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Abstract. Asymmetric multivariate probability distributions can be
difficult to characterize in terms of their location. The works of Doksum
(1975, Scand. J. Statist., 2, 11-22) and Blough (1985, Ann. Inst. Statist.
Math., 37, 545-555) provide the construction of a location region for a given
distribution. Any point in this closed, convex region will serve as a location
parameter. It is the purpose of this paper to obtain a consistent estimator of
the location region. Consistency is defined in terms of an appropriate
pseudometric.
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1. Introduction

Establishing the location of an asymmetric probability distribution is
difficult due to the fact that there are many “reasonable” measures of location.
This problem is compounded for multivariate distributions. Doksum (1975)
addresses this issue in the univariate case, and Blough (1985) extends these
results to the multivariate case. For an n-variate distribution function F, a
closed, convex region in R" is constructed, any point of which is a reasonable
location parameter for F (Blough (1985)). Reasonable here refers to
equivariance under certain transformations of R".

It is the purpose of this paper to develop a consistent estimator of the
n-variate location region. In Section 2, a brief review of the construction of the
location region is given. An estimator of this region will be given in Section 3,
and its consistency will be established. Examples are provided in Section 4,
using both computer generated and “real” data. The bivariate case will be
discussed throughout for ease of representation, but generalizations to higher
dimensions are straight forward.

2. Location region

Paralleling Doksum (1975), Blough (1985) used three methods to
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construct a two-dimensional location region for a bivariate distribution
function F. It was then established that these three methods yield essentially
the same closed, convex region in the plane. Hence, this region contains all
reasonable measures of location. In particular, it contains measures which
satisfy order relations and are equivariant under translations, positive definite
transformations and orthogonal transformations. These properties were used
in the development of Method II of Blough’s work. It should be noted that
these axioms of location are common throughout the literature. For example,
in the development of location measures by Oja (1983), he characterizes
equivariance by way of non-singular affine transformations. But since every
non-singular matrix 4 can be expressed as 4=SR where S is symmetric
positive definite and R is orthogonal (see, for example, Birkhoff and
MacLane (1971), pp. 259-260), Blough’s axioms encompass those of Oja.
Thus, the new measures of location presented by Oja can be found in the
location region as constructed by Blough.

For purposes of estimation, Blough’s Method III will be exploited. Let
a € (0, 2n], and let R. be the transformation obtained by rotating the plane

(counterclockwise) through an angle a. For X :()Z/)’ a bivariate random

vector with distribution function F, let F; denote the distribution function of
R.(X), with respective univariate marginals G. and H.. Method 111 uses the
bivariate function of symmetry in direction « defined as

¥ - (1/D[G () + GJ' (1 — w)]
( v ) B ( (1/Q[HZ v) + HZ (1 = )] )

def ( me (W)

e ) for u, ve(0,1/2].
Let
0%, = inf {ma () : 0 <u < 1/2}
O%* = sup {ma (u) : 0 <u<1/2},
G =inf{n.(v): 0<v<1/2},
B8 = sup {n. (v) : 0 < v=1/2}.

Then, using component-wise ordering of vectors, let

w-fos () =022 )}
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The location region for F'is

Br= 1 Re(B).
3. Estimation of location region

Given a random sample of size n from a bivariate distribution with
distribution function F, we seek to construct from these n points an estimate
of the location region. Since for each a € (0, 2], B.is the Cartesian product of
the ranges of the two marginal functions of symmetry (Blough (1985)), we can
apply Doksum’s univariate results marginally. So given a random sample

X1 = , X2 = yeeey Xn = s
41 4} Zn

we choose a finite set of angles {a, ..., ar} equally spaced in the interval
0, 27 ]. Let

(y;}):Raj-xl; j:l’ 2,"'9 L; i:1’ 2"”’”’

zj

For each rotation oj, the natural estimates of 0%, 0%* 6% and 6%*are,
respectively,

£ _ -

0%, = min [yw; + Y] ,
¥%k _

0% = max [yo; + yusnil

* .
0%, = min [z; + Ze-isn)]

and

¥k _ P
Hy = Iggi( [z(i)j + Z(n—i+l)j]s J= 15 2""9 L.

