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Abstract. In this paper we give an extension of the theory of local minimax 
property of Giri and Kiefer (1964, Ann. Math. Statist., 35, 21-35) to the 
family of elliptically symmetric distributions which contains the multi- 
variate normal distribution as a member. 
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1. Introduction 

This paper represents an extension of local minimax results contained in 
Section 2 of Giri and Kiefer (1964), here after called G-K (1964), to the family 
of elliptically symmetric distributions which contains the multivariate normal 
distribution as a member. We shall call a test robust if certain property which 
the test enjoys for a given problem in the case of a multivariate normal 
distribution, can be extended to the class of elliptically symmetric distribu- 
tions. Three types of robustness are commonly used for such problems: the 
null robustness, the nonnull  robustness and the optimality robustness. The 
null robustness requires that the null distribution of the test statistic remains 
the same under any member of the family. The nonnull robustness requires 
the invariance of the nonnull  distribution of the statistic. The optimality 
robustness requires that an optimality property which the test enjoys i.e. 
uniformly most powerful (UMP), uniformly most powerful invariant (UMPI), 
locally best invariant (LBI), etc. can be extended to every member of the 
family of distributions including the one for which it is known to be optimum. 
The null robustness has been considered by many authors including Dempster 
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(1969), Kariya and Eaton (1977), Dawid (1977), Chielewski (1980), Jensen 
and Good (1981) and Eaton and Kariya (1981), among others. The optimality 
robustness for multivariate distribution concerning UMPI and LBI properties 
has been treated by Kariya and Eaton (1977), Kariya (1981) and Kariya and 
Sinha (1984). In this paper we develop simple techniques for proving the 
robustness of the local minimax property of some tests in some complex 
problems concerning the family of elliptically symmetric distributions. In our 
views such a theory serves two purposes. Firstly, there is the obvious point of 
demonstrating such properties which are valid for all members of the family. 
Secondly, by showing that a test (which is locally minimax for the 
multivariate normal setup) is robust for the entire family of distributions we 
add more to the credibility of the test. 

As in the case of G-K (1964), our method of proof uses a slightly different 
version of the wellknown result that Bayes procedure with constant risk is 
minimax and the invariance approach through Hunt-Stein Theorem. This 
involves in finding the ratio of the probability density function of the maximal 
invariant under the alternative to that under the null hypothesis. We shall use 
Stein's theorem and Wijsman's representation theorem to find this ratio. In 
Section 2, we give sufficient conditions for a locally minimax test for the entire 
family of elliptically symmetric distributions. In Section 3, we treat the 
Gmanova problem to show that a generalized version of Pillai's test (see 
Kariya (1978)) is locally minimax for all elliptically symmetric probability 
density functions. Giri (1985a, 1985b) and Giri and Sinha (1984) have treated 
from this viewpoint the problem of independence and the problems of mean 
vector for this family. 

2. Locally minimax test 

In this section, we shall make clear the invariance structure under which 
the robustness of the locally minimax test holds and give sufficient conditions 
for a test to be locally minimax for all members of the family of elliptically 
symmetric distributions. Let;( be a space with associated a-field which, along 
with other obvious measurability assumptions, we shall not mention in what 
follows. Let x ¢ Z have a probability density function 

(2.1) f x ( x l O )  = B ( O ) q ( ~ u ( x l O ) )  , 0 e f2 , 

where ~u is a known measurable function from X onto y and q is a fixed 
function from y to [0,~) and is independent of 0. Let G be a group of 
transformations which leaves the problem of testing Ho:/9 e g2m against HI: 0 e 
£2n, invariant. The function ~u satisfies 

(2.2) g w ( x l O )  = ~(gxlO), 
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for all x ~ X, g c G, 0 e f2 and ~ e t~, the induced group of G as a continuous 
homomorphic image. The ratio R of the pdf of the maximal invariant T(x) on 
Z under 0~ ~ f2u, and under 00 e f2n0 (Stein (1956) and Wijsman (1967)) is given 
by 

(2.3) R -  - -  
dp  r fcf(gxlO,)8(g)It(dg) 

dP[oo fG f(gxlOo) ~(g) bt (dg) ' 

where l~(dg) is an invariant measure on G and O(g) is the inverse of the 
Jacobian of the transformation X ~ g X .  

