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Abstract. The standard analysis of variance procedures were developed 
and organized primarily in the context Of the normal linear model; central to 
this organization is the orthogonality of components and the use of 
orthogonal projections. This paper examines two model-type generaliza- 
tions of the normal linear model: the regression model with nonnormal error 
and the exponential linear model. Principles of conditioning and measure- 
ment are used to develop corresponding analysis-of-variance procedures. In 
each case a linear fibre or foliation structure replaces orthogonality; 
however, for the intersection of the two model-types, which is the normal 
linear model, the two quite-different fibre-foliation structures reduce to a 
product space structure, which with the appropriate inner product, is the 
usual orthogonality. For implementation, conditional-marginal densities 
are involved, the marginalization aspect being the restricting aspect: the 
marginalization degree is the number of nuisance parameters for the 
regression model-type and is the complement of the number of free 
parameters for the exponential model-type. Approximations are available 
and will be discussed subsequently. 

Key words and phrases: Analysis-of-variance, exponential model, trans- 
formation model, sequential parameter structure. 

1. In t roduct ion 

Analysis of  variance exists as perhaps the most wide-spread technique of 
statistical analysis. The technique both in name and broad substance is due to 
Fisher (1925) with one of his first works on the subject providing most of  the 
major directions for the topic. 

The present form of the analysis of variance is organized largely in a 
pattern based on successive hypotheses and derived primarily in the context  of 
the normal linear model. In this paper, we direct our attention to two model- 
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types that substantially generalize the normal linear model; both generaliza- 
tions retain the linearity property but generalize in quite different directions 
with only the normal linear model in the intersection. For the two model-types 
we examine the statistical procedures appropriate to testing successive 
hypotheses. 

The first model-type is the transformation or structural model as given by 
y=Xfl+trz where z has a specified distribution on R ~ and tr is known or is 
unknown (Sections 3 and 4). The second model-type is the continuous 
exponential model f(ylO)=exp {t'(y)O-q~(O)}h(y) on R" (Section 5). If the 
parameters and variables are equivalenced by 8 ' = ( -  1 / 2tr 2, fl'/tr 2) and t=y'(y, 
X), then these two model-types intersect in the normal linear model with l iD 
normal error (Heichelheim (1966)). 

The standard analysis of variance is concerned with testing a succession 
of linear hypotheses. In this paper, we examine such a succession in the fully 
partitioned case involving one real parameter at each step. The ordinary 
approach in such cases involves the introduction of one parameter at a time 
and the corresponding freeing-up of the model to obtain a closer fit to the 
data. The sequential testing then follows by examining the fitted components 
in the reverse order. 

Consider the successive introduction of real parameters, one at a time. 
Initially, in some complete sense, there is a fully specified distribution sayf(y) 
for the response. A first parameter, say 01 in I21, is introduced freeing the 
distribution up as say f (y lS0  with a hypothesis 0~=0 ° giving the initial 
f(Yl 8°l)=f(Y). A second parameter say 02 in 02 is then introduced freeing the 
distribution further to say f(ylO2, 01) with a hypothesis 02=820 giving the 
preceding f(y1020, Ol)=f(y181). And finally, in this manner a p-th parameter 
say 0p in I2p is introduced freeing the model as f(ylSp, Op-~,..., 01) with a 

0 hypothesis 0p= 8 ° giving f(Yl Op, Op-1,..., O,)=f(ylOp-1,..., 0i). For reasons to be 
clarified later we write the full parameter as Op/.../02/01. In this notation, we 
are concerned with fitting the succession of models indicated by 0 ° / ' 0 °' O ° " ' ' /  2/  1, 

0°/... / 820/01,..., Op/ ... / 02/ 01. The testing is conducted in the reverse order: 
g=0o,  0 00 0e-l=Op-l,..., 02= 2, 01=0 °. 

For the ordinary regression analysis of variance the 0 ° values are zero; 
this specialization is obtained from the more general ease by removing from 
the initial data, the fixed effects indicated by the 0 °. 

For the transformation model-type (a known case) the succession of 
models takes the form y=e, y=O~xl +e,..., y=&x~ +... + Opxp+e involving a 
sequence of explanatory vectors x, .... , xp. In this succession, 0, {O,x~}, 
{&x,+Ozx2},... enter as a sequence of increasing sets describing possible 
locations for the distribution. For the exponential model-type f(ylO)= 
exp {y'XO-~0)}h(y), the same succession provides a sequence of increasing 
sets indexing linear forms in y which in turn determine the density. 

