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Abstract. Let the distributions of X(p×r) and S(p×p) be N(~, ZQL) and 
Wp(n, S) respectively and let them be independent. The risk of the improved 
estimator for 12:1 or IS-*I based on X and S under entropy loss (=d/12:1 
- log(d/ IS  1)- 1 or d12~[-log(dlZD- 1) is evaluated in terms of incomplete 
beta function of matrix argument and its derivative. Numerical comparison 
for the reduction of risk over the best affine equivariant estimator is given. 
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1. Introduction 

Suppose that observed random matrix X(pxr)  has normal distribution 
N((, Z@Ir) and that S(p×p) has Wishart distribution Wp(n, Z), where n>_p 
and ~, 27 are unknown. Assume that X and S are independent. Shorrock and 
Zidek (1976) obtained a better estimator of ISI than the best affine 
equivariant estimator under squared loss by generalizing Stein (1964) to 
multivariate case. Sinha and Ghosh (1987) noted that under entropy loss L(d, 
ISI) = d~ I-rl - log(d/ [  Z[ ) -  1, the estimator 

f (n + r  P)! 
(1.1) d*(X,S) = min{d(S) IS + XX'I} 

' (n + r)! J t 

dominates the best affine equivariant estimator d(S) = {(n-p)! / n! }l S I. Their 
method of proof  is based on Sinha (1976) and did not make use of zonal 
polynomials of matrix argument. However Shorrock and Zidek (1976) can be 
applied to get the same result. For estimating the generalized precision I S - ' l ,  
Sugiura and Konno (1987) noted that the estimator 

*Dedicated to Professor Yukihiro Kodama on his 60th birthday. 
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( n  + r - 2 ) !  IS + XX'1-1} (1.2) e*(X,S) = max e(S) ' (n + r - p - 2)! 

dominates the best affine equivariant estimator e(S) = {(n - 2) ! 1 ( n - p -  2)! } I S1-1 
in the case of n>p+2, under entropy loss L(d, I L'-~ l) =dl2"]- log(dlXI)-1,  
following Shorrock and Zidek (1976). 

In this paper the risk of d*(X, S) or e*(X, S) is expressed by an infinite 
series in terms of incomplete beta functions of matrix argument used by 
Sugiura and Konno (1987) and its derivative with respect to a parameter. 
Then numerical computation of the risk of each estimator is performed and 
the reduction of risk of d*(X, S) or e*(X, S) over d(S) or e(S) is checked. As 
in the case of squared loss discussed by Sugiura and Konno (1987), the 
reduction of risk is more in estimating the generalized precision than in 
estimating the generalized variance. However, it is less under entropy loss 
than under squared loss. 

2. Risk of estimators for the generalized variance 

We shall first note that risk of the best affine equivariant estimator 
d(S)={(n-p)l/n!}lS[ under entropy loss is given by 

(2.1) R(d) = log 
n! 

(n - p)! 

, ( - / + , )  p l o g 2 -  gZq/ .n 
: 2 ' 

where ~u(x)=dlogF(x)/dx is digamma function and has a simple form for 
half-integer argument used also in Sugiura and Fujimoto (1982), Dey and 
Srinivasan (1986) for calculating risk of the minimax estimator of normal 
covariance matrix. 

To give a useful expression for the risk of the improved estimator d*(X, 
S), we need the following incomplete beta function of matrix argument and its 
derivative: 

(2.2) 

_ (a + Z)- fl~l<~, 
( f l ) .C~(¢)  

I Zt ~,-(p+l)12li p _ Z lSS- lp+ l l i2  

JJP)(a, fl; K) 

(a + fl)~ 
( fl)~C~( Ip) 

× ftzk~,o<z<¢ (log] Z]) 
I Zl<'-IP+WZllp - z I  p - t p + w 2  

BA a, fl) 

C~(¢ - Z ) d Z ,  

c,¢(i, - Z ) d Z ,  
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where a, f l>(p-1)/2,  O<a<l and C~(Z) stands for zonal polynomial  of 
positive definite matrix Z corresponding to part i t ion x={kl, . . . ,  kp} (k] >_... >_kp) 
of k; Z<Ip means Ip-Z  is positive definite. The constant  factor is so chosen 
that  for a=  1, I,(Pl(a, fl; x) = 1. We note  that  w h e n p =  1, these two funct ions  are 
reduced to 

