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Abstract. We consider i.i.d, samples from a continuous density with finite 
cusps. Then we obtain the bound for the second order asymptotic 
distribution of all asymptotically median unbiased estimators. Further we 
get the second order asymptotic distribution of a bias-adjusted maximum 
likelihood estimator, and we see that it is not generally second order 
asymptotically efficient. 
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1. Introduction 

Recently higher order asymptotic efficiency of estimators has been 
studied by Pfanzagl and Wefelmeyer (1978), Ghosh et aL (1980), and Akahira 
and Takeuchi (1981) among others, under suitable regularity conditions. 

In non-regular situations where the regularity conditions do not 
necessarily hold, asymptotic optimality has been discussed by Weiss and 
Wolfowitz (1968), Prakasa Rao (1968), Akahira and Takeuchi (1981, 1985), 
Ibragimov and Has'minskii (1981), Jure~kov~i (1981), Akahira (1982, 1987), 
Takeuchi and Akahira (1983), Antoch (1984), Pfanzagl and Wefelmeyer 
(1985), and others, in particular cases. 

In this paper, we have independently and indentically distributed 
random variables according to a continuous density, with finite cusps, which 
includes both of regular and non-regular features. We shall obtain the bound 
for the second order asymptotic distribution of all second order asymptotical- 
ly median unbiased estimators. Further, we shall get the second order 
asymptotic distribution of a bias-adjusted maximum likelihood estimator, 
and see that it is not generally second order asymptotically efficient. 

*Now at Institute of Mathematics, University of Tsukuba, lbaraki 305, Japan. 
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2. Notations and assumptions 

Suppose that Xl, X2,..., X,, . . .  is a sequence of independently and 
identically distributed (i.i.d.) real random variables with a density function 
f ( x ,  O) with respect to the Lebesgue measure. We assume that 0 is a real-valued 
parameter and consider a location parameter family. Then we denotef(x,  0) 
b y f ( x - O ) .  We assume the following conditions. 

(A. l) f ( x )  is continuous in x e R ~, and for m points Sl,..., sin, there exist 
!im0 f ' ( x )  and x-~,±01im f " ( x )  ( j= 1,..., m), for other all x, f ( x )  is three times 

differentiable with respect to x, andf (x)>0  for all x. 
(A.2) The amount I of Fisher information is positive and finite, i.e., 

0<,  / 

(A.3) There exist J=Eo[III)(X)ll21(X)], K=Eo[{III)(X)} 3] and L3 = 
Eo[II31(X)], where llil(x)=d i l o g f ( x ) / d x  i (i= 1, 2, 3). 

For example we see that the piecewise exponential distributions satisfy 
the conditions (A. 1) to (A.3). 

We denote by Po,. the n-fold direct products of probability measure Po 
with the dens i t y f ( x -O) .  

An estimator 0. is called second order asymptotically median unbiased 
(AMU) estimator if for any O ~ R ~, there exists a positive number 6 such that 

lim sup x/% P o , . { O . < O } -  1 
.-~ 0:f0-Ol<~ _ ~ = 0 ; 

lira= o:,SU~<z eo,n{On > O} - ~ = O . 

For O. second order AMU, Go(t, O)+n-1/2Gl(l, O) is defined to be the second 
order asymptotic distribution of x/rn(On- O) (or On for short) if for each t ~ R 1 
and each 0 e R ~ 

lim v/nl Po,.{x/~(O. - O) <_ t} - Go(t, O) - n-'/2G~(t, 0)1 = O . 
n ~ c ~  

A second order AMU estimator 0* is called to the second order 
asymptotically efficient if its second order asymptotic distribution attains 
uniformly the bound F*(t, O) for the second order asymptotic distribution of 
all second order AMU estimators in the sense that for any second order AMU 
estimator O~ 
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lim x/~[Po,.{x/~(O. - O) <_ t} - F*(t ,  0)] _< 0 
n ~ o ~  

for all t > 0 and all 0 ~ R z 

lira VrA[Po..{x/~(O. - O) <_ t} - F*(t,  0)] _> 0 
n ~  

for a l l t < O  and a l l O ~ R  ~ 

(Akahira and Takeuchi (1981)). 
In the definition, it may not be necessary to assume that the bound F*(t, 