For the parameter structure, consider for simplicity the casep=3 and, for 
familiar interpretation, the regression case with the succession of possible 
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locat ions  0, 01Xl, O1XI-~-02X2, 01Xl-Jr-82X2 "~-83X3. With  81, 82 free, the i n t roduc t ion  
0f83 is in terms of the vector x3; 83=8 ° (=0) gives a 2-dimensional region in R n, 
{8tx~+82xz+8°x3: 8~,/92 ~ R}; an alternative value for 83, say 8~, also gives a 
2-dimensional region {81Xl-~-82X2q-8~X3"- 81, 82 E R}. Thus, the additional 
parameter corresponds not directly to the vector x3 but to the 2-dimensional 
affine set L(x~, x2)+83x3; that is, the vector x3+a~x~ +a~x2 would equally have 
accomplished the generalization. In a similar manner, one step earlier the 
additional parameter 02 corresponds not directly to a vector x2 but to the 
1-dimensional affine set L (Xl) + 82x2; that is, the vector x2 + a'~'x~ would equally 
have accomplished the generalization. 

The notation Op/.../02/01 is thus used to indicate the implicitfile-system 
tree structure with 8p indexing at the top level, 8p-~ indexing within each 
branch from the top level, and finally 01 indexing within each tree branch from 
the second bot tom level. The particular branch. 8p°/• ~8°'8 ° • "/ 2/ ~ records the 
succession of hypotheses and the initial mode l f (y )  corresponds to a bottom 
vertex on the tree. 

A notational issue is how to relate 01 in the 02--8 0 branch with 01 in some 
0 other branch say 82=0~; and similarly/92 in the 03=83 branch with 02 in some 

other branch say 03 =8~. This can be viewed as a nuisance parameter difficulty 
and one pragmatic resolution is to have the natural estimate of 01 when 02 = 0 ° 
be the estimate of the appropriate/91 for each of the other 02 values, and so on 
up the tree. 

The succession of hypothesis generates a tree structure and the usual 
product  space notation for the parameter space provides a misleading view 
that does not address the nuisance parameter issues or indeed more general 
issues. 

In this paper, we restrict our attention to successive tests of hypotheses 
and to the related confidence interval at a terminal stage; the pattern of the 
successive hypotheses is assumed given. Theoretically indicated analyses for 
the two generalized model-types are developed; some background details may 
be found in Fraser and MacKay 0975, 1976). We do not address, however, 
the larger questions concerning the choice of the sequence of hypothesis, or 
concerning exploratory analyses that can follow from the techniques 
developed, or concerning issues arising if the sequence is not fully split to 
individual real parameters. Some development of tests for this last problem 
may be found in Fraser and Massam (1985). 

For the two general model-types, the methods available in the literature 
for testing successive hypotheses and forming confidence intervals are 
pragmatic or asymptotic: for the regression model with nonnormal  error the 
usual methods address the marginal distribution for elements in the usual 
analysis of variance; for the continuous exponential the usual method, GLIM 
for example, examines likelihood drop or deviance in relation to the 
asymptotic chi-square approximation. 

In this paper, we use conditioning and measurement principles to 
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determine appropriate variables for the two model-types and thus obtain 
corresponding tests and confidence regions. This leads to generalized analysis 
of variance procedures appropriate to each type, procedures that are 
fundamentally different, with opposite sample space structures; however, 
when specialized to the intersection normal linear model, they become 
equivalent; in a sense quite different techniques reduce to the same technique, 
a consequence of the rotational symmetry of the l iD normal. 

In conclusion, we note that the ordinary analysis of variance is organized 
largely in terms of the criteria of orthogonality and statistical independence 
for the components of the usual analysis of variance table. In the two more 
general contexts, these criteria are not directly appropriate or relevant, and 
are replaced by a sample space tree structure and the use of conditional- 
marginal distributions. We discuss the principles and conditioning briefly in 
Section 2 and then examine the transformation model with known (unknown) 
scaling in Sections 3 and 4 and the continuous exponential model in Section 5. 
Section 6 contains some concluding remarks. 

