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Abstract. In this paper we consider the problem of determining and 
constructing E- and MV-optimal block designs to use in experimental 
settings where v treatments are applied to experimental units occurring in b 
blocks of size k, k_  v. It is shown that some of the well-known methods for 
constructing E- and MV-optimal unequally replicated designs having v > k  
fail to yield optimal designs in the case where v<k .  Some sufficient 
conditions are derived for the E- and MV-optimality of block designs having 
v < k  and methods for constructing designs satisfying these sufficient 
conditions are given. 

Key words and  phrases: Incidence matrix, C-matrix, eigenvalue, E- 
optimality, MV-optimality. 

I .  I n t r o d u c t i o n  

Let d denote a block design having v treatments arranged in b blocks of 
size k. The incidence matrix of d, denoted by Nd, is a v × b  matrix whose entries 
ndU give the number  of times t reatment  i occurs in block j. When k = v a + t  

(a_>0, 0_< t_< v -  1, both integers), then a design d is said to be binary if r/dU = 12 or 
a+  1. The i-th row sum of NdiS denoted by rdi and the matrix N d N ~ ( N ~ d e n o t e s  

the transpose of Nd) is called the concurrence matrix of d and its entries are 
denoted by 2dU. If d has NdN~ with all of  its diagonal elements equal to one 
value and all of  its off-diagonal elements equal to another value, then d is 
called a balanced block design (BBD). A (binary) BBD with k < v  is a (binary) 
balanced incomplete block design (BIBD). 

The model assumed here for analyzing the data  from a given design d is 
the two-way additive model. This model specifies that an observation Y, jm 
obtained after applying t reatment  i to an experimental  unit in b lock j  can be 
expressed as 

(1.1) Yum = ai + flj + E~m , l < i < v , l < j <_ b , O < m < ndU , 
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where a~= the effect of treatment i, fls= the effect of block j, and Eijm is a random 
variable having variance o -2 and expectation zero. All observations are 
assumed to be uncorrelated. Under this model and using Td and Bd to denote 
vectors of treatment totals and block totals, the reduced normal equations for 
the least squares estimates of the treatment effects can be written as 

(1.2) Cd~t = Td -- ( l /k)NdBd , 

where 

(1.3) Cd = diag(rdl,..., rdv) -- (1/k)NdN~ , 

~--(t~,..., tiv)' is any solution to equations (1.2) and diag (rdl,..., rav) denotes a 
v× v diagonal matrix. The matrix Cd is called the C-matrix of d and is known 
to be positive semi-definite with zero row sums. 

In this paper we shall only be considering designs which are connected, 

i.e., designs for which all linear combinations E liOti of the treatment effects 
i= 1 

having E li=0 (called treatment contrasts) are estimable under model (1.1). 
i= 1 

Such designs have C-matrices of rank (v -  1). We shall use D(v,  b, k) to denote 
the class of all connected block designs having v treatments arranged in b 
blocks of size k and M(v,  b, k) to denote the subclass of designs in D(v,  b, k) 
whose C-matrices have maximal trace. 

The primary purpose of this paper is to consider the determination and 
construction of optimal block designs in classes D(v,  b, k) where v<k. The 
optimality criteria considered here for selecting an optimal design in D (v, b, 
k) are the E- and MV-optimality criteria. 

DEFINITION 1.1. For d ~ D(v,  b, k), let O=zdo<Zd~<...<Za, v-i denote 
the eigenvalues of Cd. Then d* ~ D(v,  b, k) is said to be E-optimal if for any 
other d ~ D (v, b, k), 

Zd*l  ~ Z d l  • 

DEFINITION 1.2. A design d* ~ D(v,  b, k) is said to be MV-optimal if 
for any other d ~ D(v,  b, k), 

max Vard.(tii- ti/) <_ max Vard(&i- tij) , 
i~j I~] 

where Vard(tii-tij) denotes the variance of the least squares estimate a~- tij of 
ai-aj derived under d. 

