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Abstract. Asymptotic expansions are derived for Bayesian posterior 
expectations, distribution functions and density functions. The observations 
constitute a general stochastic process in discrete or continuous time. 
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1. Preliminaries 

Suppose that Yn represents data (univariate or multivariate, discrete or 
continuous) collected up to stage n. In discrete time Yn will represent 
observations {y~,..., y.} and in continuous time I1. will represent a trace {yz: 
t<_n}. Letp(YnlO), the joint probability function or density of Yn, be a function 
of a single continuous parameter 0, and let Lno=lnp(Y.]O) denote the log- 
likelihood function. Asymptotic ( n ~ )  expansions, in descending powers of 
Vn= -L;~O. (where dashes denote differentiation with respect to 0 and 0. is the 
maximum likelihood estimator), will be derived for: 

(i) E.q( O)= E[ q( O) l Y.], the posterior expectation of a given function 
q(O).of O; 

(ii) p.(~)= p[O<_ ~.+ ~ V.-1/2 [ y.], the posterior distribution function of 

(iii) p,(()=dP~(O/d(, the posterior density of V~/2(0-0,). 
The prior distribution isp(0), proper or improper, and the parameter space O 
is defined as {0: p(0)>0}. Only the "regular" case is considered here in which 
L~0o=0, 0n maximizes L,o globally and 0, is an interior point of O. 

The work here is an extension of that of Johnson (1967, 1970) to which it 
owes much though from which significant departures have to be made. 
Johnson derives expansions for Pn(~) in the i.i.d. Exponential family case 
(Johnson (1967)), in the general i.i.d, case (Johnson (1970)), and for data 
comprising a stationary Markov chain (Johnson (1970)). The latter paper also 

297 



298 MARTIN C R O W D E R  

gives expansions for E,O r for integer r, posterior percentiles of 0, and 
normalizing transformations of 0. 

Walker (1969) shows that P , - -~ ,  the standard normal distribution 
function, under certain conditions. Dawid (1970) relaxes these conditions to 
derive the result for a much wider class of distributions, including those where 
the range ofy depends on 0; it is noted below that one of his novel features, in 
essence, comes close to one of the vital ingredients here. Borwanker et al. 
(1971) show that Pn--" • for data comprising a stationary Markov chain, give 
the corresponding result for E,O r, and apply their results to regular Bayes 
estimation. Heyde and Johnstone (1979) prove that P,~q~ for general 
stochastic processes. A related expansion is given in Lemma 1 of Bickel et al. 
(1985) in connection with the optimality of maximum likelihood estimators 
and Bayes' risks. 

The notation and main results are given in Section 2, with details and 
proofs relegated to Section 4. Some illustrations, applications and discussion 
form the substance of Section 3. 

The motivation for the present work has both a theoretical and a 
practical side. For the former, in trying to justify certain asymptotic results for 
inference with stochastic processes it was found that an order of magnitude 
was required for the errors. For instance, the previous works show that 
[P~-~1 =op(I) but provide no more explicit order except in the i,i,d, case of 
Johnson (1970). Also, an error bound was required for expectations E.q.(O), 
not just for P.. On the more practical side, evaluation of Enq(O) for various 
q(O) of interest, e.g., in random effects nonlinear regression models, can 
involve intractable integrals. Progress is being made by various workers on 
the numerical evaluation of such integrals, and asymptotic estimates such as 
those here can make a contribution to this. 