2. The principles and the tests and confidence intervals 

We investigate transformation and exponential linear models from the 
viewpoint of a fully partitioned succession of hypotheses. Testing is performed 
in a sequence opposite to that for fitting and for an 'i-th' row involves testing 

0 0 o o 0,-+,/8i/0~-1/'"/8~ and constructing corre- 
spondingly a confidence interval for 8i. Theoretical principles discussed in this 
section and elaborated on in succeeding sections will lead for each model type 
to a real-valuedpivotal quantity ti and its correspondingpivotal density hi( ti). 

Given the pivotal variable and pivotal density the details for testing the 
hypothesis and forming a confidence interval are relatively straightforward. 
For testing the hypothesis 0~=0 °, the observed value of the corresponding 
pivotal t~ can be calculated and an observed level of significance (OLS) 
obtained; for this OLS some freedom of choice is available: equi-probability 
tails; equi-density tails; conical test (Fraser and Massam (1985)) relative to a 
modal or central pivotal value. 

For a confidence region for 0~, a (1 - a )  acceptance region for the pivotal 
variable t~ can be based on one of the just mentioned OLS tail criteria and the 
standard inversion produces the confidence interval or region for 0~. A minor 
additional complication arises in the exponential case and will be discussed in 
Section 5. 

Both the tests and confidence regions are computationally straight- 
forward provided the key variable and its distribution is available at each 
stage. Marginalization aspects can restrict the availability of the needed 
densities; approximations will be discussed subsequently. 

Conditionality in one of two forms is the primary theoretical principle 
used. Before discussing this we do mention a central issue concerning 
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conditional versus unconditional procedures. As conditional procedures 
quite generally lead to a shortfall with respect to all the standard optimality 
criteria (thus larger variance, less power and greater confidence-interval mean 
length), the choice of a conditional procedure cannot be supported by these 
standard macro properties. 

Our conditionality approach involves the search for a conditioning 
variable that describes a known characteristic of the physical context (Fraser 
(1968)) whose occurrence is not related to the parameter at issue, or the search 
for a conditioned variable that uniquely measures the particular parameter at 
issue. For some current directions for conditionality see Amari (1982) and 
Barndorff-Nielsen (1980). 

For the transformation model, we work with the error based or structural 
model version. In the context of observed data and the structural model, a 
hypothesized parameter value allows the direct calculation of an error value 
which by basic probability theory, then predicates a conditional distribution 
(Fraser (1979)). The same result can be obtained in terms of conditioning on 
an ancillary. We specifically avoid this alternative basis: conditioning on 
ancillaries (Evans et al. (1986)) implies the strong likelihood principle and this 
is viewed as too strong a principle; also, conditioning in the context of 
multiple ancillaries effectively leads to contradictions (Fraser (1973, 1979)). 

For the exponential model-type, we seek a conditioned variable that 
uniquely measures the parameter at issue; this is obtained by likelihood map 
arguments (Fraser (1979), Subsection 4.3). As part of this, the conditioning 
variable will have a distribution that depends on the free nuisance parameter 
and perhaps indeed on the parameter at issue; while the latter possibility may 
be less than one might wish for, we view it as a simple byproduct of obtaining a 
unique conditioned variable that involves only the parameter at issue. 

The use of different approaches for the two model directions might be 
viewed as an expediency. In part, this can be acknowledged but we do note 
that the two model-types have different structure which in turn provides 
different access for measuring or assessing the particular parameter. The two 
model-types are examined in detail in the next three sections. 

3. Nonnormal regression, known scaling 

Consider the regression model y=fllXl +... +fl,x,+e=Xrflr+e where e has 
a known distribution and X, has full column rank. Let O=fl,/.../fix reflect the 
model fitting and reverse testing pattern and suppose the null effects have 
been removed so that f l°=0 for eachj.  

For notational convenience later, suppose there is a saturated set 
of vectors Xl,..., x, so that the model can be written y = X ,  fl,+e, with 
fl,+l . . . . .  f t .=0 for the model as initially given. Also let Vl E L(X1), V2 E 
L(X2) ..... v. ~ L(X,,) be any linearly independent set of basis vectors and let 
II,= (v~,..., v~) and X.fl,,= V.a.; then L(X,) = L(Vr) and X.= V. T, It. = X. T -1, a. = 
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Tfl,,, fin= T -~ a,, where Tis an n × n  upper triangular matrix. Let b,,(y)=b,, and 
a,,(y)=a,, be the coordinates with respect to X, and V,; then a ,=  Tb,, and 
b,,= T-~a,,. This alternative notation will be used in Section 4. 