0) admits an expansion in powers of the order n -~/2. The bound F*(t, O) is 
sharp in the sense that for each real number r there exists a second order AMU 
estimator 0~ attaining the bound at t=r. Indeed, we consider a discretized 
likelihood estimator (DLE) which is defined to be a solution 0=0~ of the 
discretized likelihood equation 

logf(X~, 0 - rn -in) - ~2 l og f (X i ,  O) = a.(O, r) 
i=1 i=1 ' 

where a,(O, r) is determined so that Or is second order AMU. Then it is shown 
by Akahira and Takeuchi (1979, 1981) that the asymptotic distribution of 
X/~(0,-0) attains the bound for the asymptotic distribution of all second 
order AMU estimators at r, up to the second order, i.e., the order n -1/z. 

3. The bound for the second order asymptotic distributions 

In this section we shall obtain the bound for the second order asymptotic 
distribution of all second order AMU estimators using the log-likelihood 
ratio test statistic. 

Without loss of generality we assume that the true parameter 00 is equal 
to zero. 

In order to obtain the bound we consider the problem of testing 
hypothesis H+: O=A(A >0) against A:/9=0. Then the log-likelihood ratio test 
statistic log L is given by 

(3.1) log L = log H f(X~) i=~ f('~/---'A) - ~ {logf(X,-) - logf(X~ - A)} 

= ~ [ f ' (X i )  
,=, f (X i -~  AZ(,~(.~)). (Xi) 

f (Xg)f"(X~)  - f ' (Xg) 2 A 2 
- 2 f ( x , y  ( x , )  

A 3 

f(s3 
- s j )  
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+ f ' (s j  - O) (sj - (X~-  d))}X~,u, (Xi) 
f(sj) 

im  
- -  -2 j~=l { ( c j - ( X i  - -  z~ - -  Sj) 2 

- c + + ( x , -  sf)x,~<a, (xa} + o,,(A3)] 

i:1 f (Xi)  1 - j~Xcu) (X i )  

/t2 f (X ' ) f " (XO - f ' (X')2 (X,)) 
2 f(Xi)2 • (1 - j:~, ;O,u) 

A3 l'3' (Xi)( l - ~ )(,,,~) (Xi)) 
+ 6 j: l 

+ ~. { bj+ - bJ- ( X i _  sj) + A bj- } X~u) (Xi) 
i:l aj aj 

" 1 -- lj~=i {c j - (X i  - sj - Z1) 2 -- Cj+(Xi -- Sj) 2 } X/d3)(Xi) q- Op(/13) 

n 
---- ~. Zi(zl) + op(nzJ 3) (say) , 

i= 1 

where for each j=  1 .... , m, X~(a)(x) is the indicator of the interval/j(A)=(sj, 
sj+d), I f(A) denotes the complement of/j(A), aj=f(sj), bj±= lirn f ' ( x )  and 

x--ss±O 

cs± = l i m  { f ( x ) f " ( x )  - f ' ( x ) } 2 / f ( x )  2 in which the signs + and - should be read 
x~sy±O 

consistently. 
In the following lemma we obtain the asymptotic mean, variance and 

third order cumulant of ~ Zi(d) up to the order d 3, under the distributions P0,, 
i=l 

and Pa,,,. 