(2.3) 

a g ,  

L(a, ,6 + k) - L z"-l( 1 - z) e+''-ldz , 
B(a, + k) 

a 

J,,(a, fl + k) _ c,L (log z)z"-l(1 - z)e+'<dz. 
B(a, P + k) - i J  

For  the numerical  computa t ion  of I(~P)(a, fl; x) when p > l ,  the following 
expression by the latent roots of Z is useful: 

I(2)(a, ~; x )  - - -  

iLla-w+')/=llp_ Lla<O+l)/= f x J ILl<,,. o<,,.<-..< ,,<, Bp(a, fl) 

× C~(Ip - L) II (l~- lj)dk 
1 <- i<j<.p 

where L=diag(l~,. . . ,  lp) and similarly for J(~P)(a, fl; x). We now prove the 
following theorem. 

THEOREM 2.1. Assume that n>p. PutA =~tz~-l~ anda={n!(n+r-p)!}/ 
{(n-p)!(n+r)!}. Then under the entropy loss, the risk of  the improved 
estimator d*(X, S) is given by 

(i) when r>_p, 

k=o (~) k! 

m ? (  ,n " r ) 2  '2 

)} 
i=l n + r +  1 -  2 , - -~- ;x  

r ) 
' "  ~,2 ' T ; " :  - " ~,2 ' T  ;'~ 

n + r - i +  1 ~) ( n + r - p ) !  -]E I/# +k -log 
s=~ 2 (n + r)! 

-p log2 -  1], 
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(ii) when r<p, 

k! [I(~)( n + r - p + 2  p ) - 2  ' 7  ;K 

( t l  ,=1 n + r + i  . . . .  1_i~,) n + r - p  p 
2 ' 2  ;K 

+ (log a)i(~(, n + r - p P--- ; x) _ j(~l( n + r - p P__ ) 
2 ' 2  2 ' 2  ;K 

p ( n + r - i + l )  ( n + r - p ) !  
- Y. ~u + k ,  - l o g  

i=1 2 (n + r)! 

- p l o g 2 -  1].  

COROLLARY 2.1. When p= l, a=n/(n+r) and the risk of d*(X, S) is 
given by 

kZ:°etr( 2 )  (trA/2)k [ ( + 2 r k! L n + k 
: 2 ' 2  

n + r + 2 k  { (n  r )} 
+ 1 - L  - -  - - + k  

n + r  2 ' 2 

+(loga)I~ ,--~ + k - J~ ,--~ + k - ~ n 

+ l o g ( n + r ) - l o g 2 -  1]. 

+r) 
- - + k  

2 

COROLLARY 2.2. When r= 1, a=(n-p+ 1)/(n+ 1) and the risk ofd*(X, 
S) is given by 

k_E0exp- ~ Ian p P + k + 
2 ' 2  n + l  

{ ( n - p + l  p )} ( P +k) × l - L  -~ , ~ + k  +( loga)L n - p +  1 
2 ' 2  

( n - p + l  P +k) [ n + l  ) 
- J° 2 ' 2  - ~ ' I - 7  + k 

p ( n + l  i - l )  (n + l)! ] 
- Z ~ ,  + l o g  - p l o g 2 -  1 

/~2 2 -2 (n - p + 1)! " 
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Corollaries 2. I and 2.2 are the easiest cases to be computed, since only the 
usual incomplete beta functions and its derivatives are involved. 

