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Abstract. Let the distributions of X(pXr)and S(pXp) be N(&, ZR1I,) and
Wp(n, X) respectively and let them be independent. The risk of the improved
estimator for | Z| or |Z”'| based on X and S under entropy loss (=d/ | 2]
—log(d/|Z |)—1 or d| 2| —log(d| Z|)—1) is evaluated in terms of incomplete
beta function of matrix argument and its derivative. Numerical comparison
for the reduction of risk over the best affine equivariant estimator is given.

Key words and phrases. Stein’s truncated estimator, zonal polynomials,
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1. Introduction

Suppose that observed random matrix X(pXr) has normal distribution
N, Z@1I) and that S(pXp) has Wishart distribution W,(n, X)), where n=p
and &, 2 are unknown. Assume that X and § are independent. Shorrock and
Zidek (1976) obtained a better estimator of |X| than the best affine
equivariant estimator under squared loss by generalizing Stein (1964) to
multivariate case. Sinha and Ghosh (1987) noted that under entropy loss L(d,
|2]) =d/ | X|—log(d]| Z|)—1, the estimator

(n+r—-p)!

i) IS+ XX'|¢,

(1.1) axX,S) = minld(S) ,

dominates the best affine equivariant estimator d(S)={(n—p)!/n!}|S|. Their
method of proof is based on Sinha (1976) and did not make use of zonal
polynomials of matrix argument. However Shorrock and Zidek (1976) can be
applied to get the same result. For estimating the generalized precision |Z7'[,
Sugiura and Konno (1987) noted that the estimator

*Dedicated to Professor Yukihiro Kodama on his 60th birthday.
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12 *(X.S) = §) —BErTDL o ey
(1.2) e¥( X, S) = maxje( )’(n+r~p—2)! \

dominates the best affine equivariant estimator e(S)={(n—2)!/(n—p—2)!}| S|’
in the case of n=p+2, under entropy loss L(d, |Z7'}) =d| 2| —log(d|Z])-1,
following Shorrock and Zidek (1976).

In this paper the risk of @*(X, S) or e*(X, §) is expressed by an infinite
series in terms of incomplete beta functions of matrix argument used by
Sugiura and Konno (1987) and its derivative with respect to a parameter.
Then numerical computation of the risk of each estimator is performed and
the reduction of risk of d*( X, §) or e*(X, S) over d(S) or e(S) is checked. As
in the case of squared loss discussed by Sugiura and Konno (1987), the
reduction of risk is more in estimating the generalized precision than in
estimating the generalized variance. However, it is less under entropy loss
than under squared loss.

2. Risk of estimators for the generalized variance

We shall first note that risk of the best affine equivariant estimator
d(S)={(n—p)!/n!}| S| under entropy loss is given by

n! p n— i+ 1
@.1) R(d) = log _plog2- Sy (——) ,
(n—p)! = 2

where y(x)=dlogl{(x)/dx is digamma function and has a simple form for
half-integer argument used also in Sugiura and Fujimoto (1982), Dey and
Srinivasan (1986) for calculating risk of the minimax estimator of normal
covariance matrix.

To give a useful expression for the risk of the improved estimator d*(X,
S), we need the following incomplete beta function of matrix argument and its
derivative:

L (e, B; )
(e + P

- (PC(l) flzlq’ Ok By(a, p)

|Z'a‘(17+1)/2‘1p _ Z|/f—(P+1)/2

Cul, - Z)dZ ,
2.2)

J (a, B; k)
_ (o + P
(BC(Ip)

|Z|a'(P+1)/2|Ip _ Z!ﬂ‘(P*'l)/Z
X )\ zi<a, 0<z<1, (log| Z|)

Bp(aa ﬂ)

CK(Ip - Z)dZ >
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where a, f>(p—1)/2, 0<a<l and CdZ) stands for zonal polynomial of
positive definite matrix Z corresponding to partition k={ku,..., kp} (k1=--=kp)
of k; Z<I, means I,—Z is positive definite. The constant factor is so chosen
that for a=1, I”(a, ; k)=1. We note that when p=1, these two functions are
reduced to

I
L@, f+ k) = ———— [ 21 = 2"z,
23) B(a, g+ k)70
a-1 Brk—1
Jua, B+ k) = ————B( T f (log 2)2'(1 - 2™ 'dz .