Now consider testing the i-th parameter [3~=,8 ° (=0), that is, testing 
~r 0/... / ~/0 / ~i-I/"" / ~1 given flo/... / flo+l / fli/""/~1. The given model then has the 
form 

(3.1) y = fl~xl + ... + flix~ + e .  

For a response vector y0 we can solve (3.1) for error characteristics: 

(3.2) 

and thus 

(3.3) 

yO + L(Xi )  = e + L (X i )  , e ~..V ° + L(Xt)  , 

(bn(y  ) , . . . ,  bi+l(y°)) , (b , (e) , . . . ,  bi+i(e)) = o 

The more restricted model with fl;=flo (for confidence use, allow a non zero 
value) gives in the same manner  

(3.4) (b , (e) , . . . ,  b,(e)) = (b , (y° ) , . . . ,  b i (y  °) - flo) . 

Thus the single step tightening of the parameter hypotheses gives us prec ise ly  
one  add i t iona l  d a t u m ,  

(3.5) b,(e) = b i (y  °) - flo = b o . 

Note that the parameter  fli in model (3.1) occurs uniquely in the pivotal 
variable 

(3.6) b,(e) = b~(y °) - ~ i ,  

bi+l,..., b,, (for simplicity we write bj(y°) = b°). as examined conditionally given 0 0 
Let f (e)  be the density for e. T h e n f ( y - X , , f l , , )  is the density for y and 

(3.7) f ( X , ( b ,  - fl,))lXnl , g(b , )  = f ( g , b , ) l g ,  I 

are the densities for b , ( y ) =  X-, ly,  b , (e )= b , ( y ) - f l , .  Now let gt~](bi,..., b,)  be the 
marginal density of (bi,..., b,) obtained from (3.7). Then the conditional 
density of the pivotal b~=bi (y ) - f l i  given b°+l,..., b ° is 

bi+l,..., b °) gv](bi, o 
(3.8) g~(bi) -- o 

gti+l](bi+l,..., b °) 
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Tests and a confidence interval for fli, then follow as discussed in Section 
2. The hypothesis fli=O gives the observed value b i = b i ( y  °) for the pivotal 
variable b i = b d y ) - f l ~  and this can be compared with the 1-dimensional 
distribution gtq(bg) and a corresponding OLS calculated. The confidence 
interval for fli given fl~+l . . . . .  fin=0 is obtained from a (1 - u) interval (b~, b/U), 

(3.9) flblU gi(bi)dbi  , 

for the pivotal bi-=bi(y)-fli, and is given by 

(3.10) (b i ( y  °) - bY,  b i ( y  °) - biL) . 

The essentials of the sequential testing can be summarized in a 
generalized analysis of variance table with i-th row as follows: 

Parameter: ~?/.../1~°+1/~i/.../~2, 
Effect: fli = flo, 
Variable" b°~/ . . . /b°+~/bi / . . . /b l  , 
Observed" bi = b i (y  °) = b ° , 
L-drop: zl~. 

For this we note that the successive hypotheses generate a sample space 
structure that is in direct correspondence with the parameter space structure 
f l , / ' " / f12 .  Accordingly, the sample point can be designated as b n ( y ) / . . . / b 2 ( y ) :  
bn indexes an ( n -  1)-dimensional affine subspaee, bn-i an (n-2)-dimensional 
space w i t h i n  a preceding space, and so on in the pattern of introduced 
information in the succession of hypotheses. Note carefully that the sample 
space partitions and tree structure are i n d e p e n d e n t  of the coordinates used 
and thus are not affected by a change from the (b~) coordinates to some 
alternative (a,) coordinates as described at the beginning of this section. 

