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Abstract. Asymmetric multivariate probability distributions can be 
difficult to characterize in terms of their location. The works of Doksum 
(1975, Scand. J. Statist., 2, 11-22) and Blough (1985, Ann. Inst. Statist. 
Math., 37, 545-555) provide the construction of a location region for a given 
distribution. Any point in this closed, convex region will serve as a location 
parameter. It is the purpose of this paper to obtain a consistent estimator of 
the location region. Consistency is defined in terms of an appropriate 
pseudometric. 
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1. Introduction 

Establishing the location of an asymmetric probability distribution is 
difficult due to the fact that there are many "reasonable" measures of location. 
This problem is compounded for multivariate distributions. Doksum (1975) 
addresses this issue in the univariate case, and Blough (1985) extends these 
results to the multivariate case. For an n-variate distribution function F, a 
closed, convex region in R" is constructed, any point of which is a reasonable 
location parameter for F (Blough (1985)). Reasonable here refers to 
equivariance under certain transformations of R ". 

It is the purpose of this paper to develop a consistent estimator of the 
n-variate location region. In Section 2, a brief review of the construction of the 
location region is given. An estimator of this region will be given in Section 3, 
and its consistency will be established. Examples are provided in Section 4, 
using both computer  generated and "real" data. The bivariate case will be 
discussed throughout  for ease of representation, but generalizations to higher 
dimensions are straight forward. 

2. Location region 

Paralleling Doksum (1975), Blough (1985) used three methods to 
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construct a two-dimensional location region for a bivariate distribution 
function F. It was then established that these three methods yield essentially 
the same closed, convex region in the plane. Hence, this region contains all 
reasonable measures of location. In particular, it contains measures which 
satisfy order relations and are equivariant under translations, positive definite 
transformations and orthogonal transformations. These properties were used 
in the development of Method II of Blough's work. It should be noted that 
these axioms of location are common throughout the literature. For example, 
in the development of location measures by Oja (1983), he characterizes 
equivariance by way of non-singular affine transformations. But since every 
non-singular matrix A can be expressed as A=SR where S is symmetric 
positive definite and R is orthogonal (see, for example, Birkhoff and 
MacLane (1971), pp. 259-260), Blough's axioms encompass those of Oja. 
Thus, the new measures of location presented by Oja can be found in the 
location region as constructed by Blough. 

For purposes of estimation, Blough's Method III will be exploited. Let 
a ~ (0, 2rt ], and let R~ be the transformation obtained by rotating the plane 

through an angle a. For x=(Y) ,  a (counterclockwise) bivariate random 

vector with distribution function F, let Fa denote the distribution function of 
Ra(X), with respective univariate marginals Go and Ha. Method III uses the 
bivariate function of symmetry in direction a defined as 

0a( u )  ((1/2)[G-~ ~(u)+G-~(1-u)]) 
v = (1/2)[H7,1 (v) + H~ 1 (1 v)] 

de~ ( ma (U) ] for u, v e (0, 1/2]. 
1 h a  (V) 

Let 

0 ~ . = i n f { m a ( u ) ' 0 < u _  1/2}, 

Of,* = sup {mr (u) • 0 < u <_ 1/2} , 

0 ~ o = i n f { n ~ ( v ) ' 0 < v _ <  1/2}, 

0 ~ * = s u p { n a ( v ) ' 0 < v - <  1/2}. 

Then, using component-wise ordering of vectors, let 

/ (0 o) 
B ~ =  x "  0~o _ < x _ _  0~* " 



CONSISTENT ESTIMATION OF  LOCATION REGION 

The location region for F is 

B F  = n R- , (  Ba) . 
a~(O,2n] 
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3. Estimation of location region 

Given a r a n d o m  sample of size n f rom a bivariate dis t r ibut ion with 
dis tr ibut ion funct ion F, we seek to construct  f rom these n points an estimate 
of the locat ion region. Since for each a ~ (0, 2n], Ba is the Cartesian p roduc t  of 
the ranges of the two marginal  funct ions of symmetry (Blough (1985)), we can 
apply Doksum's  univariate results marginally. So given a r andom sample 

(y2) lyn) 
X l " :  , X2 " :  , . . . ,  Xn - - :  , 

Z 1 Z2 Zn 

we choose a finite set of angles {al, a2,..., CtL} equally spaced in the interval 
(0, 2n ]. Let 

