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Abstract. This paper is concerned with two kinds of multiple outlier 
problems in multivariate regression. One is a multiple location-slippage 
problem and the other is a multiple scale-inflation problem. A multi- 
decision rule is proposed. Its optimality is shown for the first problem in a 
class of left orthogonally invariant distributions and is also shown for the 
second problem in a class of elliptically contoured distributions. Thus the 
decision rule is robust against departures from normality. Further the null 
robustness of the decision statistic which the rule is based on is pointed out 
in each problem. 
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1. Introduction 

Statistical theory related to outliers is a rapidly expanding area of 
research. This can be seen from excellent surveys by Beckman and Cook 
(1983) and Barnett and Lewis (1984). The problem of outliers with either 
location slippage or scale inflation can be traced to Thompson (1935), 
Pearson and Chandra  Sekar (1936), Cochran (1941), Paulson (1952), Truax  
(1953), and Kud6 (1956). One of the simplest forms of such problem may be 
stated as follows: Suppose that xl, x2,..., x, are independent  univariate 
normal  observations with unknown mean, 0,, and common unknown 
variance, tr 2. Then we wish to decide if all of the 0i are equal, or, if not, which 
one has slipped. More precisely, we want to test the null hypothesis H0: 
01 . . . . .  0 .  against n alternatives Hi: 81 . . . . .  0 i - - t~  . . . . .  0, (i= 1, 2,..., n) where 
&>0 (or &~0). For  this problem, the decision rule based on the max imum 
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(absolute) studentized residual has been shown to be optimal by Paulson 
(1952) and Kud6 (1956). Recently, by developing the ideas and methods of 
Grubbs (1950) and Wilks (1963), Butler ( 1981) treated two kinds of multiple 
outlier problems in normal multivariate regression, where alternatives involve 
a multiplicity of spurious observations. 

In this paper, we slightly modify Butler's (1981) formulation and attempt 
a different approach to the multiple outlier problems. Our decision rule 
proposed here is, indeed, different from Butler's (1981) rules, and hence from 
Grubbs' (1950) and Wilks' (1963). Butler's (1981) approach is Bayesian 
decision theoretical, and his interest is in the admissibility of his decision rules. 
Our approach is a rather traditional one along the lines of Paulson (1952), 
Kud6 (1956), Karlin and Truax ((1960), Sec. 9), Ferguson ((1961), See. 3), and 
Butler ((1983), Sec. 6). The purpose of this paper is to extend their multi- 
decision optimality results to the multiple outlier problems in multivariate 
regression in a class of left orthogonally invariant distributions or elliptically 
contoured distributions. Under some mild conditions without normality, a 
simpler derivation of the results is provided. 

Our results in this paper can be viewed as a robustness property of their 
multi-decision rules. First, their rules are still optimal in the above class. 
Second, the null distributions of the decision statistics which their rules are 
based on under any member of the class remain the same as those under 
normality. As mentioned in Kariya and Sinha (1985), the former is called 
optimality robustness and the latter null robustness. Sinha (1984) studied the 
optimality robustness of an LBI (locally best invariant) test for a multivariate 
location-slippage outlier model in a similar class. This testing problem with 
location-slippage alternative differs from our multiple location-slippage 
problem in the structure of location-slippage. This will be described in Section 
3 more explicitly. From another viewpoint, Kimura (1984) investigated the 
robustness of outlier detection. 

In Section 2, in a class of left orthogonally invariant distributions or 
elliptically contoured distributions, two kinds of multiple outlier problems 
are formulated and an appropriate decision rule is proposed. One of the 
problems is a multiple location-slippage problem and the other is a multiple 
scale-inflation problem. In Section 3, our rule is shown to be UBIS (uniformly 
best invariant symmetric) for the multiple location-slippage problem in the 
class of left orthogonatly invariant distributions. This result is regarded as an 
extension of Kud6 (1956), Karlin and Truax (1960), and Theorem 1 in Butler 
(1983). In Section 4, the UBIS property of our rule is also shown for the 
multiple scale-inflation problem in the class of elliptically contoured distribu- 
tions. This is regarded as an extension of Ferguson (( 1961), Sec. 3) and (6.9) in 
Theorem 2 of Butler (1983). 

In the derivation of the optimality results, Hall and Kud6's (1968) 
generalized Neyman-Pearson lemma and Wijsman's (1967) representation 
theorem are used. In Section 5, by applying corollaries in Kariya (1981) to 
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both of the problems, we point out the null robustness of the decision statistic 
which our rule is based on. 