LEMMA 3.1. Assume that the conditions (A. 1) to (A.3) hold. Then the 

asymptotic mean, variance and third order cumulant o f  ~ Zi(d) with d = 
i= 1 

tn -1/2 (t>0), under the distributions Po,, and Pa,,, are given as follows: Under 
the distribution Po,,, 

j : l  aj 

}] ( ' )  ++(cj_-cj+) + o  7 ~  ; 
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( . , )  :{  ,:, } Vo ~2 Zi(A) = t2I - j + ~. 1 ~ n  ~ (b:+ - bj-)(2bj+ + bj-) 

1 + o ( ~ ) ;  

( ) : ~  (1)  
~o ~, z,(~) = ~ + o 7 ;  ' 

respectively, and under the distribution Pa,, 

,=1 - -~-  + Lx - E l b j - ( b j ÷ -  bj-) 
j=l aj 

1 a"- -'}]+o(v;); 
,:, ,3 {,+~ 1 2~,} 

(3.6) Va ( ~: Zi(A))= t 21 + ~ n  ~ (bj+ - bi-)(bj+ + 

+ °  ~ n  ; 

=~+o~ , 

respectively. 

PROOF. 

~ o C Z ; . ~  = ~ ( r  ~ ~ - - ~  

First we have from (3.1) 

,:, g ):.<x).x v ( . 

f ( x ) f " (x )  - f ' ( x )  2 dx + L3 + ~ b~ - bj- 
f ( x )  -6 j=l aj 

• f['+~(x-sM(x)dx~, + a  bJ-a, f[,+as, f (x )dx}  

- ~ j = ,  ~, { c , - ( x  - s j  - a )  2 - c j , ( x  - s ~ ) 2 l f ( x ) d x  

+ o(a 3) . 

In order to obtain Eo[Zi(A)] (i= 1,..., n) up to the order A 2, we get the 
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following: For each j= 1,..., m 

A2 
(3.8) , ,*af ' (x)dx = f(sj  + A) - f(sj) = Abj+ + - -  ~ ' + 0) + o(A 2) ," 

A 2 Z] 3 
(3.9) ff+J~, (x - sj) f(x)dx = ) :  x f ( x  + sj)dx = -~ aj + -~ bs+ + o(a  3) ; 

A 2 
(3.10) f~'+~f(x)dx~, = ]~ f i x  + sj)dx = Aa~ + --~ bj+ + o(A 2) ; 

{ f ' ( x  + sj)} 2 dx = A bj__~_~ + o(A)" (3.11) f , ja  {f'(x)}______~ 2 a x = J :  s,) a, 
,, f ( x )  f ( x  + 

,~3 
(3.12) f~,-a,> (x - ss)2f(x)dx = f :  x2f (x  + ss)dx = --f a/+ o(A3) ; 

fi~ +d Z~ 3 (3.13) (x - sj - A)2f(x)dx = f :  (x - A)2f(x + s~)dx = ~- aj + o(d 3) 

From (3.8) to (3.13) we have 

(3.14) Eo[Zi(d)] -~- z~ j=l ~ --  3 b j +  --  ~ - f " ( s j  + 0) - -~- (a - I) 

- A E f"(sj  + O) + A ~2 bfi } + A'  L3 
j=I j=l aj g 

+ ~: bj+_bj_(a2 ~3 ) 
J:~ at T aj + T bs+ + a ~, bj- 

J=~ at 

A2 } A3 
• aa,  + T bj+ - -6--~=~ aj(~j- - cj+) + o (a ' )  

= - T  ( a -  I) + ~Z (bj+- + - (  L~ 

b,.(b,+-b,_)+ a,(e;- e,+)}] + o(a'). 
i=1 aj 

where a = f : f " ( x ) d x  and I=f_:  [{f ' (x)}2/f(x)]dx.  Since 

f ~  ~ - -  (3.15) a f " ( x ) d x  ~2 (bj- bj+) 
- ~  j =  1 ' 
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and A =tn -m, it follows from (3.14) that (3.2) holds. Second we obtain from 
(3.1) 

(3.16) E0[Z?(~)] 
= A 2 E  ° [{ f ' (X)  

- 2A~2 kE__IEo f (X )  ak ak j=l = - -  - -  XI'(d)(X) 

• Z,,,z)(X)]- A~Eo[ f ' ( X ) ( f ( X ) f " ( X ) - f ' ( X )  2) 
f ( X )  3 

j=l j : l  aj 

] Zv~(X) + o(~ 3) . 
aj 

From (3,11) we have for each j =  1,..., m 

{ f ' (X )  
(3.17) Eo f (X )  

2 ] bj~ 
- -  Zv~(X) = A  + o ( A ) .  

aj 

We also have 

(3.18) 
f (x)  3 j=l 

= Eo[II11(X) llzl(X)] + o(1) = J + o(1) .  