The likelihood drop analysis for such a sequence of hypotheses gives zIi 
for the i-th row which is the reduction in maximum log-likelihood when fli is 
restricted to flo. The probability density for the data can be written 

( 3 . 1 1 )  0 0 0 b, )g , (b ,  - f l , , . . . ,  b°-2 fl,-2 I b ° fl,) g[i+l](bi+l,..., f l i ) f (b  ° - - - , 

where f designates the conditional density for b2,..., b~-2. Then 

(3.12) /'li • s u p ( l l ( ~ i )  -~- 12(jOi)) , 
p, 

where 12(fli) =In g i (b° - f l i )  - I n  g i ( b ° - f l  °) is likelihood drop from fli to fli ° for the 
bi+2,. . . ,  br ,  and theoretically indicated inference variable b d y )  given 0 0 
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12(i,) = sup lnf(b , , . . . ,  b , ,  I b ° ] ~i) 
b l , . . . , b ,  ~ 

- s u p l n f ( b l  .... ,b~-~]b ° - f l  °) 
b~, . . . ,b ,  j 

= In m(b ° - fli) - In m(b ° - f l°),  

where m(b°-fl~) is the maximum attainable density for bl,..., b,-1 when the i-th 
parameter is fl~. The first term in (3.12) is central to what likelihood drop 
should record; the second term, however, is indicating some estimation 
effectiveness for rows higher in the table and thus can be viewed as 
inappropriate to the assessment of fl~. 

4. Nonnormal  regression, u n k n o w n  scal ing 

Consider now the ordinary regression modely=i~x~ +... +irXr+ae=Xrir+ 
ae where e has densityf(e) and Xr has full column rank. We assume that the 
parameters have been ordered so that O=fl,/...//31/a reflects the model fitting 

0 
and reverse testing pattern and that relocation gives fli=O,..., fl°l=0. The 
analysis in this section corresponds closely to that in the preceding section but 
some details need special attention. 

For notational convenience only, we allow the more general model 

(4.1) y = X n - l i n -  1 -4- ae 

using details from the preceding section. For this the parameter tree is 
in-I~ ""~ill~t7 with a>0.  This is not a fully saturated model with a>0,  but is 
easily handled and casts light on more general situations. We also add a 
complementing vector x, but for some notational simplicity take it to be 
orthogonal to X~-~ and of unit length. Then b,-l(y)=(X'-~X~-O-tX~-~y gives 
the first ( n -1 )  coordinates of b,(y) and b,(y) is the signed length of the 
residual. We write c(y)=sgn b,(y) and s(y)= I b,(y) l; let c o be the observed sign 
and s o the observed length for the residual. 

Now consider the sample space structure generated by the successive 
hypotheses on the full model. For the general model l , - ~ / ' " / a ,  we have 
y=X~-~fl~-~ +ae from which c(e)=c(y) is the unique error function available 
with observed value c(e)=c(y°)=c °. 

The unique function of fl.-i that is available is 

- l . - ,  b ° - , ( e )  

(4.2) s ( y )  - s(e - 
0 and it has observed value tn-l=b,-l(y°)/s(y °) under the hypothesis ft, 1=0; 

the relevant distribution is that of t,-1 given c °. 
With hypothesized values fl;÷1=0,..., ft,-l--0 we obtain the unique 
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funct ion 

b i ( y )  - f l ,  b ~ ( e )  (4.3) - - -  - t i ( e )  , 
s ( y )  s ( e )  

o 0 of fl,, and it has observed value t i = b i ( y  ) / s ( y  °) under  the addit ional  fl,.=0. 
Thus  we see that  the single step t ightening of the parameter  hypothesis  gives 
one addit ional  error characteristic 

(4.4) t ,  = (b i (y )  - f l i ) / s (y )  

f rom a responsey  and parameter  valued fl~. The dis t r ibut ion of ti for tests and 
confidence intervals is condit ional  on values calculated f rom preceding 

0 0 hypotheses,  that  is given c °, t , -~ , . . . ,  ti+~. 
Finally, given all f l 's=0 we obtain the unique funct ion s ( y ) / a = s ( e )  of a, 

and it has observed value s o under  the further hypothesis a=a° ;  the relevant 
0 101. distr ibution is that  of s given c °, t,-~,..., 

Tests and confidence intervals are constructed as indicated in Section 2 
and in the pat tern in Section 3. For  example,  the (1 - a) confidence interval for 
fl~ given fl;+~ . . . . .  fin=0 is ( b i ( y ) - s ( y ) t Y ,  b i ( y ) - s ( y ) t ~ )  where (t~, tY) is a ( 1 - a) 
interval for the distribution, say hi(t~) for ti. 