A number of results are known concerning the E- and MV-optimality of 
block designs in classes D(v,  b, k) where v>_k, e.g., see Takeuchi (1961), Kiefer 
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(1975), Cheng (1980), Jacroux (1980, 1982, 1983a, 1983b) and Constantine 
(1981, 1982). All of the above results concerning the E- and M V-optimality of 
designs in classes D(v, b, k) where k<_v and bk/v  is an integer have 
straightforward extensions to classes D(v, b, k) where k>_v and bk /v  is an 
integer. For example, it follows from the results of Kiefer (1975) that if d* e 
M(v,  b, k) is a BBD, then d* is both E- and MV-optimal in D(v, b, k). 
However, a number of results which have been proved concerning the E- and 
MV-optimality of block designs in classes D(v, b, k) where k<_v and bk/v  is 
not an integer do not necessarily have straightforward extensions to classes 
D (v, b, k) where k>_v and bk /v  is not an integer. For example, it is shown in 
Jacroux (1980, 1983b) and Constantine (1981) that by adding blocks to and 
deleting blocks from various BIBD's, new E- and MV-optimal block designs 
having treatments unequally replicated can be obtained. It is shown by an 
example in Section 2 that such methods of constructing E- and MV-optimal 
block designs from BIBD's cannot necessarily be extended in a natural way to 
BBD's in M(v, b, k) and classes D(v, b, k) where k>v. In this paper, we derive 
several sufficient conditions for designs to be E- and MV-optimal in classes 
D (v, b, k) where k> v and characterize the C-matrices of certain designs which 
satisfy the sufficient conditions given. Examples are also given to illustrate 
usage of the results obtained. 

2. Main results 

In this section we give our main results. We begin by giving some 
notation which is used throughout the sequel. For a given class of designs 
D (v, b, k) and using Ix] to denote the greatest integer not exceeding some real 
number x_>0, we shall let 

(2.1) 

r = 

bk = vr + p ,  
a = [r/b] = [k /v] ,  
r = b a + s ,  
k = v a + t ,  
2 = [(rk - s(a + 1) 2 - (b - s )a2) / (v-  1)] , 
r k - s ( a +  1) 2 - ( b - s ) a  2 = ( v -  1 ) 2 + q ,  

O < p < _ v -  1 , 

O < s < _ b - 1 ,  
O < _ t < _ v - 1 ,  

O < _ q < _ v - 2 .  

In terms of this notation, we note that 

(2.2) M(v, b, k) = {de D(v, b, k)lndo = a or a + 1} . 

We now present a lemma which can be used to bound the smallest nonzero 
eigenvalue of Ca. 

LEMMA 2.1. Suppose d e D (v, b, k) and let M denote a set containing 
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m, 2<_m<v-1, subscripts corresponding to treatments in d. Then the 
fol lowing statements concerning Zdl can be made. 

(i) Zdl < VCdii/(V-- 1) f o r  i =  1 .... , v .  

(ii) Zdl <-- ( l / m ) , ~  Cdii -  ( 2 / m ( m  - 1)) E Y~ Cdij. 
• i~Mj.~M 

(iii) Zdl "( ( 1 / m ( v -  m))[i~,cM Cdii + y~ y~ Cdo'l 

I 

, , , ,  ¢ i  M 

Comment.  Part (i) of Lemma 2.1 is from Kiefer (1958), Chakrabarti 
(1963) and Whittinghill (1984). Part (ii) is from Whittinghill (1984). Part (iii) is 
from Jacroux (1983a). Constantine (1981) presented (i) and (ii) for equal k 
only. 

The following lemma, from Jacroux (1983b), bounds the smallest 
variance of an elementary treatment difference. 

LEMMA 2.2. Let d e D (v, b, k) be arbitrary. Then f o r  any i and j, i~j, 

Vard(~ti -- ~tj) >_ 4/(Cdii + Cdjj -- 2Cdij) . 

Using Lemma 2.1, one can prove the following theorem which is 
analogous to Theorem 2.2 of Jacroux (1983a). 