Since for each j =  1,..., m 

aj as. 

A 3 

3~ 
- - -  {(bj+ - bj-) 2 + 3bj+bj-} + o(A3), 

and A=tn -1/2, it follows from (3.16) to (3.18) that (3.3) holds. Third we have 
from (3.1) 
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(3.19) 
j:l f ( X )  j:l 

f ( X )  J:' 

Since for each j =  !,..., m 

(3.20) fi~+a f'(x)_______~ 3 b/+ 
~; f ( x )  2 d x =  A ~ + o(Z) ,  

it follows that 

(3.21) 
f ( X )  y:, 

j : l  a j  

i n - l ~  2 which implies (3.4) since A = . 
In a similar way to the above, we obtain the asymptotic mean (3.5), 

n 
variance (3.6) and third order cumulant (3.7) of E Zi(A), under the distribu- 

tion Pa.,. Thus we complete the proof. 

In order to obtain the bound for the second order asymptotic distribu- 
tion of all second order AMU estimators, we need the following. 

LEMMA 3.2. Assume that the asymptotic mean, variance and third 
n 

order cumulant o f  E Zi( A ) with A = tn-1/2, under the distributions Po,,( O= O, A ), 

are given by the following form. 

[ ] , ( 1 )  Eo ~: zi(A) = , ( t ,  o) + ~ el(t, o) + o ~ . 
i: 1 

( ) (1) 
Vo ~: z / ( 3 )  = v2(t, o) + ~ c2(t, o) + o ~ • 

i= 1 

,=1 ~ c,(t, o) + o 7 ~  " 

Then 
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(3.22) 
1 1 c3(t,O) ( 1 ) 

a = It(t, O) + ~ cl(t, O)-  6~n v2(t, 0------~ + o 

if and only if 

(3.23) 
/ } , ( 1 )  

Po,n Z i ( z l ) < a  = + o  

The proof is essentially given in Akahira and Takeuchi (1981, pp. 132, 
133). 

In the following theorem we obtain the bound for asymptotic distribu- 
tion of all second order AMU estimators. 

THEOREM 3.1. Assume that the conditions (A.1) to (A.3) hold. Then 
the bound for the second order asymptotic distribution of  all second order 
A M U  estimators On is given as follows. 

(3.24) 
t2ch(t ) 

lim ~ Po.n{V~ (0n - 0) ___ t} - q~(t) - 613/2V/- ~ 

j=l aj ' 

for all t>0; 

(3.25) lim= ,v/-n[ Po,.{V~(O. - O) <_ t} - ~b(t) 
t2 q~( t) 

613/2 k/n 

• {3J+  K +  ~. (bj+-bj-)(2bj÷+ bj-) }] >_0, 
j : l  aj 

for all t<0, where ~(t) and ~b(t) denote the standard normal distribution 
function and its density function, respectively. 

Remark 3. I. In the third terms {...} of (3.24) and (3.25), the first term 
3J+ K and the remainder correspond to the regular part and the non-regular 
one, i.e., the cusps of the density f (x) ,  respectively. If all cusps of f (x )  
vanish, that is, bj÷=bj- (j= 1 .... , m), then the terms {...} consist of only 3J+K, 
which coincides with the fact by Akahira and Takeuchi (1981). 

Remark 3.2. A result on the validity of formal Edgeworth expansions 
for the sum of i.i.d, random variables was given by Bhattacharya and Ghosh 
(1978). Here it is not applicable, since the log-likelihood ratio is approximated 

n 

by a sum E Zi(A), with A=tn q/2, of i.i.d, functions depending on n. In this 
i=1 
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case, we denote by f,(u) the characteristic function of Zi(A). If for any ~>0, 
there exists a constant de such that 

sup If,(u)l-< de < 1, 
lul>~ 

then the Edgeworth expansion for sums of i.i.d, random variables is valid. 

