj-/9. X:-~)X:-~ --- 0 in P~.0-probability, 

where ~u: R --" R denotes a suitable score-function, e.g., ~u = arctan. 
As an initial estimator, which will be improved by the stochastic 

procedure defined below, we use the least squares estimator: 

(4.4) 
Oo( _ j :1 xjxj-1 

j= iXJ  -1 

if observations ~. = (:co,..., x.) are available. 
It is well-known that this estimator fulfils (4.2), if and only if the 

errors et are normally distributed. To improve {0.} in non-normal  situations 
we proceed as follows (0 < a < 1/4). 

Step 1: Simulate tl,...,tj, according to p.,  where g .  denotes the 
distribution of 

r.X, IXl < n ~ 
U . =  , X ~ ,///(0, 1), ~ > 0 .  

0, otherwise 

Step 2: As an improved estimator use 0. = 0. + n-1/2tk., if Izl.(0.)l = 
min {IJ.(0.  +n-l/2ti)l: 1 <_ i< j . } .  Note that the distribution according to 

which we draw the random variables t~ does not  depend on the observa- 
tions ~.. 

Of course we use ~ . (0)  instead of z~.(0), if we are searching for M- 
estimators, i.e., estimators which fulfil (4.3). 
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The remaining task of this section will be to establish assumptions 
(A1)-(A3) (cf. Theorem 3.1) in order to ensure that our improved estimator 
{0,} behaves asymptotically as well as {O~Pt}. 

Since (A1) holds and g, m ,///(0, r:) we have to prove 

(4.5) 

in P~,o-probability. 

To see this assume that ~ = - f ' / f i s  absolute continuous, that ¢ '  obeys a 

global Lipsehitz-condition, and EoXo 4 < ~, f O'(x)2f(x)dx < ~. We have 

Since 

I . t . ( 0 , )  - ~ . ( o )  + S v ~ ( O ,  - 0)1 

( 0  1 n 1 
= -o,)7.~jz=,fo~,(x ,-Ox,_,-;~(o,-o)xj_,)aax3._,  

- z v ' - n ( O  - 0 , )  

<_ inl,2o(e_e,)l[I 1 n -,-rT j ~ , l ¢ ( x+ -Ox , - , ) ,  x~_, - z} 

I o(I) ~: i ~ 
+ n '-° s=llXj-' ( 01 -0 )  ] .  

1 n , 2 Eo( ~ SEX {¢ (ej(O))xj-, - fCf(x)f(x)dxx2-10 2 

- - {  s 1 ~. Eo ¢'(e@)) - ¢'(xIf(x)ax EoX~ 
n 2(l-a) j= 1 

= o 0 ) ,  

1 . 
Eo F/3/2_2----'~j__~ 1 Ixj- l l  3 = O(n 2"-1/2) = o(1), 

because a < 1/4, and 

in P,.o-probability, 

we obtain (4.5) with Z = f  ¢f(x)f(x)dx~X~. Usuallyf ¢'tx)f(x)dx=l(f). 
The same results, under similar regularity conditions, hold true, if An is 
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replaced by ~n. 
To see that the proposed procedure works quite well we add some 

simulation results. We simulate AR(1)-models for the following four 
densities of the distribution of the errors e: 

2 = - - - x / 2  
~ / ~  

0.1 e_X2/2o 0.9 _x2/2 J~(x) : ~ + ~ - ~ e  , 

0.5 e_~X+3¢/2) ~(x) = ~ (e -~x-3¢/2 + 

f4(x) = 0.5 e -Ixl, x • R .  

We compare the behaviour of the proposed stochastic estimator for several 
values of jn and z 2 (of. construction of {0n}) with the usual least squares 
(LS)-estimator {0n}, by tabulating empirical 95% confidence-intervals for 
x/n(0n - 0), x/'n(0n - 0), respectively (cf. Step 2 and (4.4)). To judge the 
efficiency of the local random searching procedure, we compare the 
obtained results with the behaviour of a one-step Newton approximation 
with initial value 0n to find roots of /L.  

As values for 0 we use 0.5 and 0.8, while the length of the simulated 
time series is n = 50 or n = 100. For all simulations the Monte Carlo 
repetition number is 3000. 

As can be seen the values of r 2 do not have great influence, while 
increasing jn improves the results a bit. Comparison with one-step Newton 
approximation,  starting with the LS-estimator, shows that the stochastic 
procedure is as good as a one-step Newton iteration and that the choices 
jn = 20, z 2 = 2 are suitable for the situation considered in Table 1. 