PROOF OF THEOREM 2.1. Since the loss function is invariant under the 
transformation (X, S)--'(AX, ASA t) and (~, ,r)--(A~, A_rA t) for any 
nonsingular matrices A, we may assume that Z:=L From Shorrock and Zidek 
(1976) or by Lemma 2.1 in Sugiura and Konno (1987), put V=S+XX' and 
T=(S+ XXt)-I/2s(s+ xxt)  -1/2 when r>_p and T=I-Xt(S+ XXt)-lXwhen r<p. 
We can write d*(X, S)= I VIh(T) for h(T)={(n-p)!/n!}min{I TI, a}, where V 
and T are independent for given ~:; Under A--0, V has Wishart distribution 
Wp(n+r, I) and Thas ap-variate beta distribution with parameter (n/2, r/2) 
when r>_p and an r-variate beta distribution with parameter ((n+r-p)/2,p/2) 
when p>_r. Further the risk of d*(X, S) is written by 

(2.4) R(d*, A) 

= EA[I Vth(T) - log(I VIh(T)) - 1] 

:.rE0[I Vl G(V)lx] Eo[h(T)C (I - T)lx] 
L A  . . . . . . . . . .  

[ Eo[G(V)Ix] Eo[G(I- T)lx] 

Eo[(logl V I ) G ( V ) l x ]  Eo[(logh(T))G(I- T)lx] _ 1] 

Eo[G(V)Ix] Eo[G(I- T)lx] ] ' 

where E0 stands for EA=0 and E~ denotes the expectation with respect to 
random partition x with probability (etr(-A/2))G(A/2)/k!. Note that 
Eo[[ V[ C,(V)[K]/Eo[G(V)[K] is equal to 

(2.5) 
2 2 '~ 

E[n + r~[n + r 

When r>_p, Eo[h(T)G(I-T)Ix]/Eo[G(I-T)lx] is shown to be 

 26) . .  ,2   (n.2 _ { n + r ]  2 ' 2 p) n + 2  

. n + r + 2  n ( 2 
2 ~ Bp , 

+ (n + r - p ) !  l1 _ f tp) [n  
( n + r ) ~  ~ "~ ~,2 

r ) }  
_ _  ° 

, 2  , K  , 

r )  
- -  _ _  ° 

, 2  ,K 

giving the first term within the blanket in R.H.S. of (2.4) as 
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(2.7) l~p)(n+2 r ) + {-I n+r+ 1-i+2ki]ll-L (p)ln r )} 
2 ' 2 '  i=, n + - r + l - - - /  It ~ ~2 ,-~-,K 

The second term Eo[(logl VI)C~( V)lx]/E0[C~( V)IK] is equal to 

(2.8) p l o g 2 +  ~,~u( -n+r- i+l  ) + k i  , 
i=1 2 

which can be obtained by differentiating the identity 

f~>ol wI ~-~P+l)/2etr(- W)C~( W)dW = Fp( a)(a)~G( I) , 

with respect to a. The third term in R.H.S. of (2.4) is similarly obtained when 
r>p as 

(2.9) 
Eo[(log h(T))C~(I- T)lx] 

Eo[C~(I- T)IK] 

{ (n-p),lLtp,[n r ) j ~ p ,  ln  r )  
= log ~! J° ~2 ' T  ;~ + ° ~2 ' 2  ;K 

+{log (n+r-p), L(m[n L . K )  } 
( r / 77~  1 { 1 -  a ~2 ' 2 ' " 

Combined with (2 .7 ) ,  ( 2 .8 )  a n d  (2 .9 ) ,  we get the desired formula in (i) in 
Theorem 2.1. The case of r<p is similarly obtained. 

Our numerical study in Section 4 shows that the minimum value of R(d*, 
A) is obtained when A =0 given by 

. ,~ 0,=,~,.,("+~ ') ( T )  '"("- ~) + ( l o g  a - l ) Ia  ~*'~ n--n- r 
2 ' 2  2 '  - J ~  2 ' 

n+r - i+  l) 
- ~2 ~u - log 

i=1 "2 

(n + r -p)! 
(n + r)! 

- p  l o g 2 ,  

for r>_p and 

" ° ' <  n+r-~+~ 2) ( ~ ~) + ( l o g a -  1)1~ ') n + r -  
' 2 ' 2  

( ) (.+r-i+,) 
2 ' 2 i:1 

(n + r - p ) !  
- l o g  - p l o g  2 ,  

(n + r)! 
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for r<p, where ItP)(a, fl)= Ia(P)(a, fl; 0) and similarly J(aP)(a, fl)=J(aP)(a, fl; 0). The 
maximum rate of reduction of risk {R(d)-R(d*, A)}/R(d) is obtained at A =0. 
Although these findings are intuitively obvious as in Sinha (1976), we were 
unable to give rigorous proof. 