PROOF OF THEOREM 3.1. We consider the case when t>0. In order to 
choose a such that 

{ 1, (1) ( 3 . 2 6 )  Pa, .  ~ Zi (z~)  < a = Jr o 

we have by Lemmas 3.1 and 3.2 

a - 
j=l  aj 

tK 

6 i v/~ ' 

where A =In -1/2. Since 

(3.27) 

putting 

i=i i=1 

W; -- - { ~ Zi(z~) - 121-a} 
i= 1 

we have from Lemma 3.1 

t 3 (bj+- bj-) 2 
(3.28) eo(W;) = ~ j__~ ~J 

(3.29) Vo(W*~)= tzI - ~7~ J + ~ 
j= l 

(3.30) xo(W, + ) = - ~ n  + °  ~ n  " 

(1) 
6IV~ + o ~ ; 

(bj+-bj-)(2bj++bj-) } 3 a j  +o( l )~n ; 

We obtain by (3.27) to (3.30) and the Edgeworth expansion 
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(3.31) 

= e ( v ~ t )  + ~ 4ffXfit) 3,/+ K 

}(')o + ~: ± (bj+ - b~-)(bj+ + 26;_) + I 

j=l aj 

Here, from (3.1), (3.26) and the fundamental lemma of Neyman-Pearson it is 

noted that a test with the rejection region Zi(d)>_a is the most powerful 

test of level 1 / 2 + o(1 / V'-n). 

Let On be any second order AMU estimator. Putting A0o={x/n O.<-t}, we 
have 

Pa'n(Ao")= Pa'n{On < tn-m} = l ( @n ) _ ~ + 0  . 

Then it is seen that XAo, of indicators of Ao. is a test of level 1 / 2 + o(1 / x/~). From 
(3.31) we obtain for any second order AMU estimator On 

Po,.{v%0. <_ t} <_ P0,n{ W .  + --< It 2} 

t2 { 
= e(VCft) + ~ cb(Vrft) 3J + K + Z 1 (bj+ - b)-) j=l aj 

1 
• (b,+ + 2b,-)} + o ( ~ 7 ~ ) ,  

for all t>0. 
Hence we see that the bound for the second order asymptotic distribu- 

tion of all second order AMU estimators for all t>0 is given by (3.24). 
In a similar way to the case t>0, we obtain the bound (3.25) for all t<0. 

Thus we complete the proof. 

COROLLARY 3.1. Assume that the conditions (A. I) to (A.3) hold. I f  

(3.32) Z bJZ*-Z bj2 
j=l aj j=l aj 

then the bound for the second order asymptotic distribution of all second 
order AMU estimators On is given by 
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,.o,t,{ , s.n } ( ' )  e ( t )  + ~ 3 J  + K + ~ - -  (bj+ - b~-)(6j+ + 2bj - )  t + o - - r -  b 

j:l as 

The proof is omitted since it is straightforward. 
In some case of the double exponential distribution, the condition (3.32) 

is satisfied, as is shown later. 

4. The second order asymptotic distribution of a bias-adjusted maximum 
likelihood estimator 

In this section we shall obtain the second order asymptotic distribution of 
a bias-adjusted maximum likelihood estimator and compare it with the 
bound obtained in the previous section. 