From Table 2 we again see that the proposed stochastic procedure can 

Table 1. n=50, 0=0.5, zL,(O)------O. 

yl f~ j5 
LS-estimator (-1.96, 1.39) (-1.99, 1.34) (-2.00, 1.37) (-1.99, 1.35) 
stochastic estimator 
A= 10, z 2= l ( -  1.96, 1.39) ( -  1.78, 1.24) (-0.87, 0.67) ( -  1.79, 1.36) 
jn----10, lr2----2 (--1.96, 1.39) (--1.79, 1.25) (--0.83, 0.70) (--1.75, 1.35) 
A=I0, r2=3 (--1.96, 1.39) (-1.81, 1.26) (-0.82, 0.74) (-1.70, 1.36) 
j~=15, r2=l (-1.96, 1.39) (-1.78, 1.22) (-0.78, 0.63) (-1.77, 1.27) 
.i",=15, r:=2 (-1.96, 1.39) (-1.79, 1.23) (-0.76, 0.65) (-1.77, 1.30) 
jn=15, r2--3 (-1.96, 1.39) (-1.78, 1.24) (-0.77, 0.66) (-1.79, 1.28) 
in=20, r2=2 (-1.96, 1.39) (-1.69, 1.22) (-0.69, 0.60) (-1.67, 1.29) 
one-step Newton ( -  1.96, 1.39) ( -  1.74, 1.21) (-0.68, 0.57) ( -  1.69, 1.36) 
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Table 2. n=100, 0=0.8, A,,(0)~0. 

f~ ~ f~ f, 
LS-estimator ( -  1.54, 0.85) ( -  1.52, 0.83) ( -  1.56, 0.87) ( -  1.59, 0.84) 
stochastic estimator 
j,=10, r2=l (-1.54, 0.85) (-1.31, 0.78) (-0.62, 0.48) (-1.37, 0.78) 
j,=15, r2=2 (-1.54, 0.85) (-1.28, 0.79) (-0.54, 0.47) (-1.29, 0.77) 
one-step Newton ( -  1.54, 0.85) ( -  1.31, 0.75) (-0.49, 0.38) ( -  1.36, 0.75) 

compete with one-step Newton approximation, but is not really better. 
Finally let us mention that the local random searching method is in no case 
worse than the usual least squares procedure, but sometimes considerably 
better. 

5. Comments 

Of great theoretical and practical interest are methods to construct 
estimators with property (4.2) and which make no use of the shape 
parameter f or p (so-called adaptive procedures).  Thus it is an interesting 
result that all results of this paper hold true even if we replace in Step 2 A, 
by A,, where ~ is replaced by a consistent estimator. We will deal with this 
problem in a subsequent paper. Likewise it is possible to apply the 
proposed stochastic procedure to the more complicated ARMA situation. 
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Appendix 

Here we prove a convergence lemma needed in Section 3. 

LEMMA A.1. Let {m.} be a sequence o f  discrete probabili ty measures 
on R k, with support  supp (m.) = {p'~,...,p~} C R k, respectively. Further let 
K1 C K2 C ... be a sequence o f  compact  sets with supp (m.)  C K.  f o r  all 
large n and g.: R k ~ R m a sequence o f  continuous functions.  Define 

A(m., g,,) = pv"., /f Iig~(P~o)H = min {llg,(P~)l[: 1 <_ v < j , } .  
v 

i f  
(i) m~ ~ too, and the probabili ty measure mo gives posit ive mass to 
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every open  set 
(ii) sup  {llg~(t) - go(Oil, t ¢ K=} ~ O, as n --. oo, f o r  go ~ C(Rk ,  R Z ) ,  

wi th  go(X) = 0 ¢~ x = 0 a n d  Ilgo(x)ll >- ~ > O f o r  all large x,  then 
(a) A (m. ,  g.)  --* 0, 
(b) g~(A(m~,g~)) --" O, as n --* oo. 

PROOF. Let  

• ° t l  

I f ] ,  = min {llf(P~)ll" i =  1,. . . , j ,} = min {IIf(PP)II" i =  l , . . . d , , p ,  ~ g , } ,  

for  all large n, and cons ider  

I [g, , ] , ,  - [go] , , I  = I IIg~(P~.)ll - Ilgo(PE.)ll I, s a y ,  

_< max  {I I[g,(pn)ll - I lgo(PP)l l l : i= 1,. . . , j~;p~ ~ g , }  
i 

_ sup {llg=(t) -go (Oi l ;  t ~ g=} 
t 

--" 0 as n ---- 0% 

because  of  (ii). Cons ider  the fol lowing set A, = {xl Ilgo(x)ll < ~}. Since go is 
c o n t i n u o u s ,  A,  is an o p e n  set, and 0 ~ A,. F r o m  (i) we have  l i m i n f  

n 

m~(A,) >_ mo(A,)  > 0, so that  for  large n [go]~ < e. F r o m  this and the above  
we obta in  [g~]~ --- 0, as n --- oo. This is (b). 

To see (a) cons ider  

BY= {xl IIg,(x)ll < [g,], + e, x ~ g~}. 

For  large n and small  e > 0, we have because  of  (b) and (ii): 

~ n~ C {xl Hgn(x)ll < 2e, x c K,} 

C {xl Ilgo(x)ll < 3e} ~ {0}, cf. ( i i) .  

Since [gn]~ = Ilgn(P?. )ll, say, we have p~. ~/t~, for  n large enough  and all 
e > 0. F r o m  this we conc lude  pv~ =A(m~ ,g~)  ~ O, as n - -  0% which com-  
pletes the proof .  []  
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