3. Risk of estimators for the generalized precision 

For estimating the generalized precision I S-1l under entropy loss L(d, 
127~1) = dl Z'l -log(dl ZI)- 1, risk of the best affine equivariant estimator 
e(S)={(n-2)! / (n-p-2)!} l  S-~I is given by 

p ( n - i + l )  
R(e) = iT ~u 2 + p log 2 - log 

(n - 2)! 
(n - p - 2)! 

By the same argument as in the proof of Theorem 2.1, we get the following 
mixture representation of risk of the improved estimator e*(X, S) given by 
(1.2). 

THEOREM 3.1. Assume that n>p+l.  Put A=~'Z-I~ and a={(n-2)! 
×(n+ r - p -  2)l } / { ( n - p -  2)!(n+ r-2)] }. Then under the entropy loss (=dlZI-  
log(d[Z'l) -1), the risk o f  e*(X, S) has the following expression. 

(i) when r>_p, 

R(e*,A)=EEk=o (~) e t r ( -A)  ~ [i~p)(n - 22  
r) 

_ _  • 

- - '  2 ,K 

+({-I n + r - l - i  / / l _ / , p , / n  r )} 
i:~ n + r - 1 -  i + 2kil[ a ~ 2 , --f ; x 

- - - ' t o  + - - ' t o  
2 ' 2 '  " ~ 2 ' 2 '  

e ( +  i + 1  ) + Z~,-n r -  +k; - l og  
i=1 2 

+ p l o g 2 -  I] ,  

~ [ I ~ r l (  n + r - p - 2  p 2  ' 2 ;x) 

n + r - l - i  ){ ( + )} 
n+r-i--[+2ki 1-I~'1 n r - p  p__ 2 ' 2  ;x 

(n + r - 2)l 
(n + r - p -  2)! 

(ii) when r<p, 

R(e* ,A)= k:o ~" Zetr(-(~) , 2 )  C~(2)k, 



336 NARtAKI  S U G I U R A  AND YOSHIHIKO KONNO 

- (l°g a) I(~rl( n + r - ' 2P---;x)+J(~rl( n + r - '2 'P 'K) 

p ( n + r - i +  1 ) ( n + r - 2 ) ,  
+ Y . ~  +ki  - l o g  

i~i 2 (n + r - p  - 2)! 

+ p l o g 2 -  1]. 

COROLLARY 3.1. Whenp= 1, a=(n-2) / (n+r-2)  and the risk ofe*(X, 
S) is given by 

( ~)~t~j2'~[ In 2 r ) 
~0 e t r -  k! I~ ~ ' 2 + k 

+ n + r 2  { ,_ ,~(~ r I} 
n + r - 2 + 2 k  ' 7  + k  

( ~ r ) I ° r i ( ° + r ) -  __ -(loga)Ia , - ~ - + k  +Ja  2 ' 2 + k  +~ '  2 + k  

- log(n+r-2)+log2- 1]. 

COROLLARY 3.2. When r= 1, a = ( n - p -  1)/(n- 1) and the risk ofe*(X, 
S) is given by 

~o e x p -  ----U-., ,to 2 ' 2  

X 1--/a  2 ' 2  

n - p +  1 P + k) 
(log a)L 2 ' 2 

+~(o~+,~ ) i ,  ÷, ) 
+ i=2Z~U( n - i + 2  2)  

( n -  1)! + p l o g 2 -  1]. 
log ( n - p -  1)! 

n-I  + 
n - l + 2 k  

Corollaries 3.1 and 3.2 are used for the numerical computation in Section 
4. Our numerical study shows that the minimum value of R(e*, A) is obtained 
at A =0, giving, for r>_p 
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and for r<p 

R(e* '  O) = I("P'( n - 2 2) D/'(P)/n--- 2 )  - - - ~ ,  - ( l o g a +  , a [ 2  ' 

+J"P)[n [2 ' +iE__l ( n + r - i + l  ) 

(n + r - 2)! 
- l o g  + p l o g  2 ,  

(n + r - p  - 2)! 