THEOREM 2.1. Let D (v, b, k) be such that v<_(v -p ) (v -  q). I f  d* ¢ D (v, 
b, k) is any design such that 

za*l = {rk - s(a + 1) 2 - (b - s)a 2 + 2} /k  , 

then d* is E-optimal in D (v, b, k). 

Using Theorem 2.1, we obtain the following corollary which can be 
proved using arguments similar to those used in Constantine (1981) and 
Jacroux (1982). 

COROLLARY 2.1. Let  d ~ M ( v ,  b, k) be a BBD. I f  we add  w blocks o f  
size k to d such that O<wt<v  and each treatment appears in each o f  the w 
blocks at least a times, then the new design a is E-optimal i f  

(i) wt = v -  1 ( for  any a>_O), 
(ii) w t < v - 1 ,  w t a < v - 1 ,  and v<_(v -wt ) (v -wta ) .  

I f  we remove w blocks o f  size k f r o m  d such that the extra-replicated 
treatments f r o m  each removed  block f o r m  disjoint sets, then the new design a 
is E-optimal i f  

(iii) a=0 andv/kZ<w<_v/k ,  
(iv) a>0, [ ( w t -  l ) a + t -  l] is not divisible by v -  l, and v<_wt[(wt-v)a+ 

t]. 
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Comment. Part (i) was proved another way by Whittinghill (1984). 
Part (ii) was proved for a=0  by Constantine (1981) and Jacroux (1982) for 
wk<v. 

From Corollary 2.1 we see that under certain conditions new E-optimal 
block designs having treatments unequally replicated can be obtained by 
adding and deleting blocks from various BBD's. However, as the next two 
examples illustrate, such methods of construction cannot generally be applied 
to arbitrary BBD's in M(v, b, k). 

Example 2.1. Consider the class of designs D (7, 7, k) where k = 7 a +  3 
and the class of BBD's given by 

N,~= 

a + l  a + l  a + l  a a a a 
a + l  a a a + l  a + l  a a 
a + l  a a a a a + l  a + l  

a a + l  a a + l  a a + l  a 
a a + l  a a a + l  a a + l  
a a a + l  a + l  a a a + l  
a a a + l  a a + l  a + l  a 

By Corollary 2.1 (ii) it follows that when a=0  or 1, a design obtained by 
adding one or two blocks containing all treatments at least a times will be 
E-optimal in the appropriate class D(7, b, k) where b=8 or 9 and k=3  or 10. 
However, when a_>2, a design obtained by adding a single block containing all 
treatments at least a times will not in general be E-optimal in D (7, 8, k). For 
example, when a=2,  a design d obtained by adding a single block containing 
all treatments at least twice will have za~ =321/17. But the design given by 

Nd = 

3 3 3 3 2 2 2 
3 3 3 3 2 2 2 
3 3 3 3 2 2 2 
2 2 2 2 3 3 3 
2 2 2 2 3 3 2 
2 2 2 2 3 2 3 
2 2 2 2 2 3 3 

2 
2 
2 
2 , 
3 
3 
3 

has Zd~=322/17 and is E-optimal by Theorem 2.1. Similarly, it can be shown 
that for any a_>2, no design obtained by adding a single block of any kind to a 
BBD of the type given by Na will be E-optimal in D(7, 8, k). 

Example 2.2. Consider the class of designs D(7, 7, k) where k = 7 a + 4  
and the class of BBD's given by 
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N~= 

a a a a + l  a + l  a + l  a + l  
a a + l  a + l  a a a + l  a + l  
a a + l  a + l  a + i  a + l  a a 

a + l  a a + l  a a + l  a a + l  
a + l  a a + l  a + l  a a + l  a 
a + l  a + l  a a a + l  a + l  a 
a + l  a + l  a a + l  a a a + l  