2. Main results 

The expansions are derived as in Johnson (1970) by applying Laplace's 
method to integrals of type f h(O) exp (L.o-L.o.)dO. The quantities E.q(O), 
P.(~) and p.(~) are expressible as ratios of such integrals with h(O)=p(O) or 
p(O)q(O) as appropriate. In the integrand L.o L.O. is expanded as -(1/2)V.s 2 
+ Vns3Kns with s=O-On; the first term determines the normal form of the 
integral as V.--~. The detailed problems arise from obtaining a suitable 
Taylor series for h(0)exp( V.s 3 K.s) in s, and ensuring negligibility of extraneous 
and remainder terms. The results in the theorem below, where M+I  is the 
number of terms in the expansion, are quoted in terms of 

M 
JnM(h, ~ Vn 1/2) = Z At(h, ~) V-~tt+l)/2/1! , 

'(;) At(h, ~) =jZ Kt-~j(h, 0)/tt+zj(~) , 
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k l Ktk(h, s) = d{h(O, + s) K,s)/ ds , 

1 fl)dt. p~(O=(2ro-l/2f~ ttexp(- ~ 

The conditions under which the results hold are as follows. All limits are taken 
as n---~. Weak form statements are used throughout, convergence in 
probability being easier to verify than convergence almost surely. For 
instance, V,--~ in P0-probability means that for any K>0, Po( Vn<_K)--'O, Po 
being probability determined by the true parameter 00. For a strong form of 
the theorem the conditions must be converted to strong form in the obvious 
way. C, will denote a (possibly shrinking) neighbourhood of 0~: C, = {0:1/9- 0~l 
<c-~}AO where c~ is non-decreasing; C~ is a stochastic neighbourhood 
centred on 0~, and C~ = O -  C~. Ll~0 is the j-th derivative of L~o. 

CI: V,--.oo and limsup c 2 V~ -~ In V~<I/(M+2) in Po-probability. The 
second inequality restricts the growth rate of c~; it holds automatically if 
C n -.t-~ o o  . 

C2: L~0o=0 and Po[10~l_<K]---1 for some K<~.  
Thus the m.l.e, t)~ is a turning point of Lno, and is eventually bounded. 

C3: Po[pIM÷ll(O) and qIM÷ll(0) are continuous on Cn]---1. 
Usually, C2 and C3 will hold because On 70 0o (consistency), and pIM+tl(O) and 

qIM+ll(O) are continuous in some (fixed) neighbourhood of 00. 
C4: (a) P0[L~0 M÷ll is continuous on C,]--I; 

(b) Po[lZ"~/V.I<-K~IO-O.I ~'-a on C.]~I  for some ill>O, K]/6'<c,,; 
(c) (:) (A C,]--* 1 for j=3,.. . ,  M+3, K3<~. Po[ l ( L ,,o- L ,,o./ V,,I <1£3 on 
the "core" conditions requiring good behaviour of L.0-derivatives These are 

on Cn. 
C5: For some d2e[0, 1) 

(a) P0 [sup (L~o- L,Oo) / In V~_<- ( 1 / 2)( M+ 2) / ( 1 - d2)]--" 1; 

(b) Po[Jeolh(0) lex p {d2(L,0- Lo°)}dO<_/(2]--" 1 for some K2<~, for 

h(O)=p(O) and p(O)q(O). 
Negligibility of the integral outside C~ is ensured by C5. Also (a) implies that 
L~0 is globally maximized within C,. 

THEOREM 2.1. Under conditions C1-C5, [E.q(O)-J~M(qp, oo)/ J.M(p, 
oo)[, [ p.(~)_ J.M(p, ~ V-.1/2)/J.M(p, oo)[ and [pn(~)-(d/d~)J.M(p, ~ V-~l/2) / J.~t(p, 
oo)[ are each 0( V~ IM+2)/2) with Po-probability-" 1. 

The proof of the theorem is given in Section 4. For M=0 the result of 
Heyde and Johnstone (1979) is recovered, plus the error of relative magnitude 
V n l / 2  vr ,  • However, the extra information is bought with conditions on L~o in C4 
rather than just on L"o. 
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3. Examples 

The purpose here is briefly to illustrate how the conditions C1-C5 may be 
approached in applications. First, as a benchmark, the i.i.d, case can be dealt 
with by noting that Johnson's  (1970) conditions imply those here; he has a 
proper priorp(0),  q(0)= 1, c ,=cons tant  (b/62 in his paper) and 1,1, replaced by 
n, essentially. 