For the numerical computation of I"(a, B; k) when p>1, the following
expression by the latent roots of Z is useful:

an/Z ((1 + ﬂ)x

D
rp(g) (B)Cdly)
|L'a—(p+l)/2|1p _ Llﬂ—(p+l)/2
|Li<a, Ol < Ii<] Bp(a ﬁ)

X Cdl, - L) IO (k- ldL,

Isi<jsp

IP(a, B; k) =

X

where L=diag(l,,..., ) and similarly for JiP(a, B; k). We now prove the
following theorem.

THEOREM 2.1. Assume that n=p. Put A=E'27'¢ and a={n\(n+r—p)'}/
{(n—p)\(n+n'}. Then under the entropy loss, the risk of the improved
estimator d*(X, S) is given by

(3)
"\ 2

(i) whenr=p,
+2 r
Ié"’(n . )
k! [ 2 22k

+(ﬁ n+r+1—i+2ki){l_12p)(_r_1_
i1 2’

. A
R )= £ % etr(—?)

n+r+1-i

)

N|~g

o3 5o = 47(F Fix)

(n+r—p)!
(n+n)
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(i) when r<p,

A
Cx_
= Y| (2) n+r—p+2 p
% . — L (r} i
R@* 1) kgof%etr( 2) Kl [1( ) ’2’K)

+(.r n+r+l—i+.2ki){1"1a,)(n+r—p ’_p_;K)}
Floont+r+ 11— 2 2
n+r—p p ) (,)(n+r—1) p )
I e/ R I
2 2 2 2
po(n+tr—i+l1 (n+r—-p)
LA AR B WL )
2 (n+rn)!

+ (log a)lfz”(
i=1

+ ki) - lo

— plog 2 — 1].

COROLLARY 2.1. When p=1, a=n/(n+r) and the risk of d*(X, S) is
given by

- A k
Zetr(——) (trd/2) [a(n+2 ’_r_ +k)
k=0 2 k! 2 2
+r+
y vk {1 —Ia(i,—r-+k)}
n+r 22

[

+log(n+r)—log2 -1

COROLLARY 2.2. Whenr=1,a=(n—p+1)/(n+1)and the risk of d*(X,
S) is given by

- A\ (42 (n—p+3 p ) n+ 1+ 2k
- = g =t k| —
kgex"( 2) k! 2 2 nel
n—-p+1 p )] (n—p+l p )
_H—’— a'—————,q_” k
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n—-p+1 p ) (n+l )
—Ja(——*—-—,—+ - +k
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Corollaries 2.1 and 2.2 are the easiest cases to be computed, since only the
usual incomplete beta functions and its derivatives are involved.

PROOFOF THEOREM 2.1.  Since the loss function is invariant under the
transformation (X, §)—(4X, ASA) and ({, 2)—(A4¢, AXAY) for any
nonsingular matrices A, we may assume that 2= /. From Shorrock and Zidek
(1976) or by Lemma 2.1 in Sugiura and Konno (1987), put ¥=S+XX" and
T=(S+ XXy "*S(S+XX")"*whenr=p and T=1- X'(S+ XX")"' X when r<p.
We can write d*( X, S)=|V|h(T) for L(T)={(n—p)!/n!}min{| T|, a}, where V
and T are independent for given x; Under A=0, ¥ has Wishart distribution
Wy(n+r, I) and T has a p-variate beta distribution with parameter (n/2, r/2)
when r=p and an r-variate beta distribution with parameter (n+r—p)/2, p/2)
when p=r. Further the risk of d*(X, §) is written by

(2.4)  R(d*, A)
= EA|VIA(T) — log(|V|A(T)) — 1]
_ EA,C[EOU V| CdV) 5] EfR(T)CI — T)|x]
Eo[C(V)|x] Eo[CI — T)|x]
_ Ef(log| V)C(¥)|K]  Ea[(logh(T)CAI = T)|x] 1]
EB[CAV)Ix] Eo[CI - T)|x] ’

where Ep stands for Es= and Ej denotes the expectation with respect to
random partition k¥ with probability (etr(—A4/2))C{4/2)/k!. Note that
Eof| V| CV)|x]] B[ C(V)|K] is equal to

zpr(n+r+2)(n+r+2)
p L.