By Corollary 2.1, when a=0,  a design obtained by dropping a single block 
from :Ca will be E-optimal in D(7, 6, 4). However, when a>_ I, a design 
obtained by dropping a single block from Na may not be E-optimal in D(7, 6, 
k). For example, when a= 1, the design d* obtained from Na by dropping 
block one has Zd*~ =97/11. However, the design given by 

N~ -- 

1 1 2 2 2 
1 1 2 2 2 
1 1 2 2 2 
2 2 2 1 1 
2 2 1 2 1 
2 2 1 I 2 
2 2 1 1 1 

2 
2 
2 
1 , 
1 
I 
2 

has Zd1=98/11 and is E-optimal in D(7, 6, 11) by Theorem 2.1. Similarly, it 
can be shown that for any a_> 1, no design obtained by dropping a single block 
from a BBD of the type given above by Na will be E-optimal in D (7, 6, k). 

As can be seen from Examples 2.1 and 2.2, in certain cases, one can 
obtain additional E-optimal designs having treatments unequally re_plicated 
by adding and deleting blocks from various BBD's. However, when d ~ M(v, 
b, k) is a BBD, one cannot necessarily produce additional E-optimal designs 
having treatm_ents unequally replicated by simply adding blocks to or deleting 
blocks from d. Thus methods of constructing E-optimal designs which can be 
applied in situations where v>_k do not, in general, have natural extensions to 
situations where v<k. For the remainder of this paper, we consider the 
determination and construction of optimal designs in classes D (v, b, k) where 
v<k. We begin by proving a lemma. 

LEMMA 2.3. Let d c D(v, b, k) and let za~ be the minimum nonzero 
eigenvalue o f  Cd. Then for  ivsj we have 

zal <- (r~i + r~)/2 , 

with the inequality being equality i f  and only i f  ndix=ndjx for  x= 1 ..... b (which 
in turn implies rdi=rdi). 
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PROOF. By Lemma 2.1 (ii), for any i¢j ,  

Zdl -< (caii+ Cdji -- 2Cd0)/2 
b 

= (rdi + rdj)/2 -- (1/2k) Z 1 (ndix -- ndjx) 2 <-- (rdi + rdj)/2 , 

with the last inequality clearly being equality if and only if ndix=ndjx for 
X= 1,..., b and rdi= rdj. 

In various classes D(v,  b, k) where v<k,  it is possible to establish the 
E-optimality of a given design using Theorem 2.1. This is illustrated in 
Examples 2.1 and 2.2. However, as the next example illustrates, in certain 
classes D(v,  b, k), it is physically impossible to find a design satisfying the 
conditions of Theorem 2.1. 

Example  2.3. Consider the class of designs D (7, 8, 39). For this class of 
designs, r=44, a = 5 , p = 4 ,  2=245, q=2, s=4 and t=4. Sincep=4,  it follows that 
for any d e D (7, 8, 39), there must exist at least two treatments i and j  such that 
rdi+rdj-<2r. Thus it follows from Lemma 2.3 that Zdl<(rdi+rdj)/2-<r=44. But 
we also have that 

(rk - s(a + 1) 2 - (b - s)a 2 + 2) /k  = 1717/39 > r .  

Hence we see that it would be impossible to find a design satisfying the 
conditions of Theorem 2.1. 

Comment .  One could also show that it is impossible to find a design 
satisfying the conditions of Theorem 2.1 by using Lemma 3.4 of Kiefer (1958) 
to show that Zd~--<45. 

With Example 2.3 in mind, we give the following sufficient conditions for 
a design to be E-optimal in D(v,  b, k). 

THEOREM 2.2. Let D(v,  b, k) be such that p<_v-2. I f  d* ~ D(v,  b, k) 
has Zd.l=r, then d* is E-optimal in D(v,  b, k). 

PROOF. Sincep_< v -2 ,  it follows that for any design d e D (v, b, k), there 
must exist at least two treatments i a n d j  such that rdi+rdj<_2r. It then follows 
from Lemma 2.3 that d* is E-optimal in D(v,  b, k). 