We now record the relevant density funct ions for s, tl , . . . ,  t,-~. The jo in t  
density for s, t~,..., t,-1, c is available f rom (3.7), 

(4.5) g( s t l , . . . ,  Stn-1, SC)S n-1 , 

f rom which the marginal  for s, t i , . . . ,  t,-~, c is 

(4.6) g~il(sti,..., s t , - l ,  sc)s  "-i , 

and for t~,..., t,-l, e is 

(4.7) htq(t i , . . . ,  t~-l, c) = gtij(sti , . . . ,  st~-l, sc)sn-ids . 

The condit ional  density for t~ given t~÷l,..., t~-1, c is 

(4.8) hi(ti) = 
h[i](ti,..., tn-1, c) 

h[i+l](li+l,..., tn-1, c) ' 

and this provides the test of significance for fli and the related confidence 
interval. 

The  essentials of the sequential testing can be recorded in an analysis of 
variance table with (i+ 1)-st row 
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Parameter: fl°-,  / ... / fl°~l / /3i/ ... / fli / a , 
Effect: fli = flo , 
Variable cO/ t°n-a/ . . . .  "/t°+l/ti/  " / t l / s  , 
Observed" t i=  t 9 
L-drop: A,, 

where t ° = ( b i ( y ° ) - f l ° ) / s ( y ° ) .  The initial row of the table corresponds to 
examining the observed s o conditional on c ° / t ° - ~ / . . . / t ° ;  the relevant density is 

0 0 0 n - I  0 0 given by gt,](st ~,..., st ,-L, sc )s / hL,l( t ~,..., tn-~, c°). 
As in the preceding section we note that the succession of hypotheses 

indicated by f l , - ~ / . . . / f l ~ / a  generates a corresponding sample space tree 
partition which can be designated as c ( y ) / b , - l ( y ) / . . . / b ~ ( y ) / s ( y ) .  Of course 
this sample space tree partition is independent of the coordinates used and for 
example would be unaffected by a shift to coordinates a(y) relative to V, as 
defined in Section 2. 

The likelihood drop analysis for the sequence of hypotheses gives Ai for 
the (i+ l)-st row, which can be written 

(4.9) Ai = sup (l~(fli) + 12(fl~)), 
1I, 

where ll(fli) is likelihood drop from fli to flo for the appropriate conditional 
inference variable t i = ( b ° - f l i ) / s  ° and/2(fli) is the corresponding drop in the 
maximum attainable log conditional density for the lower order variables; 
this latter term is measuring potential estimation effectiveness for the 
remaining nuisance parameters and is inappropriate as a contribution to the 
assessment of fli. 

5. Exponential linear model 

Consider a continuous exponential linear model, with parameter Op/.. . /O~ 
as arranged for a succession of hypotheses: 

(5.1) f ( y )  = e x p  { ~ Oiai(y) - ck(O)} H ( y )  . 

If the hypothesized values 0° , . . . ,  0 ° are non zero, then a parameter relocation 
and corresponding adjustment gives an expression (5.1) with the new 0°=0. 

We note that (al(y) ..... ap(y)) is a sufficient statistic for the full parameter; 
in more fundamental  terms we note that the probability at a sample point as 
given by the likelihood depends only on that vector, other differences being 
notational and parameter-free (Fraser (1979)). Accordingly, we simplify and 
rewrite the model 
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(5.2) f ( Y l O ) =  exp { ~l O~y~- c~(O)} h(y) , 

with y now designating the sufficient statistic. If we also relocate the yi at their 
mean value when (01,..., 0p)=(0,..., 0), then y is the score function at that 
full-hypothesis parameter value. 

Again we emphasize the tree structure Op/.../01 of the parameter and 
note that the notation change 5= TO and v'=y'  T -l where Tis upper triangular 
with one's on the diagonal leaves the model form and parameter-testing 
succession unchanged. Thus for example at the second stage there is no 
non-arbitrary association of parameter values for 01 when 02=0f with say 

0 __13iv values for 01 when 2-tt 2 and is a manifestation of the tree structure. 
Now consider inference for Op with the initial parameters 01,..., Op-i taken 

as nuisance parameters. For measuring, assessing, or evaluating Op without 
influence from 0~,..., Op-~ we have by the arguments in (Fraser (1979), p. 81, 
(4-10)) the unique variable yp examined conditionally given y 1,..., yp-1. This is 
not the full sufficiency-ancillarity (Fraser (1979), p. 80). Rather it is a 
structured version of weak sufficiency-ancillarity (Fraser (1979), p. 84), and 
has uniqueness from its construction procedure. 0 0 We take yp givenyp-i,..., yl as 
the fundamental  variable for assessing Op with 0p-a,..., 0~ as nuisance 
parameters. Note that we do not appeal to properties of similar tests or of 
completeness of a null distribution. This would provide an alternative 
approach to the present testing issue, but by preference our present focus is on 
structure, on available variables, and on how the information on these 
variables relates to the parameters at issue. 