Yo)  = R~jxi ,  = 1, 2,... ,  L; i =  1, 2,... ,  J n t 

z# 

For  each ro ta t ion  aj, the natural  estimates of 0",, 0"~* 0", and 0",* are, 
respectively, 

0",, = min [y ( i ) j  + y(n-i+l)j]  
l<_i<_n 

0".* = m a x  [y ( i ) j  + y(n-i+l)j]  
l<_i<_n 

0"., = min  [zulj + zl,-i+llj] 
l<_i<_n 

and 

0"* = max  [zu)j + zl,-i+l)j], j = 1, 2,. . . ,  L .  
l<_i<_n 

Here yli)j and z.(i)j are the i-th smallest observations after rota t ion Re, for the 
two respective coordinates.  Hence, 

= ** [0,% [ 0 %  ] x ** 

and for the est imated location region we take 

L 

j = l  



346 DAVID K. BLOUGH 

Having thus constructed/~Fo, it will now be shown that  in some sense/~ro is 
a consistent es t imator  of the locat ion region Be. To this end, let P denote  the 
probabili ty measure on R 2 induced by F. For  any two P-measurable sets A 
and B, define the pseudometr ic  p as 

p(A, B) = P(A A B ) ,  

where A A B denotes the symmetric difference of A and B. 

DEFINITION 3.1. The empirical location region /tr, will be called a 
consistent est imator of BF if 

p(BFo, BE) "-* O as n ~  

We then have the following: 

THEOREM 3.1. Let X be a bivariate random vector with distribution 
function F. Assume the following: 

(1) F~ is strictly increasing in each argument for  all a ~ (0, 2n], and 
(2) (smoothness) For each a0 e (0, 2n], /f {aj}j~, is any sequence in 

(0, 2zt ] such that lira aj= a0. j ~  

Then l im G~l(u)=GLl(u) for all u e (0, 1) and l im H~l(u)=Hgl(u) for  all u 

(0, 1). Then BF, is a consistent estimator o f  Be (see Appendix for  proof). 

4. Examples 

Figures 1-4 are plots of est imated location regions for six data  sets. In 
each case, dispersion and correlat ion dependencies are removed by first 
"sphering" the data. The original orientat ion and location of the data  will be 
preserved. That  is, if S represents the observed variance-covariance matr ix 
based on n observations,  we can find an or thogona l  matr ix  P such that  
S-- P'DP, where D is diagonal.  I f~  is the observed mean vector, we t ransform 
the data  to 

wi = P'D-1/ZP ( x i -  x)  + x ,  i = 1, 2,..., n . 

The est imated location region is then constructed using the techniques of 
Section 3 with wj, w2,..., w,. 

Figure l represents the est imated location region for a bivariate normal  

d i s t r ibu t ion  with mean  vector  ~ = ( 0  / and var iance-covar iance  mat r ix  
\ v /  (, ,I X= 1 / 2 . A computer-generated sample of n = 50 observations was used. 
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Fig. 1 .  Computer-generated bivariate normal data; n=50. 
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Fig. 3. Computer-generated bivariate i.i.d. beta data; n=300. 
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Fig. 4. Vapor pressure deficit residuals; n=41. 
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 i  re r  resontst eest mate ,oca, ionr   onfor  ((0),(,l  
but now constructed from a computer-generated sample of n=500 points. The 
shrinkage, relative to Fig. 1 is apparent. This is evidence of the consistency 

of the estimator, and the fact that in this case BF--//0//. 
t tWJ 

Table 1. Vapor pressure deficit data: time series residuals. 

OBS Ground level Top of crop canopy 

1 -0 .174  -0 .257  
2 -0 .330  -0 .340  
3 0.439 0.289 
4 0.005 0.105 
5 0.090 0.153 
6 -0 .147  -0 .116  
7 -0 .932  - 1.091 
8 -0 .092  -0 .150  
9 - 1.144 - 1.542 