While Theorem 2.2 provides a sufficient condition for a design to be 
E-optimal in D(v,  b, k), it does not indicate how to construct designs 
satisfying the given conditions. In the next theorem, we characterize one class 
of C-matrices corresponding to designs which satisfy the conditions of 
Theorem 2.2. 
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COROLLARY 2.2. Let D(v, b, k) be such that p<_v-2 and suppose d* 
has its treatments labeled and replicated so that rd*~ . . . . .  rd*,v-~=r, rd,.~-~+~ 
. . . . .  rd.~=r + z, where fi<_p and z>_ 1 is an integer. Further suppose that kCd* 
can be written as 

[ rkL-p - 2~J~-p,~-~ -212Jv-~,~ ] 
(2.3) kCd, = -21aJ~,v-~ kCd,22 ' 

where 211=s(a+l)2+(b-s)a 2, 212={rk--(V--~)211}/~>_211, CJ'22 denotes the 
lower right hand ~×~ submatrix o f  Ca., and kCa.22-rkb+ ~2J~,~ is positive 
semi-definite. Then d* has Zd.~ =r and d* is E-optimal in D(v, b, k). 

PROOF. F r o m  the fo rm of Ca., it follows that  Ca. has eigenvalues 0 of 
multiplicity one, r of multiplicity v - f -  1, v212/k of multiplicity one, and that  
the r ema in ing f f -  1 nonzero  eigenvalues of Ca. are the same as t h e f t -  1 largest 
eigenvalues of Cd.22. The fact that  2~2>2~=s(a+ 1)2+(b-s)a 2 guarantees that  
v2~2/k>_r and the fact that  kCa.22-rkl~+2~2J~ is positive semi-definite 
guarantees that  t h e f t -  1 nonzero eigenvalues of Ca. corresponding to t h e p -  1 
largest eigenvalues of Cd.22 are all at least as large as r. 

COROLLARY 2.3. Let D(v, b, k) be such thatp<_v-2 andsuppose d* 
D(v, b, k) has kCa. which can be written in the same form as (2.3) with 
2~=s(a+ l)2+(b-s)a 2 and has 2a.o>212 for  all i , j = v - f +  l .... , v, i~j. Also 
suppose in (2.3) that 212>_211. Then kCd*22-rkb+2~2J~,~ is positive semi- 
definite and d* is E-optimal in D (v, b, k). 

PROOF. Assume kCd, can be written as in (2.3) and consider 

T = kCd. - rklv + 212Jv,v 

[ (;q2 - 213Jv-~.v-~ 
l 0 

0 ] 
kCd.22 - rkb + 212J~,~ " 

It then follows f rom the form of T a n d  the fact that  Cd.Jv,~=O that  

( k C d , 2 2 -  rkl~ + 212J~,o)J~,l = (V212 -- rk)Y~,, , 

and that  (v,~t2-rk)>-O is an eigenvalue ofkCd*22-rkl~+,~,12J~,~. But we also see 
that  kCd.22-rkI~+2~2J~,~ has constant  row sums v212-rk>O with all of its 
off-diagonal  entries non-posit ive (since by assumpt ion  2d.0>2~2 for all i, 
j = v - f f +  1,..., v, i~j). Thus  each diagonal  element  of kCd.22-rkI~+212J~,~ is 
nonnegative and it is at least as large in magni tude  as the sum of the absolute 
values of the off-diagonal elements in the corresponding row. Hence 
kCd.22-rkl~+2~2J~.z is positive semi-definite, and the result follows f rom 
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Corollary 2.2. 

COROLLARY 2.4. LetD(v,b,k)besuchthatp<v-2andsupposed*~ 
D (v, b, k) has 

[ rkL-o - 2 1 1 J v - ~ , v - ~  

kCd* = - 2 1 2 J ~ , v - p  

- - 2 1 2  J~-p,p ] 
((r + z)k - 222 -1- 222)/~ - 222Jff,ff 

where 21~ and212 satisfy the conditions of Corollary 2.2, z> 1 is an integer, and 
~22, 222 are such that-~22~2d, v-~+l,v-~+l . . . . .  2d ,  v,v and zk_>~22-222. Then d* has 
Zd.l=r and is E-optimal in D(v, b, k). 