Consider the conditional density for this variable yp given y0,..., yo_l: let 
f(y]O) = exp {Oy-~b(0)}h(y) where we have O= Op, y =yp, h(y)= h(y°,.., o , yp-l, yp), 
and 

(5.3) exp {4)(0)} = f exp {Oy}h(y)dy,  

note that the sample space for y may be less than R and even dependent on 
yO,. 0 • ., yp-l. Let G(t, O) be the distribution function 

(5.4) G (t, 0) = r j t  exp {Os - qb(O)}h(s)ds 

For testing 0=0 the observed level of significance is 

(5.5) O L S  = 2 min  {G( t  °, 0),  1 - G(t °, 0 ) } ,  

using equi-probability tails or is 

I G(t°, o)1G(t m, 0), 
(5.6) OLS = ((1 - G(t °, 0))/(1 - G(t m, 0)), 

t o < t m 
t o > t m , 
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using the conical test (Fraser and Massam (1985)) where t m is say the median 
or the modal value for the distributionf(yl0).  

The median estimate is 0 defined by G(t °, 0)= 1/2; it is also a central 0% 
confidence 'interval', in the pattern next described. 

The ( l - a )  central confidence interval for 0 is (01, 02) where 

(5.7) G(t  °, 02) = a/2,  G( t  °, 01) = 1 - a/2  . 

All these characteristics are available from 1-dimensional integrations, a 
single integration for OLS, and iterations on this for the median estimate and 
confidence interval. 

Now consider testing Op-i =0°-1 (=0) given 0°/Op-l/. . . /01. With 0p=0 the 
marginal density yp-1 =(yl,. . . ,  yp-l) is 

(5 .8)  exp {Op- lyp-1  -1- "'" d- O l y l  - -  (~(01, . . . ,  Op-1, O ) } h p - l ( y p - l ) ,  

where hp-l(yp-O=fh(y)dyp. This is of the preceding general form but with p 
replaced b y p -  1. Tests of significance, median estimates, confidence intervals 
can be found as above where we take O=Op-1, y=yp-1, h(y)=hp-l(y°, . . . ,  o yp-2, y).  

On the assumption of no effect for Op and Op-l, the process can be 
continued in the pattern just described to test Op-2,..., 01. For implementation 
the single complication centers on deriving the successive marginal densities. 

The sample structure derived from the successive hypotheses is represent- 
ed by y~ /y2 / ' " / yp .  For example, the test for the step from O°/Op-l/.../01 to 

0 0 y~/ '" /yp-z /yp- i /yp  with observed value Op/Op-1/Op-:/.../01 uses the statistic o 0 
0 0 y l / ' " /yp-1 /yp .  Note that this tree-partition structure is in some sense directly 

opposite to that for the regression models. 
The essentials of the sequential testing can be summarized in a general 

analysis of variance table. For this we can consider a fully saturated 
exponential model with p = n  and the sufficiency reduction corresponds to 
the preceding analysis with higher order 0 values equal to zero. The i-th row 
of the table would have the form 

Parameter" 0°/... / 00+1/Oil""/01 , 

Effect' 0i = 0 ° , 
Variable: yO/. . . /yol /yi / . . . /3 '~ , 
Observed: w = yO, 
L-drop: A~. 

The standard likelihood-drop analysis for the succession of hypotheses 
would have 

A, = sup {11(0i) + 12(Oi)} , 
O, 
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where 11(Oi) is the appropriate drop for 0~ to 0 ° using the theoretically indicated 
variable y,- given 0 0 y~,..., yp and 

h(0i) = sup lnf(y° , . . . ,  y°-l; 0,,..., Oi-,, Oi) 
Oj,...,O, 

- sup lnf(y° , . . . ,  y°-l; 01 . . . . .  Oi-l, 00), 
Oj,...,O~-~ 

where f i s  the marginal density for y0,..., 0 . . . . .  yi-i under 0°1 /O0+l/Oi/ "/01. The 
second term 12(Oi) records a logarithmic maximum for the conditioning 
variables; this profile value arises in part because the conditioning variables 
are not fully ancillary for the conditional use of yi and it enters in an 
uncalibrated way that distorts the information from the theoretically 
indicated i-th variable. 