Here y.); and z;); are the i-th smallest observations after rotation Ry, for the
two respective coordinates. Hence,

Bmz_, = [B*G‘,.,, 0:&:] X [0?‘!,.,, gz:,k

and for the estimated location region we take

- L ~
Br, = Ql R-a, (Bna,) .
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Having thus constructed Br,, it will now be shown that in some sense B, is
a consistent estimator of the location region Br. To this end, let P denote the
probability measure on R” induced by F. For any two P-measurable sets A
and B, define the pseudometric p as

p(4, B)= P(A A B),
where A A B denotes the symmetric difference of 4 and B.

DEFINITION 3.1. The empirical location region Br, will be called a
consistent estimator of Br if

p(Br, B)) =0 as n-—oo.
We then have the following:

THEOREM 3.1. Let X be a bivariate random vector with distribution
function F. Assume the following:

(1) Fuis strictly increasing in each argument for all a € (0, 2n ], and

(2) (smoothness) For each ay € (0, 2n], if {a;}71 is any sequence in
(0, 27 ] such that 1}1_{2 ;= 0o.

Then lim G.'(u)=Ga'(u) for all u € (0, 1) and lim Hy'(u)=Ha,'(u) for all u

€ (0, 1). Then B, is a consistent estimator of Br (see Appendix for proof).

4. Examples

Figures 1-4 are plots of estimated location regions for six data sets. In
each case, dispersion and correlation dependencies are removed by first
“sphering” the data. The original orientation and location of the data will be
preserved. That is, if S represents the observed variance-covariance matrix
based on n observations, we can find an orthogonal matrix P such that
S=P’DP,where Disdiagonal. If x is the observed mean vector, we transform
the data to

wi= PPDVP(x;—x)+x, i=12..n.

The estimated location region is then constructed using the techniques of
Section 3 with wi, wa,..., wa.
Figure | represents the estimated location region for a bivariate normal

distribution with mean vector /t=(8) and variance-covariance matrix

pA =(1 }2 142). A computer-generated sample of #=50 observations was used.
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Fig. 1. Computer-generated bivariate normal data; n=>50.

Fstimated Location Region

- T v T v T T Y v
Rectangles at 2—Degree Incremenis
L 4
ot 1
[
3 |
o
of 1
| J
N
or .
1
4
©
o .
1
o
-t " L L L A 1 2 1 1.
1 —-1.0 -0.6 -0.2 0.2 0.6 1.0

r—-value

Fig. 2. Computer-generated bivariate normal data; n=500.
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mE’stima,ted Location Region
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Fig. 3. Computer-generated bivariate i.i.d. beta data; n=300.
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Figure 2 represents the estimated location region for N, ((8), (1 }2 1 {2)),

but now constructed from a computer-generated sample of n=500 points. The
shrinkage, relative to Fig. 1 is apparent. This is evidence of the consistency

of the estimator, and the fact that in this case BF:{(S)}-

Table 1. Vapor pressure deficit data: time series residuals.

OBS Ground level  Top of crop canopy

1 -0.174 —0.257

2 —0.330 —0.340

3 0.439 0.289

4 0.005 0.105

5 0.090 0.153

6 —0.147 —0.116

7 —0.932 —1.091

8 -0.092 —0.150

9 —1.144 —1.542
10 0.508 0.354
1 0.728 0.813
12 0.176 0.328
13 0.086 0.214
14 0.058 0.168
15 0.120 0.082
16 —0.124 —0.064
17 —0.004 —0.090
18 0.378 0.369
19 -0.433 —0.387
20 0.057 -0.016
21 —0.684 ~0.988
22 0.062 0.017
23 0.243 0.463
24 0.639 0.800
25 —~0.243 -0.213
26 0.146 0.133
27 —0.026 -0.019
28 -0.383 —0.433
29 0.149 0.102
30 0.172 0.190
31 —0.099 -0.134
32 —0.309 —0.464
33 —0.001 —0.063
34 0.215 0.279
35 0.071 0.084
36 —0.011 0.012
37 0.171 0.092
38 —0.509 -0.618
39 0.002 =0.032
40 —0.141 —0.091