PROOF. Let kCd.22=((r+z)k-~22+222)Ip-222Jp.p in Corollary 2.2 and 
observe that the ~ -  1 largest eigenvalues of kCd*22 are all equal to (r+z)k- 
222+222. The condition that zk>222-222 then insures that ((r+z)k-222+ 
222)/k>r, and the result follows from Corollary 2.2. 

In the following two examples, we give illustrations as to how Corollary 
2.4 can be applied. 

Example 2.4. Consider the class of  designs D(7,  8, k) where k = 7 a + 4  
and the design d* having incidence matrix 

Nd .=  

a + l  a + l  a + l  a + l  a a a a 
a + l  a + l  a + l  a + l  a a a a 
a + l  a + l  a + l  a + l  a a a a 
a + l  a a a a + l  a + l  a + l  a + l  

a a + l  a a a + l  a + l  a + l  a + l  
a a a + l  a a + l  a + l  a + l  a + l  
a a a a + l  a + l  a + l  a + l  a + l  

It is then easy to verify that for any value of a_>3, the conditions of Corollary 
2.4 are satisfied and that d* is E-optimal in D(7,  8, k). 

Example 2.5. Consider the class of  designs D(7,  8, k) where k = 7 a + 3 ,  
a >  1, and the design d* given by 

Nd .=  

a % l  a + l  a + l  a a a a a 
a + l  a ÷ l  a + l  a a a a a 
a + l  a + l  a + l  a a a a a 
a + l  a + l  a + l  a a a a a 

a - 1  a a a + l  a + l  a + l  a + l  a + l  
a a - 1  a a + l  a + l  a + l  a + l  a + l  
a a a - 1  a + l  a + l  a + l  a + l  a + l  
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It is then easy to verify that for any value of a_>4, the conditions of Corollary 
2.4 are satisfied and that d* is E-optimal in D (7, 8, k). 

Comment. In all previous cases known to the authors where a widely 
used optimality criterion such as A-, D-, or E-optimality has been used to find 
an optimal design in D (v, b, k) and where an optimal design has actuallybeen 
determined, there has always existed at least one optimal design in M(v, b, k), 
i.e., there has always existed at least one optimal design with its C-matrix 
having maximal trace. However, in Example 2.5 an E-optimal design d* e (7, 
8, k) cannot be in M(7, 8, k) for any value of a>_4. This is because an E-optimal 
design d* must satisfy the conditions of Theorem 2.2 and a necessary 
condition for this to occur is that whenever treatments i and j  have rd, i----rdv=r, 
ha*ix=rid,ix for x= 1,..., b. But since v-p=4>t=3, this can never happen if d* 
M(7, 8, k). Thus an E-optimal design in D(7, 8, k) where k = 7 a + 3  cannot be 
in M(7, 8, k) for any value of a>4. The authors have found that Example 2.5 is 
typical of what happens in any class D(v, b, k) where k=va+t and v-p>t,  i.e., 
it is not difficult to show that in such classes when a is sufficiently large, an 
E-optimal design d* ~ D(v, b, k) having Zd*l----r cannot be in M(v, b, k). 

Comment. The examples given here are such that the E-optimal 
designs given have C-matrices of the form given in Corollary 2.2, Corollary 
2.3 or Corollary 2.4. The reason for this is of course that designs having 
C-matrices of this form are the easiest to construct. There are various 
numerical conditions that one can prove in order to guarantee that a design 
has a C-matrix of the general form given in (2.3) (though the design may not 
satisfy all of the conditions of Corollary 2.2). For example one set of 
numerical sufficient conditions for a design to have a C-matrix of the form 
given in (2.3) is that s(t-v)/~ and (b-s)t/~ are integers. To see this, we note 
that a design d* satisfying Corollary 2.2 must have an incidence matrix of the 
form 