Of the examples following, the second and third are of mildly pathological 
nature. There is a non-ergodic case, where the limiting distribution of V, is 
non-degenerate,  and a case of the shrinking interval. Such were part of the 
detective work of Sweeting (1980). 

3.1 An i.n.i.d, case: Poisson loglinear model 
The observations }1, (i= 1,..., n) are independent Poisson with means 2i 

satisfying In 2~=xiO, x~ being an explanatory variable. The log-likelihood and 
n n 

p _ its derivatives are L,o= i:lE [ -  exp (xiO)+ xiyiO-lnyi!], L/,o-iE= [xiy~-xi exp(x,O)], 

and L~0 )= - ~2 x/exp(xi0) for j>_2. Assuming that Zx 2-- O(n), it is standard that 
i = l  

t), is consistent. Then V,=Zx 2 exp(xiO,)=O(n) and C1 holds if c~ In n/n--'O, 
say. C2 and C3 hold ifpIM+l~(0) and q'M+ll(0) are continuous on C,. For  C4(a) 
is true, (b) holds because I L, o/" V,I = O(n)/O(n) for 0~ C,, and for (c) t(L,o- 
LI~.)/V,l=O(n)/O(n) also. For C5(a) we have L,o-L,  oo=-{(O-O,)2/2}~,x 2 
• exp(xiOi) where 10i-0~l<10-0~l. Thus for c-.~<_lO-O.l<_K, L,o-L,o.< 
-c-~ z O(n)/2; this continues to hold also for 10-t), I> K since L'0<0 v 0 means 
that L,o-L,o° is convex. Hence (L,o-L,oo)/lnV,<_-c-~2(n/ln n) for 0 ~ 6",, and 
this - - - ~  (assumed above) which suffices for C5(a). Finally, C5(b) is a mild 
restriction on h(0), just requiring that 

~1>,,,' Ih(t~, + s)texp{ - o2Le te - 1 - xis]}ds <_ K2 , 

with P0-probability~ I. 

3.2 A non-ergodic process in discrete time 
Anderson (1959) investigated the autoregressive model yi=Oyi-1 +ei (i= 1, 

2,...) where y0 is fixed, i.e., the results are conditional upon y0. He derived the 
asymptotic distributions of the least-squares estimator of 0 when 10J > 1,= 1, 
and < 1, and where the errors ei are uncorrelated with mean 0 and variance tr 2 
We will take 101 >1 and the e?s as independent N(0, 1). Then Ln0=-(1/2)  n 

n 2 I . , ~ O = ~ y i - l ( y i - -  yi-l), and L " 0 = - E y ~ - l = -  V,. Let • ln(2n)-  (1 / 2) i~ (y i -  Oy~-l), " 0 

U.=Z e~ Y,-1, then 0.=0o+ U./V. and L.o-L.o.= - (1 /2 )  V.(O-O.) 2. Anderson's 
- 2 n  2 2 results show that 00 V,, is asymptoticaly distributed as Z/,/Oo (0~-1) where 

2 2n  Z~ -~ N(Ooyo, 1); hence V, 7,. ~ (for any y0) and C I is satisfied if nc,Oo --0. Also 
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0n is consistent, so C2 and C3 hold provided p°'l+~)(O) and qIM÷~)(O) are 
continuous. Condition C4 is met trivially because LI,J)0 is zero for j>3 .  For 
C5(a) we have, for 0 ~ Cn, 

1_ 1 -2 (Lno - LnO°)/ln V~ = - (0 - On)2Vn/ln Vn ~ - "~ en V~/ln V~, 

so the condition holds ifncZOo2n-'O as for C1. Part (b) of C5 requires only that 

_ 1  2 
fLsl>_,.°' Ih(On+ s)lexp{ ~ & G s  }ds<_ K2 , 

with Po-probability--- 1. 