2 2
n+ryyntr
7 )
”( 2 )( 2

When r=p, E[W(T)CI-T)|k]/ Eof C{I— T)|x] is shown to be

(2.5)

ntr n+2 r
(n - p)! ( 2 ) B”( 2 ’2) I(p)(n+2 r_.K)
n! (n+r+2) B(l L) ¢ 2 27
2 x A2

o o)

(2.6)

giving the first term within the blanket in R.H.S. of (2.4) as
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+2 r pn+r+1—1i+ 2k n r
S T
2.7) I I A = E O gy

The second term Eo[(log| V|)C«( V)| k)] Eof C(V)|K] is equal to
+r—i+l
(2.8) plog2+ % .,,("—'2—’——-—— + k,-) :

which can be obtained by differentiating the identity
Jwool W etr (= W) CAW)AW = T(@) (@i CA])

with respect to a. The third term in R.H.S. of (2.4) is similarly obtained when
r=p as

Eo[(log H(T) G — T)|x]
E[CAI — T)|k]

_ (n p)} (p)( r. ) (p)(l'_ _r_. )
—{log o I i 2,K‘+Ja 7 K

* {log (n(: :_r)f)! ] {1 - I;m(% : % : K)} '

Combined with (2.7), (2.8) and (2.9), we get the desired formula in (i) in
Theorem 2.1. The case of r<p is similarly obtained.

(2.9

Our numerical study in Section 4 shows that the minimum value of R(d*,
A)is obtained when A =0 given by

R(a@*, 0) = "’}( 22,2)+(loga~l)Im(2 ~;—) J;P)(-é—,_;.)
_éw(n+r—z+1)_10g—m(:;:—_r)f)!—plog2,
for r=p and
R(a*,0) = 15')(£—r2—p+—2— ‘12) )+ (loga — 1)["’(—-—————-” * ; _p ; 12)—)
_ it
W g - B
Cog BT IPL e

(n+n)
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for r<p, where I\”(a, B)=1"(a, f; 0) and similarly J;"(a, B)=J{"(a, B, 0). The
maximum rate of reduction of risk { R(d)— R(d*, A)}/ R(d) is obtained at A=0.
Although these findings are intuitively obvious as in Sinha (1976), we were
unable to give rigorous proof.

3. Risk of estimators for the generalized precision

For estimating the generalized precision || under entropy loss I(d,
| Z7')=d| 2| -log(d] Z])—1, risk of the best affine equivariant estimator
e($)={(n-2)!/(n-p-2)'}187"| is given by

(n-2)!

Re)= % ("_i+l)+ log 2 — 1
= E— (o) —-log ..
=Y 2 pog 8 (n—p-2)

By the same argument as in the proof of Theorem 2.1, we get the following
mixture representation of risk of the improved estimator e*(X, ) given by

(1.2).

THEOREM 3.1. Assume that n>p+1. Put A=E'27'E and a={(n—2)!
X(n+r—p-2)!}/{(n—p—2)Y(n+r—2)!}. Then under the entropy loss (=d| 2| —
log(d| X)) —1), the risk of e*(X, S) has the following expression.

(1) when r=p,

A
“{3)

R(e*, A)= 3 = etr(— A) [I“’)( —2 . K.')
3 k' » 2 3
n

=0 (%) 2

N Ie[ n+r—1-1i ){1—1"”( L"‘)l
(i=ln+r—1—i+2k,- “\272"

- (log a)Ié"’(Z ; )+ J“”(— -r—;x)

22

ﬁ (n+r—i+1+ki)_ . (n+r-2)
= 2 n+r-—p-2)
+plog2—l],
(ii) when r<p,
{3)
A 2 n+r—-p- D
%k . = {r) _
Ree*, ) = Zo%etr( 2) k! [1( X '“)
p

+(I:I n+r——1.—i ){1 ;,)(n+r ,
Flpt+r—1-i+ 2k 2

w o
s
e
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; tr—-p p n+r—-p p
~(lo 1,5)(— , )+J§”(——— L, )
(log a) 5 5 TR

(n+r—1+l (n+r—2)
2 (n+r—p 2)!