ASSUMPTION 1. The group G acts transitively on the space y ~ ~u(xl 0). 

Remark 1. Under this assumption, it follows from Theorem 2.1 of 
Kariya and Sinha (1984) that R is independent of q. 

Let ~ be the space of values of Z= T(X). For each (a, r/) in the parametric 
space of the distribution of Z suppose that f (z ;  a, rl) is a pdf of Z with respect 
to some a-finite measure u. Assume that the problem of testing H0:0 e f2n0 
against Hi: 0 e f2n, is reduced to that of testing H0:a=0 against the alternative 
H1:a=2>0 in terms of Z. We are concerned here in a local theory in the sense 
that f ( z ;  2, r/) is close to f ( z ;  O, rl) when 2 is small for all q in (2.1). Through- 
out this section notations like o(1), o(h(2)) are to be interpreted as 2---0 
for any q in (2.1). 

For each a, 0 < a <  1, consider a critical region of the form 

(2.4) R = {U(x) = U(t(x)) > C.} ,  

where Uis bounded, positive and has a continuous distribution function for 
each (a, r/), equicontinuous in (a, r/)<a0 (fixed) for any q in (2.1) and 

(2.5) Po,,~(R) = a ,  Pa,,~(R) = a + h(2) + r(2,r/), 

for any q in (2.1), where, r(2, rl)=o(h(2)) uniformly in r/with h(2)>0 and 
h(2) = o(1). Without any loss of generality we shall take throughout this paper 
h(2)=b2 with b>0. 

Remark 2. P0.,(R) = a for any q in (2.1) implies that the distribution of 
U and the test with critical region R is null robust. 

Remark 3. Pa.,(R)=a+h(2)+r(2, rl) for any q in (2.1) implies that the 
distribution of U or the test with critical region R is locally nonnull robust as 
2~0.  
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Let ~0~, ~ be the probability measures on the sets {a=0}, {o'=/1}, 
respectively, such that 

(2.6) 
f 
f f(z;O,q) o (dq) 

= 1 + h(2)[g(2) + r(2)u] + B(z ,2) ,  

for any q in (2.1) where 0< c~ <r(2)< c~<o~ for 2 sufficiently small, g(2)= O(1) 
and B(z,/l)= O(/1) uniformly in z. 

Remark 4. In many applications the set {a=0} is a single point and (0~ 
assigns measure one to that point. Here we get 

(2.7) 
f f(z;Lq) ,x(dq) - f f(z;A,q) 

f(z;0,r/) 

By Assumption 1 this ratio will not depend on q. 

THEOREM 2.1. If  R satisfies (2.5) and for sufficiently small 2, there 
exist ~,~ and ~0a satisfying (2.7), then R is locally minimax for testing H0:~r=0 
against the alternatives Hi: a=2 for any q in (2.1) as 2~0 ,  i.e. 

inf Pa~( R ) - a 
(2.8) lim " = I .  

~-o sup inf P~,{¢~ rejects Ho} - a 

for any q in (2.1), where Q, is the class of  tests of level a. 

PROOF. Let r~=(2+h(2)[g(2)+C,r(2)]) -~. A Bayes critical region for 
(0,1) losses with respect to the a priori ~=r~  ~ + ( 1 - r a )  ~0a is given by 

(2.9) Ba(z) = {z: f ~f(z;2'q) ~l~(drl) >_ __l -ra ra } 

B(z,2) } 
Ca  . = z: u(z) + r(A)h(2) - 

By (2.5) and (2.7), Ba(z) holds for any q in (2.1). Write Va= R -  B~, Wa=Ba- R. 
Since sup IBa(z)/h(2)[ = o(I) and the distribution of Uis continuous, writing 

P$a(A)= f Po,~oa(drl) and P*a(A)= f P~,(A)~(drl) we get P~a( Wa + Va)=o( I ). 
Since with A = V~ or W~, e*~ (A) + e~'a (A)(I + O(h(2))), writing r~* (A) = ( 1 - r~). 
P*~(A)+r~(1- PT'a(A)), we get the integrated Bayes risk with respect to Ca as 
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It is interesting to note that the term of order 1 1 6  in the asymptotic 
expansion (2.6) reduces to zero, which will be discussed in the Appendix. 