2. Problems and our rule 

Let B=(bz ..... b,) be an m x n  matrix, and define vec(B)=(bf ..... b')'. Let 
O(n) denote the set o f n x n  orthogonal matrices, J ( p )  (5~(p)) the set o f p x p  
positive (nonnegative) definite matrices, Gl(p) the set of p x p  nonsingular 
matrices, R "xp the set o f n x p  matrices, and dXthe Lebesgue measure on R "xp. 

Now we formulate two kinds of multiple outlier problems in multivariate 
regression. Consider a random sample of size n from a p-dimensional 
multivariate population, and denote the sample by X: nxp.  

2.1 Multiple location-slippage problem 
Assume 

(2.1) X =  Cfl + DzJ + ~, 

and that the error term e has a left 8(n)-invariant density of the form: 

(2.2) f(~lS)  = IZ1-"/2~(S-1/%'~-~/2), 

where C: n x q  and D: n x r  are known matrices, fl: qXp, A" rXp and 2 ~ Y ( p )  
are unknown parameters, and 4~ is a function from Y(p)  into [0, ~)  such that 

f m f h ( X ' X ) d X =  belongs to a class ~b, is specified in 1 and certain which 

Section 3. Let L1=(61, 62,..., 6r)', and for any given s<r, let Q(s)={oglog~ 
{1, 2,..., r}, #~=s}. The problem is to test 

(2.3) 
H0: Oi = 0 (i = 1, 2,..., r) 

against (r) alternatives H~: 6i = 6 (i ~ og) and 6, = O (i ~ co), 

where ogeQ(s), and 6~0 is an unknown p-vector. 

2.2 Multiple scale-inflation problem 
Assume 

(2.4) X =  Cfl+ ~, 

and that the error term e has an ellipticaUy contoured density of the form: 
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(2.5) 

f (el(I ,  + DAA 'D ' ) t~X)  

= I(L + D A A ' D ' ) ® S ) I  -~/2 

• ~u(vec' (e')((In + DAA'D')@-F) -~ vec (e ' )) ,  

where C, D, fl, A and Z'are the same as defined above, and ~u is a function from 

[0, ~o) into [0,~) such thatfu°~" q/( trX'X)dX= 1 and belongs to a certain class ~,  

which is specified in Section 4. The problem here is also to test (2.3). 
For C and D in these problems, we assume 

rank ( C) = q ,  
(2.6) d(co,co) = positive constant for all co e £2(s) , 

d(co,co') -- constant for all co, co' ~ f2(s) (co ~ co'), 

where D=(dl ,  d2,..., dr), d,o= IE d/, P = L - C ( C ' C ) - I C  ', and d(co,co')=dLPdo,,. 
ieco 

Further n > p + q  is assumed. 
To consider the above multiple outlier problems along the lines of 

Paulson (1952), Kud6 (1956), Karlin and Truax ((1960), Sec. 9), Ferguson 
((1961), Sec. 3), and Butler ((1983), Sec. 6), our consideration is restricted to 
the class of invariant symmetric level a decision rules satisfying (2.7) and (2.8) 
below. Let ~(X)=(~0(X), (9~,o(X)),o,a(s)) be a decision rule of choosing among 

the l + ( r / h y p o t h e s e s  in (2.3). A rule 9~(X)is said to be of level a if \ J !  

(2.7) E0.~.z[9~0(X)] -> 1 - a for any fl ~ R q×p and Z e Y ( p ) ,  

where Eo,~.z[ ] is the expectation under fl, 27 and H0. Also we say that ~(X) is 
symmetric if 

(2.8) 
E~,a.p.r[q~o(X)] is independent of co ~ f2(s) 

for any 6 ¢ R p - {0}, fl ~ R q×p and X ¢ Y ( p ) ,  

where Eo,.~,~.z[ ] is the expectation under t~, fl, Z'and H,o. Further,  to consider 
both of the problems via invariance, let the group G= Gl(p)× R q×p act on X 
by: X-- .XA+C/u for A ~ Gl(p) and/1 ~ R q×p. Then the problems remain 
invariant under the group G. 

Define 

(2.9) S = X ' P X  and To~ -- d 'PXS-1X 'Pd ,  o. 