Nd,=[ (a + l)Jv-~,s aJv-~.h-s ] 
Nd,21 Nd.22 " 

Now, i f(sk-(v-~)s(a+ l))/fi is an integer and ((b-s)k-(v-~)(b-s)cO/~ is an 
integer, then it is easy to see that it is possible to assign treatments v - f i+  1 ..... v 
to blocks in Nd*21 and Nd*22 SO that the row sums in Nd*2~ and Na,22 are constant. 
Thus the design will have 2d.ij=,;tt2 for all i= 1,..., v -~ , j=v-~+ 1,..., v. Now, 
the fact that (sk-(v-fi)s(a+ l))/fi is an integer implies that s(t-v)/~ is an 
integer and ( (b-s)k-(v-~)(b-s)a) /~ being an integer implies that (b-s)t/~ is 
an integer. Whether or not a design d* satisfying the numerical conditions 
given above satisfies all of the conditions of Corollary 2.2 depends upon 
whether v{rk-(v-~)2~tJ/~>rk and just how treatments v - ~ + l , . . . ,  v are 
assigned to blocks in Nd*21 and Nd*22. 
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LEMMA 2.4. Let D(v,  b, k) be such t h a t p < v - 2 .  Then for  any design 
d ~ D (v, b, k), 

max Vard(~ti- &j) ___ 2 / r .  i~j 

PROOF. Since p < v - 2 ,  it follows that  d must  have at least two 
treatments,  say treatments i and j,  such that  rd~+raj<2r. By L e m m a  2.2, 

Vard(~ti- &j) _ 4/(Cdii + Cdjj -- 2Cdo') 

4k / ( rd ik  ~ . 2  b b ) -- ndix + rajk-  Z n 2 x=l x=l ajx + 2 ~ nixnjx x=-I 

> 4k 2rk (nai l-  dj~) > 4k/2rk  = 2/r . 
X=I 

THEOREM 2.3. Let D(v, b, k) be such that p<_v-2, f f  d* ~ D(v,  b, k) 
has zd, l=r, then 

max Vara , (~ i -  ~j) = 2 / r .  i.j 

PROOF. Let d* c D(v,  b, k) have Zd,~ = r  and let C~* denote  the Moore-  
Penrose inverse of Cd,. Then C~* has eigenvalue 0 with + Cd*Jvl =0 and nonzero  
eigenvalues l/Zd,~>_...>>_ l/zd,.v-~. Also, if l'a is estimable and l'fi is the least 
squares estimate of l'a under  d*, then 

Vard, (l'&) = l'C+d.l = l'l(l'C+d,l/l'l) <_ l'1(1 / Zd,,) . 

Thus for any treatments i and j,  we have that  

Vard,(&i- ~tj) _< 2( l / r )  = 2 / r ,  

hence by L e m m a  2.4 and the previous inequality that  

2/r <_ max Vard,(&i - &:) <_ 2/r i¢j 

and the result follows. 

COROLLARY 2.5. Suppose d* ~ D (v, b, k) satisfies the conditions given 
in Corollary 2.2, Corollary 2.3, or Corollary 2.4. Then d* is both E-optimal 
and MV-opt imal  in D(v,  b, k). 

PROOF. If d* c D(v,  b, k) satisfies the condi t ions of Corollary 2.2, 
Corol lary 2.3, or Corollary 2.4, then Zd*~ =r and d* is E-optimal  by Corollary 
2.2 and MV-opt imal  by Theorem 2.3. 
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We note  tha t  the designs given in Examples  2.4 and 2.5 satisfy the 
cond i t ions  of  Coro l l a ry  2.4, hence they are E- and MV -o p t im a l  by Coro l l a ry  
2.5. We also no te  tha t  the c o m m e n t s  m ad e  fo l lowing  E x a m p l e  2.5 hold  for  

designs satisfying Coro l l a ry  2.5. 
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