In the case when pl=p2="'=,Uk=o in @=@(A, p), the formula (2.6) 
yields an asymptotic expansion for the distribution of linear combination of 
independent chi-square variables. A number of papers have been published 
on the distribution of Qk(l, 0). Among them, an approach based on linear 
differential equation by Davis (1977) appears to be useful for computation. 

If 1=(1, 1, ..., l)=e, say, in Qk(A, p), then Qk(e, p) has the noncentral 
chi-square distribution with k degrees of freedom and noncentrality para- 

k 
meter o 2 = z  p:,. An asymptotic expansion for the distribution of @(e, p) is 

~ = 1  

given by (2.6) with 

In the special case when A=e and p=0, Qk(A, p) has a chi-square 
distribution with k degrees of freedom, for which (2.7) further reduces to 
m,=k, wj= 1 and h= 1 / 3. In this case the formula (2.6) gives an asymptotic 
expansion for the distribution of the cube root transformation of the chi- 
square variate Qk(e, 0). A multivariate extension of the quadratic forms has 
been discussed by Khatri (1966) and Hayakawa (1966). 

2.2 Cornish-Fisher expansion 
The asymptotic expansion (2.6) can be used to calculate the probability 

Pr[Qk<qo] for an assigned value go. To obtain desired percentiles of the 
distribution of Qk(A,p), the Cornish-Fisher inverse expansion is very 
convenient. The method suggested by Hill and Davis (1968) is useful for 
deriving the expansion of this type. 

Suppose that an asymptotic expansion for the distribution of a certain 
variate Xn has the form 

We take ua so that, for an assigned probability (1 -a), 1 - a=Pr[Xn<xa]= @(ua). 
Then the Cornish-Fisher inverse expansion for xa is given by 

where D(1, denotes the identity operator and 
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D(,,= ( u -  Du)(2u- Du) { ( r -  I ) u -  Du) for r =  2, 3 ,... , 

with D,=d/ du, the differential operator. 
Applying this general formula to our problem, we have the following 

theorem. 

THEOREM 2.2. The Cornish-Fisher inverse expansion for thepercentile 
q a  of the distribution of Q k ( ; l ,  p)  defined by (2.1) is given by 

and 

where m,  and h are, respectively, defined in (2.2) and (2.4), ua is thepercentile 
point of the standard normal distribution and the coefficients b,, using the 
notation wj=mj/ml for j=2, 3, ..., are given below. 
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From Gleser and Olkin (1970) and Kariya (1978), it follows that a maximal 
invariant in the space of X under the subgroup H= GI×F of G is (SffX, V), 
S2(X, V)) 

SI(X, V) "~- (XII2),X(13)) ( 
~(22) V(23) ~-1 

) V(32) V(33) 

S2(X,V) = ( X . 3 ) ) '  X(23) )VI31)(X(13) 
X(23) " 

Thus, a maximal invariant under G depends on X only through U=(U~, U2, 
U3), where 

(3.4) UI = (X(12),X(13)) , U2 = X(23) , U3 = (X(32),X133)) . 

Since n[+n3>p by Assumption 2 we conclude that U{UI-t-U2U2 is non- 
singular with probability one. Furthermore a corresponding maximal 
invariant in the parametric space of (0, X) is given by 

(3.5) ( ( '  where ( = 0112)X22 [/2 . 

Since the problem of testing H0 against H~ remains invariant under 
translations of X by Fand  since given Z'>0, there exists a p × p  matrix gt e G~ 
such that X=gtgf, without any loss of generality we can assume that 011 l)=0, 
8(2~)=0, 0122)=0, X = I  and take G=O× Gt. 