In this paper, for both of the problems, we propose the following decision rule 
of the form: 
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(2.1o) 
9~(X) = 1, 0 if 

9¢~(X) = (I - 9~(X)) /x (X) ,  0 if 

max T o < ,  > c ,  

T o = ,  < m a x  T o ,  
o~s )  

where c is a constant determined by the level condition E0,p,z [9~(X)]= 1 - a  
and x(X) is the number of co's for which max To is attained. As will be seen 

oc~2(s) 

in Sections 3 and 4, it follows from invariance that the null distribution of 
max To is independent offl and ~r, and also as will be seen in Section 5, that 
w~Q(s) 

max To is null robust. Therefore the cut-off point c can be determined under 
o~O(s) 

normal distribution independently of fl and S. It is clear that our rule is 
different from Butler's (1981) rules when s>2. 

In the following sections, the decision rule ~* defined in (2.10) above is 
shown to be UBIS (uniformly best invariant symmetric) for each problem, 
i.e., 9* satisfies 

(2.11) 
sup = 

for any 3 E R e - {0}, fl ~ R q×p, ~r ~ J ( p )  and co ~ 12(s) , 

where 9 ( a )  is the class of invariant symmetric level a decision rules. This 
equation (2.11) implies that ~* maximizes the probability of making the 
correct decision under the alternatives. 

3. Optimality result for the multiple location-slippage problem 

In this section, we discuss via invariance the multiple location-slippage 
problem in the class of left ~'(n)-invariant distributions with densities of the 
form (2.2) where ~b is assumed to belong to the class 

(3.1) 
= {~b: 5~'(p) --" [0, °o) 14, is strictly convex on J ( p ) ,  

and 4~(RVR') = ~b(V) for all V~ Y(p)  and R e C(p)} . 

Todoso ,  le tQbeann×northogonalmatrixsuchthatQ'PQ=(I"o -q 0), and 

let Y=(In-q,O)Q'X. Then, for S in (2.9), S--Y'Y, and a maximal invariant 
statistic and a maximal invariant parameter under G = G I ( p ) / R  q×p are, 
respectively, IV--YS-1Y ' and q=g'Z'-~g. To derive the distribution of the 
maximal invariant W, we first consider the marginal density of Y. 

LEMMA 3.1. The marginal density o f  Y under Ho is given by 

(3.2) f ( Y I M o ,  S )  = I~,l -("-q)/2 ~b(~r-l/Z(Y - M o ) ' ( Y -  Mo~)S-I/2), 
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where M - n-q,O)Q'd,o~; ~( v)=fm. ~ 49( V+ Z'Z)dZ, and dZ is the Lebesgue 

measure on R q×p. Further, qb is strictly convex on J ( p ) ,  and it satisfies 

m 

(3.3) ?~(RVR') = ~ ( V )  for  all V e J ( p )  and R e g~(p) . 

Since Wis also a maximal invariant under the group Gl(p) acting on Y 
by: Y - - Y A  for A ~ Gl(p), using Wijsman's (1967) representation theorem 
yields 

LEMMA 3.2. Let pW o~.~ be the distribution o f  W under q and H,o. Then 
the density o f  W under r l and H~ with respect to P ~,o, evaluated at W= w( X),  is 
given by 

(3.4) 

d P o~, w 
deWo,o (w(X)) 

f cl(p)?)(AA, - ql/2 ,,,1/2, ~, ~,o talel + ela{) + qd(o))ele()]A'AIk/2dA 

f ~t(p) ~( AA')  t A 'A [k/2 dA 

where d(co)=d(co,co), k = n - p - q ,  el =(1,0, . . . ,  0)' ~ 1~, at is the first column o f  
A, and dA is the Lebesgue measure on 1~ ~. 

PROOF. In order to apply Wijsman's theorem, it is sufficient to show 
that  Y/={Y: ( n - q ) × p { r a n k  (Y)=p}  is a Car tan  Gl(p)-space because 
R (n-q)×p- ~/has  measure 0. For  any Y~ Y/, since Y is of maximal  rank, YA = Y 
implies A =Ip. Hence it follows from Theorem 1.1.3 in Palais (1961) that Y/is a 
Cartan Gl(p)-space (see Kariya (1985), pp. 53-58). Therefore we have 

d p ~w~ 
(3.5) dP~o (w( r)) = 

fGt(p) "if( YAIMo~, S )  I A 'A  )(n-q)~2 dv(A ) 

f6J(p) f (  YA 10, S )  t A'A I ("-q)/2 dv (A) 

where v is a left invariant measure on Gl(p). Take dv(A)= I A'AI-p/2dA. Let 
N,o,~ be the numerator  of (3.5). From (3.2), No~.~ is written as 