41 —0.518 —0.864
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Figure 3 represents the estimated location region for X =()Z]), where Y

and Z are independent beta random variables, each with parameters a=3,
p=15. Since interchanging Y and Z leaves the distribution of X unchanged,
the distribution is symmetric about the equi-angular line. Thus, Br is some
interval on the equi-angular line. This is reflected in the obvious elongation of
Br, in the figure. The computer-generated sample was of size n=300.

Figure 4 represents the estimated location region for n=41 bivariate
residuals obtained from a time series analysis. Irene Terry of the Department
of Entomology at the University of Arizona collected data from a cotton field
daily over a period of 41 days. Each day the vapor pressure deficit was
measured at ground level and at the top of the crop canopy. A bivariate IMA
(1, 1) time series model was fit to the data, and Table | presents the residuals
from the fit. Figure 4 then is the estimated location region for these residuals.
The plot strongly suggests that they come from a distribution symmetric

about (8) (This provides partial confirmation of the assumption that the

underlying distribution is bivariate normal with mean u———(g))

5. Conclusion

Consistent estimators of bivariate location region have been developed
and implemented in some example data sets by way of a FORTRAN plotting
program. Extending this results to three dimensions is straightforward. These
techniques, when used in conjunction with interactive computer graphics
could provide statisticians with two- and three-dimensional portrayals of
location regions. Thus, bivariate and trivariate location could be quickly and
consistently ascertained. These are directions for further implementation of
these techniques.

Appendix

Proof of Theorem 3.1

LEMMA A.l. For P-measurable sets {A;} and { B},

(QA,-)A((J)&)CL]J(AjAli,-).

PROOF.

(24)8(08)-[(24)- (28] [198) (4]
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But
[(04)-(o8]]cy@-a
(see, for example, Chung (1974), p. 18). Similarly
(25)-(aa)lcy-n.
Hence,

(94)a(p sy slo[va-o]

=V« - B)Y (B~ 4)]

PROOF OF THEOREM 3.1. By the smoothness assumption,
By — B, as j— oo,

This, together with the fact that (0, 2n] is separable implies Br can be
constructed in a countable sequence of steps as follows:

(1) Construct Ba, with a;=0. Let Br,=Ba,

(2) Construct Bs, with a;=n/2 and let Br2=Bs N R-, (Ba),

(3) Construct B, with a;=n/4, and B., with a;=37/2 and let Br;=

4
M R-o (Ba).
=1

Continuing in this way, constructing 2" rectangles at stage k, all of them
representing rotations equally spaced over the interval (0, 2], we have

2&*1

E'F.k = ]_q R-4(By) .
Letting §p=]61 R (By), we clearly have

p(Br, B)) =0,
and since

Ep,klgp as k — oo,
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p(Bri, B) =0 as n— oo,

Now p(Brk, Br)<p(Brx, Br)+p(Br, Br) implying
p(Brk, B) =0 as k — oo,

Let £>0 be given. Then there exists a positive integer N such that
~ €
p(Ben, Br) < ? .
Also, there exist positive integers M), M.,..., M2 such that for n>M;
_ €
p(R—a,(Bna,), R—aj(Ba,)) < Z—N a.s. ,

for j=1, 2, , 2% This follows immediately from the consistency of 8%,, %
%, and
Let M=max {M\, M>,..., M»}. Then for all n>M we have

p(Br, B) = Reo(Boa), BF)

NS
ZII

IA

o (Br), Em) + p(Brw, Br)

”DN nD

=P

an
PR
( (Rea(Bua) B (Reo(B)

+ p(Brn, Br)  (by the lemma)

2Nfl

= jgl p(R_aJ(B"a/‘)’ R—a,(Baj)) + p(EF,Ns BF)

<@ 4
=¢&.
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