+ k,)

COROLLARY 3.1. When p=1,a=(n—-2)/(n+r-2)and the risk of e*( X,
S} is given by

- A\ (trd) 2 -2
p) etr(~—)(r /2 I,,(n ,L+k)
k=0 2 k! 2 2

+_”t’_:_2__!1 I L+k}
n+r—2+2 "(2’2 )

- (log a)Ia(—g— , % + k) + J,

—10g(n+r—2)+log2—l].

COROLLARY 3.2. Whenr=1,a=(n—p—1)/(n—1) and the risk of e*(X,
S) is given by

w (A/2) n-p—-1 p ) n—1
3 exp|— — a STkt — o
k:oeXp( 2) [1( k n—1+2k
-p+1
x[l—la(n P p )]
-p+1
—(loga)Ia( P g )
2
n-p+1 p
+J,,(—2 +k)+x//( : +k)
P (n—i+2
+,§2‘/’( 2 )
(n—- 1!
- log ——— —-1].
og(n~p_l)!+plog2 ]

Corollaries 3.1 and 3.2 are used for the numerical computation in Section
4. Our numerical study shows that the minimum value of R(e*, A)is obtained
at A=0, giving, for r=p
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-2 r n r
x o) = 72" _)_ log a + 1 (p)(_ __)
R(e*, 0) L( )~ Goga+ DIA(Z. 2
+J<p)(£ N s (M)
‘ 2’2) =LA
(n+r-2)
—log(n+r_p_2)!+plog2,
and for r<p
_qfhtr-p-2 p mfntr—p p
R@nm—h(——j;——uaj-a%a+ng(——;——,ﬁ
mfhtr—p £) § (n+r—i+l)
A g B
(n+r-2)
_l . .
Bnrr-p-on Ploe2

The maximum rate of reduction of risk { R(e)— R(e*, 4)}/ R(e) is obtained at
A=0.

4. Numerical results

To compute the risk of the improved estimators under entropy loss when
p=1orr=1, we need to evaluate the function I(a, §) and Ju.(a, ). We found
that the following infinite power series was useful:

a(l - af

Ja((l, ﬂ) = lOg a~— L Ia(as ﬂ) +
a aB(a, B)

.{(aiﬁ_ail)zjr/lga+(awltﬁ+ a+;+1
1 1 )(a+ﬁ)(a+ﬁ+l) a2+---].

a+1 a+2) (a+ a+2)

This is obtained by differentiating the following power series of incomplete
beta function (Abramowitz and Stegun (1964), p. 944) with respect to «

NG

a1 B

CO-af ( ath (@tPatprl) ,
a a+1 (@ + I)a + 2)

Tables 1 and 2 give the values of risk of the improved estimator d*(X, S)
defined by (1.1) when p=1 based on Corollary 2.1 and when r=1 based on



338 NARIAKI SUGIURA AND YOSHIHIKO KONNO

Table 1. Risk of d*(X, S) when n=5 (upper) and n=10 (lower) for p=1.

r A=0 A=1  A=2 A=5
I 207 (3.0%)  .207 208 211
102 (17%)  .102 102 103
2199 (6.7%)  .200 201 206
099 (4.1%) .09 100 101
30192 (98%)  .193 195 202
097 (6.5%)  .097 098 100

5 183 (144%)  .183 185 193
093 (10.4%) 093 094 097

10 .169 (20.7%)  .169 A7 177

086 (17.2%) 086 087 090

Table 2. Risk of @*(X, S) when n=10 and r=1.

p 1=0 i=1  A=2 i=5
2 213 (2.4%) 214 214 216
3 339 (2.8%) 339 340 344
4 483 (3.2%) 483 484 489
5 651 (3.5%) 651 653 659
6 853 (3.9%) 854 855 863
7 L1108 (4.3%) 1109 L1IT 1120
8 1454 (48%) 1454 145  1.467
9 1989 (5.5%) 1990 1992  2.004
10 3.164 (6.2%) 3164 3167  3.179

Corollary 2.2. The maximum rate of reduction of risk 100x{R(d)- R(d*,
0)}/ R(d) is shown in the parentheses. We can see from Table 1 that the rate of
reduction increases as r increases and that it decreases as A=tr/ increases. The
maximum rate of reduction is 3.0% when n=5 and p=r=1, which is compared
with 1.79% under the squared loss in Sugiura and Konno (1987). From Table 2,
we can see that the rate of reduction increases very slowly as p increases with
fixed n and r=1. This tendency can not be seen under squared loss in Sugiura
and Konno (1987).