10 0.508 0.354 
11 0.728 0.813 
12 0.176 0.328 
13 0.086 0.214 
14 0.058 0.168 
15 0.120 0.082 
16 -0 .124  -0 .064  
17 -0 .004  -0 .090  
18 0.378 0.369 
19 -0 .433  -0 .387  
20 0.057 -0 .016  
21 -0 .684  -0 .988  
22 0.062 0.017 
23 0.243 0.463 
24 0.639 0.800 
25 -0 .243  -0 .213  
26 0.146 0.133 
27 -0 .026  -0 .019  
28 -0 .383  -0 .433  
29 0.149 0.102 
30 0.172 0.190 
31 -0 .099  -0 .134  
32 -0 .309  -0 .464  
33 -0 .001 -0 .063  
34 0.215 0.279 
35 0.071 0.084 
36 -0 .011 0.012 
37 0.171 0.092 
38 -0 .509  -0 .618  
39 0.002 -0 .032  
40 -0 .141 -0.091 
41 -0 .518  -0 .864  
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/ v \  
Figure 3 represents the estimated location region for X=[~}, where Y 

and Z are independent beta random variables, each with parameters a=3, 
fl= 15. Since interchanging Y and Z leaves the distribution of X unchanged, 
the distribution is symmetric about the equi-angular line. Thus, Bp is some 
interval on the equi-angular line. This is reflected in the obvious elongation of 
/~Fo in the figure. The computer-generated sample was of size n= 300. 

Figure 4 represents the estimated location region for n=41 bivariate 
residuals obtained from a time series analysis. Irene Terry of the Department 
of Entomology at the University of Arizona collected data from a cotton field 
daily over a period of 41 days. Each day the vapor pressure deficit was 
measured at ground level and at the top of the crop canopy. A bivariate IMA 
(1, 1) time series model was fit to the data, and Table 1 presents the residuals 
from the fit. Figure 4 then is the estimated location region for these residuals. 
The plot strongly suggests that they come from a distribution symmetric 

ab°ut (0)" ( This pr°vides partial c°nfirmati°n °f the assumpti°n that the ,,~,~ 

underlying distribution is bivariate normal with mean/~=|~| | .  W// 

5. Conclusion 

Consistent estimators of bivariate location region have been developed 
and implemented in some example data sets by way of a FORTRAN plotting 
program. Extending this results to three dimensions is straightforward. These 
techniques, when used in conjunction with interactive computer graphics 
could provide statisticians with two- and three-dimensional portrayals of 
location regions. Thus, bivariate and trivariate location could be quickly and 
consistently ascertained. These are directions for further implementation of 
these techniques. 

Appendix 

Proof of Theorem 3.1 

LEMMA A. 1. For P-measurable sets {Aj} and {Bj}, 

(9 V 
PROOF. 
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But 

(see, for example, Chung (1974), p. 18). Similarly 

Hence, 

= U [ (Aj  - Bs) U (Bj - A 3 ]  
J 

= U (Aj A/~) .  
J 

PROOF OF THEOREM 3.1. By the smoothness assumption, 

Ba,--B~o as j ~  

This, together with the fact that (0, 2n] is separable implies Be can be 
constructed in a countable sequence of steps as follows: 

(1) Construct B~, with al=0. Let/~F,I=B~,, 
(2) Construct B~2 with a 2 = ~ / 2  and let/~p,2=Ba, N R-~ (Ba2), 
(3) Construct Ba~ with a3=rc/4,  and B~, with a4=3~/2 and let /~e,3 = 

4 
A R-~, (B~,). 
j=l 

Continuing in this way, constructing 2 k-1 rectangles at stage k, all of them 
representing rotations equally spaced over the interval (0, 2re], we have 

2 k i 

BF, k = 0 R-.,(Ba,) . 
j=l 

o o  

Letting BF=A R-a, (Ba,), we clearly have 
j=l 

p( B,~, B,O = O, 

and since 

/~F,*~/~r as k - ' ~ ,  
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p(Bv, k, BF) -" 0 as n -- 

Now p(BF, k, Be)<-p(Bv, k, Br)+p(BF, By) implying 

p(OF, k, BF) ~ 0 as k ~ ~o 

Let e>0 be given. Then there exists a positive integer N such that  

£ 

p(~,~:,~, B~) < 5-" 

Also, there exist positive integers M~, M2,..., M2 N' such that  for n>Mj 

p(R-~,(tO,~,), R-~(B~,)) < ~-~ a.s. , 

for j =  1, 2,... ,  2 N-1. This follows immediately f rom the consistency of 0".,, 0~.,*, 
0*m and 0*H~*. 

Let M = m a x  {Mh M2,..., ME N '}. Then for all n > M  we have 

p(~o, B~I = p .= R-o(~,o,), 
( 2~' ) 

t <_ P .= ((R-o,(~,,~)) A (R-o,(Bo3) 

+ p(l~F,y, B~) (by the lemma) 

2 N i 

_< Z p(R-~(B,,,), R-o,(B~,)) + p(N,N, Br) 
j = l  

< (2N-') " F  + 
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