3.3 A process in continuous time 
In a nonhomogeneous  Poisson process let Yn be the number  of events 

occurring during (0, n] with rate function 2n0=0(1 +n) °-1, where 0>0. Thus Yn 
is P oiss on with mean/zn0 = ( 1 + n) ° -  1 and Lno = -I~no + Yn In/zn0- In Yn!,/In0. = yn, 
0n=In(l+ Yn)/In(l+n), and Vn=[ln(l+n)]2(Yn+l)2/Yn. Since 00>0,/Z,o---oo, 
Yn/I.tno 7oo 1 and 0n ~ 00. Also, assuming continuity ofpIM+ll(0) and qIM+~l(O) on 

0>0, conditions C2 and C3 are met. 
Condition C4(a) holds for each M. For C4(b) we have 

(3.1) L'b' = [ln(l + n)]3(~n0 + 1){ - 1 + Yn(llno + 2)//130}, 

using/~l~)0=(/tn0+ 1)[ln(l +n )]J for j_> 1. It follows that 

I(0 - 0n)' ~'L'b'/Vnl ~ bsl'-~'[ln(1 + n)](1 + n) s . 

Taking d i=1 /2  and c ,=[ ln ( l+n) ]  2, this last expression is bounded by 
exp {[In (1 + n)] -1 }--- 1 as required by C4(b). Similarly for condition C4(c) with 
j=3  we have from (3.1) IL"o'-L'~'ol/Vn ~ [ l n ( l + n ) ] l l - ( l + n ) S l < l  on Cn as 

required. Higher derivatives may be checked similarly. 
Condition C1 is met with cn=[ln(1 + n ) ]  2 since 2 -1 cnVn In VnTo 0. 

For condition C5 we have Lno-Lno.=-(Yn+l)a(u)+bn(u) where u=s 
• ln( l+n) ,  a(u)=eU- l -u ,  and bn(u )=-u+Y ,  ln[(Yn+l-e-U)/Y,]. Since u> 
- In (  Y,+ 1) necessarily, and e-~>0, bn(u)<ln( Yn+ 1)+ Yn ln(1 + Y~-~). Also inf 

Cn 

a( u ) ~ ( 1 /  2 ) C-n 2. Hence sup ( L ,o-  LnO.) / ln Vn ~ -oo and C5(a) is satisfied. For 

C5(b) note that Lno-L,o° ~ -(l+n)°°a(u) on C"n, with a ( u ) = ( l + n f - l - s  

• In(1 +n), so the integrability constraint on h(O) is very mild in practice. 
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Note finally that Heyde and Johnstone's (1979) condition A5 fails here 
because L"o/V.+I p-~ - ( l + n )  °-~° -~ 0 unless a shrinking interval with c; 1 

Po 

• In(1 +n )~0  is used. 

4. Details and proofs 

A sequence of lemmas is given, leading up to the proof of Theorem 2.1. 
To cut clutter, the conditions in the lemmas are given in non-stochastic form. 
The "integral" referred to throughout this section is 

-1'2 C0"+¢ 
L(h, 4) = (2rt) ' .]= h(O)exp(L.o - L.o.)dO 

= V n s 3 K n s  ds , (2ro-l/2fl ~ h (0 .+  s)exp( _ 1  2  V.s + ) 

where s = 0 -  t),. 
Lemma 4.1 gives the basic Taylor expansion of the integrand on C,, and 

Lemma 4.2 shows that the integral over C", is negligible. Lemma 4.3 assembles 
the form of the expansion using the results of Lemmas 4.1 and 4.2. Lemmas 
4.4 and 4.5 convert the conditions on LI,J~ into the bound on KM+~,k(h, s) crucial 
in the proof of Lemma 4.1; they represent a major component of the extra 
work required in generalizing from the i.i.d, case (Johnson (1970)) and from 
the case M=0 (Heyde and Johnstone (1979)). Lemma 4.6 fills in some details 
between Lemma 4.3 and the theorem to tidy up the proof of the latter. 