We denote by 00 and 0ML the true parameter and the maximum likelihood 
estimator (MLE), respectively. It is seen that for each real t, 0ML<00+ tn -1/2 if 

and only if (8/00) " -1/2 log f ( X i - O o - t n  )<0. Without loss of generality we 

assume that 00=0. Hence we see that for each real t 

(4.1) 1 ~: l(~)(X, - tn -~/2) > 0 OML < tn -1/2 if and only if ~ i=1 

with probability larger than 1-  o(n-~). By the Taylor's expansion we have for 
each t>0 

i:1 ~ i:1 f(Xi--------~- ~ °  f(Xi) 2 

,' }{ } + 57/<~>(x~) l - J:~, x,.(x~) 

+ X i - s s  j=l aj aj 

= ~2 Y/+ op(1) (say), 
i = 1 

where/i=(si, sj+tn -1/2) ( j= 1,..., m). Then we have the following: 

LEMMA 4.1. Assume that the conditions (A. 1) to (A.3) hold. Then the 

asymptotic mean, variance and third order cumulant o f  iX__x Yi/ ~ under the 

distribution Po,. up to the order n -1/2 are given as follows: For each t>O 
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[ ] t2[ 
1 ~ y~ = tI  + L3 - E 1 (bj+ - bi-)(2bj+ + bj-) *r° 7 ; . ,  2-.7; --a, 

] ( ' )  + ~  { f " ( s j + O ) - f " ( s j - O ) }  + o  ---/= " 
j=I 

(, ~ ) _ , _ ,  { , / t , )  Vo 7 ~  ~=~ ~.~ 2J + ~ - (b .  ~ - b.b + o ~7~ ; 
j=l aj  

~o(~,=, ~ +  1 

The proof is omitted since it is similar to that of Lemma 3. I. 
From Lemma 4.1 we have the following: 

THEOREM 4.1. Assume that the conditions (A. 1) to (A.3) hold. Let O*L 
be a bias-adjusted M L E  defined by 

K 
O~L = OML 6n i  2 • 

Then the second order asymptot ic  distribution oU O~IL is given by 

(4.2) Po,.{X/~(O*L - O) <_ t} 

• ( t ) + ~  6 J + K + 3 L 3 - 3 Z  l b j ÷ ( b j + _ b j _ )  
j:l aj 

}] ( l )  - f " ( s j  + O) + f"(s j  - O) + o  ~ n  f o r  all t > O ; 

:°"' [ l e( t )  + ~ 6J + K + 3L3 - 3 ~ l bj_(bj÷ _ bj_) 
j=l ai 

}] (')~o - f " ( s j  + O) + f"(s j  - O) + o --7- f o r  all t < O . 

Remark  4.1. In the terms [...] of the right-hand side of (4.2), the first 
term 6J+K+3L3 and the remainder correspond to the regular part and the 
non-regular one, i.e., the cusps of the densityf(x),  respectively. If all cusps 
o f f (x )  vanish, that is, for each j - - l , . . . ,  m, bj.=bj- and f"(sj+O)=f"(sj-O), 
then the term [...] consists of only 6J+ K+ 3L3. Since L3 = Eo[lt3)(X)] -- - 3 J - K  
and K = - 2 J  in the regular and location parameter case, it follows that 
6J+ K+ 3 L3-- J which coincides with the fact by Akahira and Takeuchi (1981). 
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PROOF OF THEOREM 4.1. From(4.1)  and Lemma4.1 it foUows that 
the Edgeworth expansion of the distribution of the MLE 0ML is given as 
follows: For each t>0 

po..{~OM~ <- t} 

{ 1 ~2Yi<O} = 1 - P0., ~ n i =  1 

[ 613/2K = 1 - ~(-V/-[  t) + qb(X/c-[ t) X/~ 

t2 { K } 
+ ~ 2J + -~- + L3 + J:,~2 (f"(sj  + O) - f " ( s j  - 0)) 

t 2 
{ 1 (bi÷ - bj-)(2bj+ + bj-) 

m 
+ - ¥  

1 o(  1 + - -  (bJ+2 - bj-2) }] + ) 

K t 2 
= ~b(x//-[t) + dp(x/c[t) 613/2V ~ + 6----~ (6J + K + 3L3) 

2 

1 

Hence we have for each t>0 

Po,.{V/-~O*L <-- t} 

{ " t  = po,. ,,/~O*~L <-- t + ~ 

,~,(t) [ { 
= ~ ( t ) + ~  6J + K + 3L3 - 3 Z l bj+(bj+- bj-) 

j=l aj 

I 

In a similar way to the case t>0,  we obtain (4.2) for all t<0. Thus we complete 
the proof. 