R e. O,= " "ogo+ 

( + j~,) n + r p P + ~u 
2 ' 2 i=l 

(n + r - 2)! 
- l o g  (n  + r - p  - 2) !  - p l o g  2 .  

The maximum rate of reduction of risk {R(e)-R(e*,  A)}/R(e) is obtained at 
A=0. 

4. Numerical results 

To compute the risk of the improved estimators under entropy loss when 
p = 1 or r=  1, we need to evaluate the function L,(a, fl) and Ja(a, fl). We found 
that the following infinite power series was useful: 

Ja(a, fl) = (log a - 1 ) I ~ ( a ,  fl) + 

1 

1 

a + l  

aa(1 - a) ~ 

aB( a, p) 

a+ 1 - - a +  + a + l  a + f l + l  

1 _ ) ( a + f l ) ( a + f l +  1) 2 } 
a +  ( a + i ) ( a + 2 )  a + . . . .  

This is obtained by differentiating the following power series of incomplete 
beta function (Abramowitz and Stegun (1964), p. 944) with respect to a 

f :  ta-l(l _ t)~-ldt 
aa(1 - { 

- a)~ 1 + - -  
a a + l  

( a + f l ) ( a + f l +  1) a2 } 
a +  ( a +  1 ) ( a + 2 )  + " "  " 

Tables 1 and 2 give the values of risk of the improved estimator d*(X, S) 
defined by (1.1) when p =  1 based on Corollary 2.1 and when r= 1 based on 
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Risk of d*(X, S) when n=5 (upper) and n= 10 (lower) forp= 1. 

r 2 = 0  2 = 1  ) , = 2  2 = 5  

1 .207 (3.0%) .207 .208 .211 
.102 (1.7%) .102 .102 .103 

2 .199 (6.7%) .200 .201 .206 
.099 (4.1%) .099 .100 .101 

3 .192 (9.8%) .193 .195 .202 
.097 (6.5%) .097 .098 .100 

5 .183 (14.4%) .183 .185 .193 
.093 (10.4%) .093 .094 .097 

10 .169 (20,7%) .169 ,171 .177 
.086 (17.2%) .086 ,087 .090 

Table 2. Risk of d*(X, S) when n= 10 and r= I. 

p 2 = 0  )~=1 2 = 2  2 = 5  

2 .213 (2.4%) .214 ,214 .216 
3 .339 (2.8%) .339 .340 .344 
4 .483 (3.2%) .483 .484 .489 
5 ,65t (3,5%) .651 .653 .659 
6 .853 (3.9%) .854 .855 .863 
7 1.108 (4.3%) 1.109 1.111 1.120 
8 1.454 (4.8%) 1.454 1,456 1.467 
9 1.989 (5.5%) 1.990 1.992 2.004 

10 3.164 (6.2%) 3.164 3.167 3.179 

Corollary 2.2. The maximum rate of reduction of risk lOOx{R(d)-R(d*, 
0)}/R(d)  is shown in the parentheses. We can see from Table 1 that the rate of 
reduction increases as r increases and that it decreases as )~=trA increases. The 
maximum rate of reduction is 3.0% when n=5 a n d p = r =  1, which is compared 
with 1.7% under the squared loss in Sugiura and Konno (1987). From Table 2, 
we can see that the rate of reduction increases very slowly asp increases with 
fixed n and r= 1. This tendency can not be seen under squared loss in Sugiura 
and Konno (1987). 

To obtain the risk of d*(X, S)  w h e n p = 2  or r -2 ,  based on Theorem 2.1, 
we made use of computer program for zonal polynomials due to Sugiyama 
(1979), giving Tables 3 and 4. From Table 3 we can see that the risk is 
monotonically increasing with respect to each latent root of A. 

Table 4 shows the increase of the maximum rate of reduction for 
increasing r or increasingp. The tendency is the same as that in Tables 1 and 2. 

Corresponding to Tables 1 and 2, the risk of the improved estimator 
e*(X, S) defined in (1.2) is shown in Tables 5 and 6. They are computed by 



Table 3. 