LEMMA4.1. Taylorexpansionofintegrandon C.={O:JO-O.4<c-.l} fqO. 
Assume 

(i) V.--'~, ]0.1 <_K, and hIM+ll(O) continuous on C.; 
( M +  1 ) ppp (ii) For 0 ~ C., n_N1, KI<~ (a) L.o is continuous, (b) [L.o/V.I 

01-1 ( j )  ( j )  • <KllO-O.[ for  some &>0, (c) I(L.o-L.o.)/V.l<_K3 for  j=3,... ,  M+3. 
Then, for  each N and 0 ~ C., 

h(O. + s)exp(L.o - LoOo) 

: exp(-1V"s2]l~z /t/=o k=o~gK/k(h'O)V:s/+3k/flk' + R. ,} ,  

where 

s = o - &, s) = a q h ( &  + s)K . }/dsL 

Ko, = ( L.o - L <  + z Vos2) / Vn'3 , 

and 
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(4.1) IR.sl < KMNIsIM+lkE=o(V.sZ)k/k + HII g.s z÷~' U÷lexpl_~gns2[l ) , 

for some H~<o. and KMN<OO, and provided c.<_K]/~'. 

PROOF. First, for each N and some a~ e (0, 1), 

1 2 (4.2) exp(Ln0 - LnL+~V.s)=exp(V.s3Kns)  

N 
~- k~_o[Vns3Kns]k/k! "JF [ r r  3r.- -LN+I ,, _ v.s t% d expta~Vns3Kns)/(N + 1)! . 

Now, from (i) and (ii)(a) we have the Taylor expansion 

M 
(4.3) h(O, + s)K~, = ~,Kjk(h, O)sJ/j! + KM+t,k(h, a2kS)S~t+l/(M + 1)! , 

for some a2k ~ (0, 1), k=0,  1,..., N. Then from (4.2) and (4.3) 

h(O. + s)exp(Vns3K.s) - j ~  O)sS(V.s3) k !k! (4.4) IR.sl 
N 

= kE(V.s3)kK~+l,k(h, a2ks)sMq/k!(M + 1)! 

+ h(O. + s)[V.s3K.s]N÷Iexp(ch V.s3K.~)/(N + 1)! . 

Is M+l,k(h, a2kS)l <--K'MN<~ But, by Lemmas 4.4 and 4.5, (i) and(ii)(c) imply kK 
for k=0, . . . ,  N. Also, (i) implies Ih(O,+s)l <-H<~ on C,, and (ii)(b) implies 

IK..I = -~s Lion~ V.s 3 <_ K11sl a'-' , 

for 101-0.l <c;, 1 and Isl <c;, I. Hence (4.4) is bounded by 

k~o (V~s2)kK~Nlsl~+~/k!(M + 1)! 

+ H 1 2+&IN+I -~K1V.s exp(at V.Is3K..I)/(N + 1)! . 

Finally, (4.1) follows by noting that al V.Is3K.s [ <( 1 / 6)K1 Is[ ~' V.s 2_<( 1 / 6) V.s 2 
for [sl <c;, ~. [] 

The shrinking neighbourhood, C. here, is used, in slightly different 
forms, by Sweeting ((1980), condition C2), Dawid ((1970), condition C12), 
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and Brown (1985). Heyde and Johnstone ((1979), condition A5) use a non- 
shrinking neighbourhood (with c,=6). 

Kj~(h, 0) is expressible as [OJ+k{h(O,+s)exp(wK,~)}/OsJOw*]~=~:o. This 
corresponds to the form used by Johnson ((1970), equation 2.16). In the 
expansion there the theory of functions of two complex variables is applied 
but an explicit bound for the error, R,~ here, is not given. 