The marginal probability density function of U is given by 

(3.6) f(ul~) = q(tr[(ul - ~*)'(ul - ~*) + u~u2 + u~u3]) , 

where 0112)=(, (*=(( ,  0): nlX(p2+p3). The group G acting on the left on X 
reduces to the subgroup H= Oil~l× G* acting on the left on U as 

gU = ( O{ll)U1g~,g(23)g(23), U2g~) , 

, [gl22) gl23)) 
where g~ e G* with gt =1 0 : (p2+p3)×(p2+p3) nonsingular matrices 

g(33) 

in the block form and ~ is the integral of q with respect to the remaining 
variables XI~I), XI22), XI2~). Note that the subgroup Oi22)x 0{33)can be ignored 
as it does not affect U. Kariya (1981) has shown that the distribution of the 
maximal invariant under the null hypothesis remains the same for any pdf of 
the form (3.1). Kariya and Sinha (1984) have shown that if q e Q; the class of 
continuously thrice differentiable functions from [0,oo) to [0,o~) satisfying 
Assumption 2, 
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ASSUMPTION 2. 
(1) fw, q(trx'x)dx= 1, 

(2) fc* (trg*g*'fZl-qli) (trg*g*')tg(dg*)<oo, i-- 1, 2, 3,  

(3) ~3)(x)<0 and ~13) nondecreasing, where ~lit(x)= d i -q ( x ) / dx  i. 

Then the test which rejects H0 whenever 

(3.7) RI = atrz(z'z + V22.3)z(I + T2) -1 - t r(I  + T2) -1 ~ c , 

where c is a constant depending on the level of significance a, where 
a=(~1+~3--p3)/p2, z=(I+ -1/2 -1 -1 , T2) ( X ( 1 2 ) - X ( 1 3 }  V(33)V(32)), T2=X{13)V(33)XI13), i s  

LBI for testing Ho against H1 for any pdf of the form (3.1) when c~=tr~'---0. 
For the Manova problem RI reduces to 

(3.8) r v VJ ~-1 v v  R~ = t X(12)(X(12)X(12) q- (22)) A(12) ~ ¢ • 

For the multivariate normal setup Schwartz (1967) has shown that the test 
given in (3.8) is LBI and locally minimax as a--0. 

Remark 5. The Assumption 2 is satisfied for a large class of distribu- 

tion especially in the case of a normal mixture q(x)=f: e-aXdF(x) provided the 

condition on moments holds. Kariya (1981) has shown that when 
min(pl,p2)= I, without any additional condition on q except its convexity the 
UMP property of the Manova test given in (3.8) holds. 

In G-K (1964) the first step in verifying the local minimaxity of T 2 and R 2 

tests, etc., is to reduce the problem using Hunt-Stein Theorem. Let 
Gr(p2+p3) be the multiplicative group of (p2+p3)×(p2+p3) nonsingutar 
upper triangular matrices. Both the groups Oi1 u and Gr satisfy the conditions 
of Hunt-Stein Theorem and so does their direct product. Hence, for each a, 
there exists a gr e Gr and Oil u invariant level a test which is minimax. Using 
Stein (1956) and Wijsman (1967) the ratio R of the pdf of the maximal 
invariant with respect to Gr and Ollu under H~ and under H0 is given by 

R {f~(tr[(Ol~uUlgr- ~ * ) ' ( O ( l l } U l g T -  ~*) + (3.9) = g(33)A(23)-- V ,  X - '  (231g(33) 
g 

+ 

- x ' x  - '  )} + ~;133) t23) t23)gt33) + grU3U;g~"])It(dgr)v(dOI11) , 

[g(22) g(23) ]=(g0) as g above (but gr is upper triangular, i.e. g~22~, where gr=~ 0 g(33) 1 
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g(33) are upper triangular) 

(3.10) /t(dgr) = ]g(22)g(22)] (n'+m-p3)/2 ~ ~ ,  ,(.+p~)/2 e~'(g~.)-i/Z dg T g 33)g(33) I 

and v(dOl~l) is the invariant measure on O(~1. It may be noted that a left 
invariant Haar  measure on Gr is 

(3.11) p~_.[p3 (gZ)-(m+p,*,-i)/2 dgr  . 
1 

It may be remarked that we are writing gr  also as 

g T  

g l l  g12 .. .  g l k  

0 g22 . . .  gzk  
. . . 