22 

0 
1 
2 
5 

10 

RISK OF IMPROVED ESTIMATORS 

Risk of d*(X, S) when p = r = 2  and n = 10 for A=diag (21, 2z). 

2t = 0 21 = 1 21 = 2 21 = 5 21 = 10 

• 207 (5.2%) .208 209 .212 .217 
.209 .210 .213 .217 

.211 .214 .217 
• 217 .218 

.218 
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Table 4. Risk of d*(X, S) at A =0 when n= 10 and the maximum rate 
of reduction of risk 100×{R(d)-R(d*, 0)}/R(d). 

p r = 2  r p = 2  

1 .0990 (4.1%) 
2 .207I (5.2%) 
3 .3284 (5.8%) 
4 .4668 (6.4%) 
5 .6282 (6.8%) 
6 .8225 (7.3%) 
7 1.0677 (7.8%) 
8 1.3983 (8.4%) 
9 1.9126 (9.1%) 

10 3.0416 (9.9%) 

3 .2017  (7.7%) 
5 .1928 (11.8%) 

10 .1787 (18.2%) 
20 .1710 (21.8%) 

Table 5. Risk of e*(X, S) when n=5 (upper) and n= 10 (lower) forp= 1. 

r 2 = 0  2 = 1  2 = 2  2 = 5  

1 .281 (5.7%) .282 .284 .291 
.117 (2.3%) .I17 .118 .119 

2 .261 (12.3%) .263 .266 .279 
.113 (5.6%) .113 .I14 .117 

3 .246 (17.5%) .247 .251 .267 
• 109 (8.8%) .110 . I l l  .114 

5 .224 (24.8%) .226 .229 .246 
.103 (14.1%) .103 .105 .109 

10 .196 (34.2%) .197 .199 .212 
,092 (23.2%) .092 .093 .099 

Corollaries 3.1 and 3.2. We can see that the risk of e*(X, S) has the same 
tendency as that of d*(X, S). Each maximum rate of reduction of risk shown 
in the parentheses is higher than that of d*(X, S). However it is not as much as 
under the squared loss, except for the case of larger p. For instance the 
maximum rate of reduction for e*(X, S) under entropy loss is 5.7% when n=5 
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Table 6. Risk ofe*(X, S) when n=10 and r= l .  

p 2 = 0  ) . = 1  2 = 2  2 = 5  

2 .247 (3.4%) .248 .249 .252 
3 .396 (4.2%) .397 ,398 .404 
4 .570 (5.0%) .571 .573 .582 
5 .781 (5.9%) .782 .785 .797 
6 1.046 (7.2%) 1.048 1.051 1.067 
7 1.407 (9.3%) 1.408 1.413 1.434 
8 1.969 (13.6%) 1.971 1.977 2.006 

Table 7. 

).2 

0 
1 
2 
5 

10 

Risk of e*(X, S) when p = r = 2  and n= 10 for A =diag (2~,).2). 

).1 = 0 ).1 = 1 J-I ~-- 2 2I = 5 ,~, = 10 

.237 (7.5%) .237 .239 .245 .252 
.239 .241 .247 .253 

.243 .249 .254 
.252 .255 

.256 

Table 8. Risk of e*(X, S) at A =0 when n = 10 and the maximum rate 
of reduction of risk lOOxtR(e)-R(e*, 0)}/R(e). 

p r = 2  r p = 2  

I .1131 (5.6%) I .2473 (3.4%) 
2 .2367 (7.5%) 2 .2367 (7.5%) 
3 .3766 (8.9%) 3 .2273 (11.2%) 
4 .5382 (10.3%) 5 .2117 (17.3%) 
5 .7301 (12.0%) 10 .1874 (26.8%) 
6 .9661 (14.2%) 20 .1619 (36.7%) 
7 1.2770 (17.6%) 
8 1.7308 (24.1%) 

and p =  1, but corresponding value under squared loss in Sugiura and Konno 
(1987) is 12.5%. 

Corresponding to Tables 3 and 4, the risk of e*(X, S) for the generalized 
precision is computed by Theorem 3.1 and is given in Tables 7 and 8. The 
reduction of risk is larger than that of d*(X, S). 
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