(3.6) No,,~ = c~ f~tip) ~(X-t/2( YA - Mo~)'( YA - M~)£ "-t/2) [A'A [k/2dA , 

where ct = ISl-("-q)/z. The substitution of Y=([n-q, O)Q'X into (3.6) yields 

(3.7) N,:,~ = cl f6t<p) ~(X-I/2(XA - d ~ ' ) ' P ( X A  - d~,6')X -1/2) [A'Atk/2dA . 

Transforming A into SI/2AX -1/2, w e  obtain 
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= fG ~b(A'A - r WgA - A '  W J  + d(co) rz') I A 'A  I k/: dA , (3.8) N,o.~ c2 t(p) 

where c2=131 -I~-ql/2, W~--S-1/2X'Pdo~ and r=Z'-~/26. Let R~ and R2 be p× p  
orthogonal matrices with r/llvl[ and W~/IIW~,II as their first columns 
respectively. Transforming A into RfA'R2 and using (3.3), we find 

(3.9) 
No~,,1 = c2 fc.lIp) ~ ( A A '  - rf/2 T, ol/2(alef + elaf) 

+ rld(co)etef ) [A'A Ik/2dA . 

Finally taking the ratio of No,., and N0,0, we get (3.4). [] 

Our main result is the following. 

THEOREM 3.1. For the multiple location-slippage problem, the rule 9~* 
in (2.10) is UBIS in the sense of(2.11). 

PROOF. First we show that 9* is symmetric in power. Under Ho,, (2.1) 
can be written as X= Cfl+&6'+e. Then, for S in (2.9), S=d(co,co)66'+26d'Pe+ 
e'Pe, and dL, PX=d(co,og')3'+d',Pe. Thus, from (2.6), it is sufficient to show 
that the joint distribution of (D',P~, e'Pe) is equal to the joint distribution 

of(D'2Pe, e'Pe) foranytot ,  co2~Q(s),where Do~, and D~2 are n x ( r )  matrices 

with do~. and d~ as their first columns and with {do,,Ioa' e g2(s), co'~ot} and 
{d~,[e~' e g2(s), ~'~o2} as their remainders, respectively. Since 

((In-q, O) Q'D~,)'(In-q, O) Q'D~, = D', PDo~, = D'~ PD,o, 
= ((In-q, O)Q__'Ow2)'(In-q, O)Q'D~,  

there exists an ( n - q ) × ( n - q )  orthogonal matrix R such that (In-q, 0)Q'D,o~= 

R(In-q,O)Q'Do,,.LetU=Q( R pq) Q'. Then 

(3.10) PD,o~ = UPDo,, and UPU' = P .  

It follows from S ( U ' e ) = d ( e )  that I ( D ' , P e ,  e'Pe.)=t(D'2Pe, e.'Pe). 
Second we show the UBI property of~*. By the definition ofq~* in (2.10), 

it is easy to see that 9* is a function of the maximal invariant W. From Lemma 
3.2, the density of Wunder Ho~ is given by (3.4). Let N;7( T~/2) be the numerator 
of (3.4). Since transforming A into - A  leaves N,(T~/~) the same and c~ is 
strictly convex, it follows from the argument as in Kariya (( 1981), p. 1274) that 
N,(T~/2) is a strictly monotone increasing function of T~. Therefore there 
exists some c* such that 
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(3.11) {max T,o X c} - - /max  dPo~W. } 
,,,,~,) t ~ s )  de-----~o,o ~ c* . 

By Theorem 1 in Hall and Kud6 (1968), ~* is best for each fixed r/. Since ~o* 
does not depend on q, ~* is uniformly best. Hence the proof is completed. [] 

We remark that the class of left @(n)-invariant distributions with 
densities of the form (2.2) where ~b e ~ in (3.1) includes the multivariate 
normal distribution, the multivariate t-distribution, the multivariate Cauchy 
distribution, the contaminated normal distribution, the continuous normal 
mixture as in Sinha (1984), and the matrix variate t-distribution as in Kariya 
((1981), p. 1272). Thus Theorem 3.1 is an extension of Kud6 (1956), Karlin 
and Truax (1960), and Theorem 1 in Butler (1983). The following three special 
cases are worthy of notice. 