To obtain the risk of d*(X, §) when p=2 or r=2, based on Theorem 2.1,
we made use of computer program for zonal polynomials due to Sugiyama
(1979), giving Tables 3 and 4. From Table 3 we can see that the risk is
monotonically increasing with respect to each latent root of 4.

Table 4 shows the increase of the maximum rate of reduction for
increasing r or increasing p. The tendency is the same as that in Tables 1 and 2.

Corresponding to Tables 1 and 2, the risk of the improved estimator
e*(X, S) defined in (1.2) is shown in Tables 5 and 6. They are computed by
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Table 3. Risk of d*(X, §) when p=r=2 and n=10 for A=diag (4, L.).

A Ai=0 Ai=1 Ar=2 A=5 4L=10
0 .207 (5.2%) .208 209 212 217
1 .209 210 213 217
2 211 214 217
5 217 218
10 218

Table 4. Risk of 4*(X, §) at A=0 when n=10 and the maximum rate
of reduction of risk 100X{R(d)— R(d*, 0)}/ R(d).

P r=2 r p=2

1 0990 (4.1%) 3 2017 (7.7%)
2 2071 (5.2%) 5 1928 (11.8%)
3 3284 (5.8%) 10 1787 (18.2%)
4 4668 (6.4%) 20 1710 (21.8%)
5 .6282 (6.8%)

6 .8225 (7.3%)

7 1.0677 (7.8%)

8 1.3983 (8.4%)

9 1.9126 (9.1%)

10 3.0416 (9.9%)

Table 5. Risk of e*(X, §) when n=5 (upper) and n=10 (lower) for p=1.

r i=0 =1 21=2 Ai=5
1 281 (5.7%) 282 284 291
117 (23%) .17 118 119
2 261 (123%) 263 266 279
113 (56%) .13 114 117
3 246 (17.5%) 247 251 267
109 (88%)  .110 111 114
5 224 (248%) 226 229 246
103 (14.1%)  .103 105 109
10 .196 (34.2%)  .197 199 212
092 (232%) 092 093 099

Corollaries 3.1 and 3.2. We can see that the risk of e*(X, §) has the same
tendency as that of d*(X, §). Each maximum rate of reduction of risk shown
in the parentheses is higher than that of d*(X, §). However it is not as much as
under the squared loss, except for the case of larger p. For instance the
maximum rate of reduction for e*(X, §) under entropy loss is 5.7% when n=>5
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Table 6. Risk of e¥(X, §) when n=10 and r=1.

p A=0 i=1  i=2 i=S5
2 247 (34%) 248 249 252
30396 (42%) 397 398 404
4 50 (5.0% 571 S7T3 582
5 781 (59%) 782 785 797
6 1.046 (7.2%) 1.048 1.051 1.067
7 1407 (9.3%) 1408 1413 1434
8 1969 (13.6%) 1971 1977  2.006

Table 7. Risk of e*(X, §) when p=r=2 and n=10 for A=diag (41, 42).

).z /{1:0 /11:1 /11:2 /1125 )»l:lo
0 237 (7.5%) 237 .239 245 252
1 239 241 247 253
2 .243 .249 254
5 252 255
10 .256

Table 8. Risk of e*(X, §) at A=0 when n=10 and the maximum rate
of reduction of risk 100X{R(e)— R(e*, 0)}/ R(e).

P r=2 r p=2

I 131 (5.6%) 2473 (3.4%)
2 2367 (7.5%) 2367 (7.5%)
3 3766  (8.9%) 2273 (11.2%)
4 .5382 (10.3%) 217 (17.3%)
5 7301 (12.0%) 1874 (26.8%)
6
7
8

S L W N

9661 (14.2%) 20 1619 (36.7%)
1.2770 (17.6%)
1.7308 (24.1%)

and p=1, but corresponding value under squared loss in Sugiura and Konno
(1987) is 12.5%.

Corresponding to Tables 3 and 4, the risk of e*(X, §') for the generalized
precision is computed by Theorem 3.1 and is given in Tables 7 and 8. The
reduction of risk is larger than that of d*(X, §).
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