COROLLARY 4.1. Assume that the conditions (A. 1) to (A.3) hold. I f  
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j:l aj --j:l aj 

then the second order asymptotic distribution of  the bias-adjusted MLE O*L is 
given by 

(4.3) PO,,{,v/~(O*L - O) < t} 

[ { = q)(t) + 613/2X/~ 6J + K + 3L3-  3 ~2 I bj+(bj+- b:-) j=l aj 

1 ) 
The proof is omitted since it is straightforward. 

Remark 4.2. Comparing the second order asymptotic distribution 
(4.2) or (4.3) of 0*L with the bound given in Theorem 3.1 or Corollary 3.1, we 
see that 0*L is not second order asymptotically efficient since its second order 
asymptotic distribution does not uniformly attain the bound. 

B. Examples 

In this section we shall give some examples on the previous sections. 

Example 5.1. (Symmetric double exponential case) Let X~, X2,..., 
An,... be a sequence of i.i.d, random variables with a dens i tyf (x-0)=e  -Ix oj/2 
( - ~ < x < ~ ) .  Since f (x)  has a cusp at x=0, this corresponds to the case 
when m = l  and s~=0 in the condition (A.1). Since I=1, J=K=L3=O, 
a~=b~-=-bl+=l/2 and f"(O-O)=f"(O+O)=l/2, it follows from Corollaries 
3.1 and 4.1 that the bound for the second order asymptotic distribution of all 
second order AMU estimators is given by 

(5.1) 1 :4'(0 o( ~(t) - ~ sgn t + ) ,  

and also the second order asymptotic distribution of the MLE 0ML is given by 

t2q~(t) / 1 

2T-47 sgn o[ . (5.2) ~(t) - t + / 

From (5.1) and (5.2) it follows that 0ML is not second order asymptotically 
efficient since its second order asymptotic distribution does not uniformly 
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attain the bound. These facts coincide with the result by Akahira and 
Takeuchi ((1981), p. 97). 

Example 5.2. (Asymmetric density) Let X~, X2,..., X,,... be a se- 
quence of i.i.d, random variables with a density 

f i x -  O)= 

1 eX_ o 

1 

1 e_2(x_O_l/2) 

for x <  O; 

1 
for O ~ x < O + - "  

2 '  

1 
for O+ _-_< x .  

2 

Sincef(x) has cusps at x=0, 1 / 2, this corresponds to the case when m=2, sl =0 
and s2=1/2 in the condition (A.1). Since •=3/2, J=0, K = - 3 / 2 ,  L3=0, 
al=a2=l/2, h i -= l / 2 ,  bl.=b2-=0, b2+=-l ,  f"(O-O)=l/2, f " (0+0)=0 ,  
f"(1/2-O)=O andf"(1/2+O)=2, it follows from Theorems 3.1 and 4.1 that 
the bound is given by 

,2 ( l )  
4'(0 + o  for t > 0 ;  

t2d~(t) ( 1 ) 
+ o for t < 0 

and also the second order asymptotic distribution of the bias-adjusted MLE 
O*L=OML+(1/9n) is given by 

t2ch(t) 1 
~b(t) 

3t2qb(t) ( 1 ) 
+ o for t < 0 

Hence it is seen that ~M~L is not second order asymptotically efficient. 
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6. Discussion 

As is seen in the previous sections, the density with (A. 1) to (A.3) has both 
of the regular and the non-regular sides, which does not affect the first order 
asymptotic distribution but the second order one. Further, the corresponding 
parts to both sides appear in the second order asymptotic distribution. Since 
the bound for the second order asymptotic distribution of all second order 
AMU estimators are given in Theorem 3.1 and Corollary 3.1, its second order 
asymptotic difference with the second order asymptotic distribution of any 
second order AMU estimator could be discussed. 
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