(i) When r=n, s= l ,  D=I, ,  and .~(X)=Nn×p (C•+A, I ,@X) ,  the 
problem is reduced to the same as Butler's ((1983), Theorem 1). Note that 
Butler ((1983), See. 6) gives a weight to each alternative Hi instead of 
considering C which satisfies (2.6). 

(ii) In addition to (i), suppose q= 1 and C= 1 =(1,..., 1)' ~ R". Then the 
UBIS rule (2.10) is based on 

(3.12) max ( X ; -  X ) ' S - ~ ( X i -  X ) ,  
i=l,2,...,n 

where Xi is the i-th column ofX',  .~=(1/n) ~ Xi, and S = E  ( X i - X ) ( X i - X ) ' .  
i=1 i=1 

This is the same as obtained by Karlin and Truax (1960), in particular when 
p=  1, by Kud6 (1956). 

(iii) W h e n p >  1, q= 1, r = n -  1, s= 1, C= 1, and D is the n × ( n -  1) matrix 
such as 

1 0 
1 1 0 
0 1 1 

0 1 
0 

0 0 

0 
1 
1 

by letting lfl+Dzt=(01, 02,..., On) t, the alternatives in (2.3) are expressed as 

Hi: Ol . . . . .  0i-1 = Oi-  6 = 0i+1 - J = 0i+2 . . . . .  0, , 

for i= 1, 2,..., n -  1. Then the UBIS rule (2.10) is based on 
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(3.13) max (Xi + Xi+, - 2X) 'S-I (Xi  + Xi+, - 2 X ) .  
i= 1,2,...,n-I 

n-1 

The alternative of the form t.)Hi cannot be treated in the multivariate 
i=l 

location-slippage outlier model of Schwager and Margolin (1982) and Sinha 
(1984). 

4. Optimality result for the multiple scale-inflation problem 

We discuss now the multiple scale-inflation problem in the class of 
elliptically contoured distributions with densities of the form (2.5) where ~u is 
assumed to belong to the class 

(4.1) ~ = {~u: [0,oo) --+ [0,oo) [ ~, is strictly monotone decreasing} . 

With Y and W as defined in Section 3, a maximal invariant statistic under 
G= Gl(p)XR q×p is W. A maximal invariant parameter is 2 =J'O. The marginal 
density of Y is the following. 

LEMMA 4.1. The marginal density of  Y under Ho, is given by 

(4.2) f(YI0, Fo~@Z') = IFo~@S[-u2~(vec'(Y')(F~@S,)-lvec(Y')), 

where F~, = I,-q + 2(In-q, O) atd~d~o Q ( I,-q, 0)', ~(v) =f R,.p ~u(v + trZ'Z )dZ, and dZ is 

the Lebesgue measure on  e q×p. Further, ~ is strictly monotone decreasing. 

LEMMA 4.2. Let p~W be the distribution of  Wunder tl and H~,. Then the 
density o f  W under 2 and Ho~ with respect to pW o,o, evaluated at W= w(X), is 
given by 

dP o,.w 
(4.3) dP oW, o (w(X)) = 

f ~z(p~ ~( trA'A 1 + 2d(co) T, oafal IA'AIk/2dA 

/2 ~ (1 + ;td(co)) p fatlp)~(trA'A)lA'AIk/2dA 

where d(co)=-d(co,co), k = n - p - q ,  al is the first column of  A, and dA is the 
Lebesgue measure on 1~ ×p. 

PROOF. By applying Wijsman's theorem as in Lemma 3.2, we get 

(4.4) dP° 'wa 
d P  0 ,0 (w(Y))  = 

f~t~p> f (  YA 10, F,o@S) [A'A Ik/2dA 

for(el f (  YA I O, In-q @ S )  [ A'A [ k/2 dA 
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Let N~,~ be the numerator of (4.4). From (4.2), No,,~ is written as 

(4.5) N~,> = co>(2)f~ttp)~(vec'((YA)')(F~@S)-~vec((YA)'))lA'Alk/ZdA 

where co,(2)= IFO,@Z[ -v2. Let b~=(In-q, O)O'd~o and V~ be an (n -q )X(n -q )  
orthogonal matrix with b~/Ilb,~ll as its first column. Then V~'F<oVo~=L-q+ 
2d(oo)e~e( where e~=(l, 0,..., 0)' e R n-q. Letting Z~= V,'Y, we have 

No,., = c~O,)f atlp ) ~(vec'(( L A  )') 
(4.6) 

• ((L-q + 2d(co)eie()@-r)-Ivec((Z~A)'))[A'AIk/2dA . 