LEMMA 4.2• Behaviour of  the integral on Cn. 
Assume: There exists 62e[0, 1) s.t. for n>_N2 

(i) sup (L,o-L,k)/lnV,<_-(1/2) (M+2)/(1-62), 
G 

(ii) fco [h(O) lexp[62(L no- LnOo)]dO< K2. 

Then f&lh(O) lexp( L no- Lnk)dO< 1(2 V~ -~M+2)/2 for n>_ N2. 

PROOF. From (i) (L,o-L,k)<_6ffL,o-ink) -IM÷2v2 lnG. 
Hence 

f,. I h (0) lexp (Lno- L,o,)dO <_ fc°I h(0) I exp[62 (Lno - L,k)] 

. exp[ - l  (M+ 2)lnG]ao 

<- 1(2 V~ (M+2)/2. [] 

Condition (i) is akin to Wolfowitz' (1949) property which he proves for 
the i.i.d, case in his comment accompanying Wald's (1949) classic note on 
consistency of the m.l.e. Other relatives of (i) appear in Johnson ((1970), 
Lemma 2.3), Dawid ((1970), condition C7), and Heyde and Johnstone 
((1979), condition A4). 

Condition (ii) may fail for n<N2 because the factor exp(L,o-L,~.) in the 
integrand does not dock the tails of h( O)=p( O)q( O) heavily enough for 
convergence. This can occur whenp(0) is improper and q(O) has heavy tails. In 
(i) and (ii) a fraction 62 of (Lno-L,k) is used to discipline the integral, leaving 
the other (1-62) to achieve the bound. On the other hand, with a proper prior 
(ii) may often hold with 62=0; this will be true when Eoq(O), the prior 
expectation of q(O), is finite. 

LEMMA 4.3. Let the assumptions of  Lemmas 4.1 and 4.2 be met with 
• 2 cn>_ KI/~' and hmsup(en V; 1 In G)< 1 / (M+ 2). Then 

M 

L(h, ~, V-~ m) = ZAl(h, ~,) V-~II+1)/2/l! + O( V-, IM+2)/2) , 

uniformly in [~.[ <_c~ 1 V~/z where 
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PROOF. 

(4.5) 

and 

l ( l )Kl-j,j(h, O)pt+2(~) At(h, ~) = jE=o j 

~,(~) (2=)_,/~ f~ ( l ) = --~/lexp - ~ t 2 dl . 

From Lemma 4.1, using the bound for Rns, 

L(h, ~,,Vn '/2) = L(h, - c-~') 

-,/2 ¢.v°" 1 VnS2 ) + (2~z) ~, ,  exp(- 

{.N 
• ~ ~o~( h, o)v.~sJ+~/j!~! + Rns}ds, 

f_¢iSo"2exp (_ 1 2) Rnsds Vn (M+2)/2 V-n 1/2-~'(N+1)/2) -~ V,S = O( + , 

uniformly in ~,; this bound reduces to O( V~ IM÷2)/2) on taking N>_(M+ 1 )/fi ,-  1. 
By Lemma 4.2, L(h, -c~')= O(V~,IM+2)/2). Also 

¢.v; . . . .  1 Vns2)sJ+3kds (270-'/2fcc~, exp(- ~ 
! 

= V:tJ+~k+'l/2{/~j+3k(&) -- ~j+3k(-- c:' I"1/2)}, 

and 

I~j+3k(-c;,' V'./2) l <- (2~z) -'/2 f_-c;' 
vd/2 

1 - c;' v .  "2 
__ exp [ -~  (1-Ot)Cn2VnJ(27t)-l/2f~ 

< V-n(M+2)/20(1) 

[tlJ+3kexp(- l t2)dt 

[tlJ+3kexp(- l at2)dt 

where (M+2)c~ V~Xln V~< 1 - a <  1 for sufficiently large n. Hence (4.5) yields 
M N 

In(h, ~nVn 1/2) = O ( V n  (M+2)/2) + ~.~ ~., [Kjk(h,  O)/j!k!]VnkVn Ij+sk*l)/2 ]-lj+Sk(~n) 
j=0 k=0 

and the result is obtained by collecting summation terms of like magnitude. [] 

The maximum allowable shrinkage rate for C~, involving x/lnVn/G, 
appears in Dawid ((1970), condition C12) with M=0 and V,=O(n) for the 
i.i.d, case. It is interesting that this rate emerges inevitably in the proof of 
Lemma 4.3 here, for general stochastic processes, whereas Dawid's purpose is 
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quite different, namely to deal with the awkward nonregular case where the 
range of the observations depends on 0. 