* , ~  

0 0 . . .  gkk  

, k = p 2  + p 3  , 

and the inverse of  the Jacobian  of  the transformation u--,gru is 

g ~t (q~+q~)/2 ~ ~t ~12 
(22)ig(22) g(33}~(33) • 

Since UfUI+ U;U3 is nonsingular, there exists g* ~ Gr such that g*(U{U~+ 
U'U" *' I 3 3)gr = • Hence, the integrand in the numerator  of (3.9) can be written as 
(writing grg *-l =gr=(g~/) ~ Gr) 

(3.12) W p ~(tr[grg~ - 2~'O(~)(Wzgb2) + 3g(23)) + g(33)x(23)x~23)g63)] + a )  

X p \ P = q(tr[g(22)g('22) + g123)g('23) + g(33)(I + x(23) (23))g(33) 

~Z ' - 2~'Ol~l)(W2g(22) + 3g(23))] + a) 

where a = t r ~ '  and (W2, ' ' + X  ' X ' 1413) = Utgr=(X(t2)g1221 I13)g(231, (t3)g(33)). It may 
be verified that 

(3.13) 

trW~W2 = trz(z'z + V22.3)-lz'(I + T2) -1 , 

trW;W3 = - t r ( I +  T2) -1 + q l  • 

-t" t -t- p -1/2 N o w  transforminggi33v---g(33) ( I  S(23)g(231) a n d  writing g(33) ( I  XI23)X(23)) 

=g(33), the ratio R in (3.9) can be written as 

dP~ 
(3.14) R -  dpro 

f~(tr[grg'r - -  2~'Om)( W2g{22)' + W'3g{23))' + ~ ] ) / l ( d g r ) v ( d O i l l ) )  

f~(trgrg})/~ (dgr) v (dO(,ll) 
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To evaluate the numerator  of R, we expand the integrand q in the numerator  
of (3.14) when t r y 0  as 

(3.15) 
q(2) 

~(trgrg~) + ~ ) ( t r g r g ~ ) ( - 2 r / +  6) + -- f-  (trgrg~)(-2q + 6) 2 

+ + 6 )  3 , 
6 

where 

(3.16) 
r '  IV, ' W ' , q = t ~ Ol~)( 2g(22) q'- 3g123)) 

V = trgrg~ + (1 - a)(-2q + 6 ) ,  O < a < l .  

We shall now evaluate the integral of each term of (3.15) by using the 
following wellknown results 

(3.17) fo, ( trOQ)kv(dO) = 
trQQ' if k = 2 ,  

?/1 

0 if k is o d d .  

This is due to James (1964). 

f~glz2~glE3)~li)(trgrg~)/a(dgr) = 0 , i = 1, 2, 3 (3.18) I 

This follows f rom the fact that the measure ~l°(trgrg'r)14dgr) is invariant 
under the change of sign of gl22~ to -gt22j. 

-~f-Tg~gtk~Ii)(trgrg~)l~(dgr) = 0 if i ~ l , j  ~ k (3.19) o 

(3.20) f cflr~til (trgrg~)l~(dgr) = 0 .  

The integration of the second term of (3.15) (using (3.20)) gives 

(3.21) af~tl)(trgrg~)lt(dgr)v(dOtlL)) = trfc;fitl)(trgrg~)(dgr) 

= afl~ (say) . 

The integral of  the third term of (3.15) becomes 
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2 [ tr(w2g(221 + 3gl23))~4( 2gc22t + w3g123)) q (trgrgr)p(dgr) - -  W v v W v p t - - ( 2 )  v (3.22) I=r/l~oT 

+ a___f fafil2)(trgrg~)p(dgr) 

_ 2 faTtr(w2g(221~.~g122) wS)~t21(trgrg~)p(dgr) 
rll 

2 , • 2 
+ -Z- fc~tr(w3g1231 ~ ~gt23) wS) ~I I )(trgrg~)p (dgr) 

ql  

+ a f fafilz)(trgrg~)p(dgr) " 

Write F=(yo)=~'~. B=(bu)= W~W2. E=(eo) = W~W3.3i=y,. 

do = fag~ql2)(trgrg~)p(dgr), i # j ,  

cj : fog~.~12)(trgrg~)g(dgr) . 