After calculation, substituting Z~= V'(L-q, O)Q'X into (4.6) and transforming 
A into S1/2A~ -1/2, w e  find 

f~ trAA' Wo;AA'Wo~ IA'AIk/2dA (4.7) No~.~ = cL(2) t(p) 1 + 2d(o9) 

where c '(2)= IS I-("-ql/2(1 +2d(o9)) -p/2 and WO,=S -~/2 X'Pdo,. Let U be a pXp 
orthogonal matrix with W,o/II W~tt as its first column. Transforming A into 
A' U yields 

- 2 To,a(al)lA,Aik/ZdA (4.8) N~,; = c'(2)f~t(p)~U(trA'A 1 + 2d(09) 

Finally taking the ratio of N~,,~ and N0.0, we obtain (4.3). [] 

Now we will verify our second main theorem. 

THEOREM 4.1. For the multiple scale-inflation problem, the rule ~* in 
(2.10) is UBIS in the sense of(2.11). 

PROOF. First we show that ~* is symmetric in power. Since S= Y' Y and 
d 'PX=d 'Q  (Y', 0)', it is sufficient to show that the joint distribution of 
(D',Q(Y',0)', Y'Y) under Ho~,, do,,(D',Q(Y',0)', Y'Y), is equal to the joint 
distribution of (D'2Q( Y',0)', Y'Y) under Ho~, ZO,2(D'~Q(Y',O)', Y'Y), for any 
col, 0~2 e (2(s), where Do,, and Do,~ are the same as those in Theorem 3.1. Since 
there exists an (n -q )X(n -q )  orthogonal matrix R as in Theorem 3.1, the 
density of R'Y under Ho,~ is equal to the density of Y under H .... Hence 

S,o~(D'~Q( Y',O)', Y' Y) : ~,q°,~2(D', Q( Y'R,O)', Y'RR' Y) 
= ~P<,~,(D',Q(Y',O)', Y 'Y ) .  

The proof will be completed if we show the UBI property of ~*. It is clear 
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that  the numera to r  of (4.3) is a strictly mono tone  increasing funct ion of To. 
The rest of the p roof  is parallel to that  of Theorem 3.1. [] 

The class of elliptically contoured  distributions with densities of the form 
(2.5) where ~,e ~ i n  (4.1) includes those distributions stated in Section 3 except 
for the matr ix variate t-distribution. Some special cases of Theorem 4.1 have 
been treated in the literature. When r=n,  s= 1, D = I , ,  and .£:(X)=N,×p(Cfl,  
( L + A A ' ) ® S ) ,  the problem (2.10) is reduced to the same as (6.9) in Theorem 2 
of Butler (1983). In the case where q=  1 and C= 1 :  (1, I .... ,1) '  e R" in addit ion,  
Ferguson  ((1961), See. 3) has shown that  the rule based on (3.12) is UBIS. 
Thus  Theorem 4.1 is an extension of Ferguson  ((1961), Sec. 3) and (6.9) in 
Theorem 2 of Butler (1983). 

5. Null robustness 

To use our UBIS rule 9~* in (2.10) in practice, it is required to determine 
the cut-off  point  c. In both  of the problems,  the cut-off point  c does not 
depend on ~b or ~u, and can be determined under  normal  distribution. To verify 
this, it is sufficient to show that  t ( X ) = m a x  T,o satisfies the condit ions in 

~o~t2(s) 
Corollaries 1.1 and 1.2 of Kariya (1981): 

(5.1) t ( X  - CI~) = t ( X )  for all lz E R q×p . 

(5.2) t ( X A )  = t ( X )  for all A e J ( p ) .  

Hence the distr ibut ion of max  To under  the null hypothesis H0 remains the 
~oct~ts) 

same in the class of left g~(n)-invariant distributions or elliptically contoured  
distributions,  i.e., the null distr ibution of max T,o is equal to the distr ibution of 

weO(s) 
max To under  the assumpt ion ~ (X)=N,×p  (0, L ® I p )  in each problem. 
cocO(s) 
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