6. Concluding remarks 

The succession of hypotheses indicated by the notation Op/Op-i/... / Ol has 
led to a succession of tests indicated by b, /b , - i / . . . /b l  and c/ t , - i / . . . / t l /S  for 
the general regression models and by y~/y2/. . . /y,  for the exponential linear 
model. These two general tree-partition patterns have opposite sample space 
structure: conditioning on values lower in the table for the regression case and 
on values higher in the table for the exponential case. Correspondingly, the 
marginalization is over the number  of nuisance parameters in the regression 
case and over the number of free variables in the exponential case. 

The normal regression model belongs to both general model types. How 
then do the opposite types of conditional analyses relate one to the other? 

For this the conditional procedures in Sections 3 and 4, with some 
moderate analysis and choice of convenient coordinates, can be shown to be 
effectively independent of the conditioning and thus equivalent to the 
ordinary marginal-type analysis. In a similar manner,  the condit ional  
procedure involving the tree partition in Section 5 can be examined for the 
normal case, and the usual orthogonal coordinates show that the conditional 
procedure is again the same as the ordinary marginal procedure. Thus two 
quite distinct procedures devolve to the same procedure in the context of the 
rotationally-symmetric normal. 

For implementation of the methods discussed in this paper conditional 
distributions are used and are of course readily accessible. These conditional 
distributions are, however, in the context of some preceding marginalization: 
over the nuisance parameters in the regression context and over the free 
variables in the exponential case. This marginalization is the restricting 
factor for implementation; some approximation procedures will be discussed 
subsequently with background details in Fraser (1980, 1987). 

The widely used likelihood-drop procedures are examined against the 
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theore t ica l ly  indica ted  p rocedu re s  and are f o u n d  to con ta in  po ten t ia l  fo r  bias 
and dis tor t ion.  

REFERENCES 

Amari, S.-I. (1982). Geometrical theory of asymptotic ancillarity and conditional inference, 
Biometrika, 69, 1-17. 

Barndorff-Nielsen, O. (1980). Conditionality resolutions, Biometrika, 67, 293-310. 
Evans, M., Fraser, D. A. S. and Monette, G. (1986). On arguments from sufficiency and 

conditionality to likelihood, Canad. J. Statist., 14, 181-200. 
Fisher, R. A. (1925). Statistical Methods for Research Workers, Oliver and Boy& Edinburgh. 
Fraser, D. A. S. (1968). The Structure of Inference, Wiley, New York. 
Fraser, D. A. S. (1973). The elusive aneillarity, Multivariate Statistical Inference, (eds. D. G. 

Kabe and R. P. Gupta), North-Holland, Amsterdam. 
Fraser, D. A. S. (1979). Inference and Linear Models, McGraw-Hill. 
Fraser, D. A. S. (1980). Inference and the structural model for ANOVA and MANOVA, 

Handbook of Statistics, (ed. P.R. Krishnaiah), North-Holland, Amsterdam. 
Fraser, D. A. S. (1987). Fibre analysis and tangent models, Statist. Hefte, 28, 163-181. 
Fraser, D. A. S. and MacKay, J. (1975). Parameter factorization and inference based on 

significance, likelihood and objective posterior, Ann. Statist., 3, 559-572. 
Fraser, D. A. S. and MacKay, J. (1976). On the equivalence of standard inference procedures, 

Foundations of Probability Theory, Statistical Inference and Statistical Theories of 
Science, (eds. W. L. Harper and C. A. Hooker), Vol. II, 47-62, D. Reidel, Dordreeht, 
Holland. 

Fraser, D. A. S. and Massam, H. (1985). Conical tests: observed levels of significance and 
confidence regions, Statistical Papers, 26, 1-18. 

Heicheiheim, P. C. A. (1966). Comparison between sufficiency and structural methods, Ph. D. 
Thesis, University of Toronto. 