Hence 

(3.24) 

and 

(3.25) 

foTtr ( WE W2g(22)~'~gl22)) ~12)(trgrg~)p (dgr) 
= ftr(Fg&l Bg122))~12)(trgrg~)/u(dgr) 

= Z ( Z  ald,~ + , > :  ajcj)b~, 

f a t r (  W~ W3gI23)~'~g(23)) ~2)(trgrg~)p (dgr) 

To evaluate du and q we proceed as follows. Let 

L = trgrg~-, 

k = faf l (gr)dgr , 

ei = g~/ L , 
era+, = g ~ , + , /  L , 

e2m+i-1 = gZi+2/ g , 

h(gr) = ~(2)(trgrg~) , 

m = p 2  + p 3  , 

i =  1 , . . . ,m ,  
i = l , . . . , m - 1 ,  
i = 1  .... , m - 2 ,  
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2 
era(re+l)~2 = g m l /  L , 

D = forq(trgrg~) f i  (g~.)~,+,,-,,,--i,..2 ~ .~2.1.~p, i,/2. tg~) agr 1 j=p2+ I 

_ f .~l~,+,.p,-il:2~ ~,l,.p,-,j:2-12) . . . .  
N - j G ,  c .... q t c lagv .  

Since h(gr)/k is a spherical density of go's i<j, L and e=(el,..., era(re+l)~2) a r e  

independent and e obeys Dirichlet distribution D(1/2, .... 1/2) (Kariya and 
Eaton (1977)). Hence, with N1=nl+n3-p3, N2=n+p3, 

(3.26) 

and for j<p2 

do = L g~q'2)(trgrg ~) ~ (g~.),~,-,),,2 I~ (gJ)'N~-W2dgr 
ur  p~+l 

= N M (say), 

= N M ( N 1 - j  + I) . 

Thus, we get from (3.22), 

(3"27' ' = 2 N M [  ( ) ( ) ] tll ~j ~ ai + ( N1 - j + 1)ai bo + ~ E i ai ekk + O(a) . 

Now consider the integral of the fourth term in (3.15). 

W ' W ' Iql = Itr(~'Ol~l)( 2gi22) + 3gi23)))1 

<_ (tr(grg~))m(tr(~'(Oi111 W2,01111 Ws)(Oi111 W2, Oi111Ws)'~)) 1/2 

< (t rgrg:~)l/2 (t r ~,~)1/2 , 

as (W2, I4'3)(W2, W3)'= Ul( U{U~ + U~Uz) -l, U[ <_I. Since V>_trgrg'r- 2a 1/2 
• (trgrg'r)I/2+a and 

(-2q + a) 3 _< 8(trgrg~)3/2a 3/2 + 12(trgrg~)a 2 + 6(trgrg~)l/2a 5/2 + a 3 , 

by Assumption 2 we get 
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fG q(S)(V)(-2r] + a)Sv(dO(]~))lz(dgr) 

_ fof i t3)(V) l-2r/+ alSv(dO(]]))#(dgr) 

<_ fGfiO)(trgrg~ -- 2(tr(grg~))l/2a]/2)l-211 + ~rl 3v(dO(l,))fl(dgT) 

< El cifGfi(31 (trgrg~ - 2(trgrg~)1/2 al/2)(trgrg~)(4-il/2 a(l+O/2lz(dgr) 

: o ( a ) ,  

where c~=8, C2=12, C3=6 and c4=1. Hence, we can write with ~i=ag/a, 
i=l,...,p2 

(3.28) R = I + - - ~  f l ] + 2 - - - - ~  ~ i + ( N ~ - j + l ) ~ s  bjj+trW~W3 

+ B(x,~,~r) ,  

where ~=(~1,..., ~p2) and B(x, a, ~)=o(a) uniformly in x and ~. Now letting G0 
assign measure 1 to the single point ~=0 while ~a gives measure 1 to the single 

= ( ~ , .  ~'2) (say) whose j-th coordinate ~*=(Nl- j ) (Nt- j+l)  -1 point * * .., 
• p~ NI(N~-p2) so that 

P: NI 
x ~* + (N] - j + l) ~* - 
'>J p2 

for all j ,  we see that for testing H0:a=0 against H~: o-=-2 the condition (2.6) is 
satisfied for any q in (3.1). The condition (2.5) is now obvious. Hence, we have 
the following: 

THEOREM 3.1. The test given by the critical region RI>_C is locally 
minimax with respect to the contour 

-1 p {(0{]2), 022"3)[ tr0(12)$22.3 0(12) = ~.} , 

as 2--'0. 

Note. This also establishes the local minimaxity of the test R~> C for 
general Manova problem in the normal multivariate setup. The most general 
result known so far in this context is due to Kariya (1978) where he took 

0=(0(11) 0(12)0(13)) with O(o):ng×Pj, 
0(21) 0(22) 0(23) 
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with r/l +r/2--r/, p l  +p3 +p3- -n .  

REFERENCES 

Chielewski, M. A. (1980). Invariance scale matrix hypothesis tests under elliptical symmetry, J. 
Multivariate Anal., 10, 343-350. 

Dawid, A. P. (1977). Spherical matrix distributions and a multivariate model, J. Roy. Statist. 
Soc. Ser. B, 39, 254-261. 

Dempster, A. P. (1969). Elements of  Continuous Multivariate Analysis, Addition Wesley, 
Reading, Massachusetts. 

Eaton, M. L. and Kariya, T. (1981). On a general condition for null robustness, Tech. Report 
No. 388, University of Minnesota, Mineapolis. 

Girl, N. (1985a). On a locally best invariant and locally minimax test in symmetrical 
multivariate distributions, Rapport de recherche No. 85-4, Drp. de mathrmatiques et de 
statistique, Univ. de Montrral. 

Girl, N. (1985b). Some robust tests of independence in symmetrical distribution, Rapport de 
recherche No. 85-5, Drp. de mathrmatiques et de statistique, Univ. de Montrral. 

Girl, N. and Kiefer, J. (1964). Local and asymptotic minimax properties of multivariate tests, 
Ann. Math. Statist., 35, 21-35. 

Girl, N. and Sinha, B. (1984). Robust tests of mean vector in symmetrical multivariate 
distributions, Teeh. Report No. 85-01, Center for Multivariate Analysis, University of 
Pittsburgh. 

Gleser, L. J. and Olkin, I. (1970). Linear models in multivariate analysis, Essays in Probability 
and Statistics, 267-292, Wiley, New York. 

James, A. T. (1964). The distribution of matrix variates and latent roots derived from normal 
samples, Ann. Math. Statist., 35, 475-501. 

Jensen, D. R. and Good, I. J. (1981). Invariant distributions associated with matrix laws under 
structural symmetry, J. Roy. Statist. Soc. Ser. B, 43, 327-332. 

Kariya, T. (1978). The general Manova problem, Ann. Statist., 6, 200-214. 
Kariya, T. (1981). Robustness of multivariate tests, Ann. Statist., 9, 1267-1275. 
Kariya, T. and Eaton, M. L. (1977). Robust tests for spherical symmetry, Ann. Statist., 5, 

206-215. 
Kariya, T. and Sinha, B. (1984). Nonnull and optimality robustness of some tests, Tech. Report 

No. 85-01, Center for Multivariate Analysis, University of Pittsburgh. 
Schwartz, R. (1967). Local minimax tests, Ann. Math. Statist., 3g, 340-360. 
Stein, C. (1956). Some problems in multivariate analysis, part 1, Tech. Report No. 6, Statistics 

Dept., Stanford University. 
Wijsman, R. A. (1967). Cross section of Orbits and their applications to densities of maximal 

invariants, Fifth. Berk. Symp. Math. Stat. Prob., Vol. 1. 389-400, Univ. of California 
Press. 