LEMMA 4.4. With notation as in Lemma 4.1, the condition 

sup[skKM÷I,k(h, S)I --< Kk < ~ for  k = 1, 2,... 
c~ 

holds if(i) hl~ml( O) is continuous on Cn, and (ii) sup [ s K~) [ < Ko<~ forj=O,. . . ,  
M + I .  co 

PROOF. By Leibnitz' formula 

s k kM+I(M+__ J 1) * s)(OjK~s/Osj ) (4.6) [ Ku+l,k(h, s)[ = s E__ ° hIM+l-J)(0, + 

<_ Z H[s kOJ g ,  s/ OSq 
j=0 

since (i) implies [ htM+l-J)(O, + s) ] <_ H for ]st --- c7,1 and j =  0,..., M+ 1. Assume, for 
induction, that (ii) implies ]JoJI~s/Osq <21t-l~lM÷~lKlo for l= 1,..., k -  1, j=0,. . . ,  
M+ l, Is[ _<c7,~; this is obviously true for k=2.  Applying Leibnitz' again, 

.skOJ Kk, s/ OsJ[ = i=~o ( J } t-vl'-i'xz-k-lai vk-1/ OS i) i tat~ns Ira u ~ns 

Hence (4.6) becomes 

[skK~t+~.k(h,s), <jM~ (M + 1)2tk-I,IM+IlHKo~ = 2ktM÷llHKko 
"= j 

as required. [] 

LEMMA 4.5. With notation as in Lemma 4.1 

suplsg.~l[ <_2J-lsuplt~Jo+21- L~g.211/ V~ for  j>>_ 1.  
c. c.  

By Leibnitz' formula PROOF. 

(4.7) V,K~ ) = d{  V,/ 2s + ( L,o - L,o,) / s3} / ds j 

<-')'J' ' ( J )  ( j -  ' + 
2S j+l + t--Eo ! 2s j-t+3 
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(j  + 2)!(-1)J 
- L,,o. 2S j+ 3 

The middle term of (4.7), after Taylor expansion to suitably chosen order, 
becomes 

J ( j )  ( j - l +  2)'(-1) j-' [J~+' S k sJ-'+2 /~j~2)} 
(4.8) t~ 1 2s J+3 ( k:0 ~.T L(~t°~+~) + ( j  - 7+ 2)! 

, : ),-v+: 
= 2 v=0 u=0 V --  U lt!sJ_V+ 3 L nO. 

+ ( -  1)/-t(j _ 1 + L) L,,o. + - -  - -  t - -  l )  L n O ~  5 

j j-I 
where 101- 0, I < I 0 -  0" I for each l, and the summation Z ?g has been rearranged 

1=o k=0 
J 

as Z ~2 with v=l+k ,  u=k.  F o r j > l  the middle term in (4.8) is zero and, since 
v=0 u=0 

( -  1)'ur=0 for v>r  (Feller (1971), Chapter 7, equation (1.7) with i=0, 
u:O /4 

.S aj=j ,  O_<s<r), the first term is 

(4.9) 
1 J j ! ( -1 )  j-v 

/V+3v! 
(-1) j 

- 2S j+3 

L(V~[ 4 [  v ) ( _ l ) , ( j _  + + _ + 2)} V U 1)(j 
"°'t#o[ u 

V + U 

- -  {(j + 2)!L.L +j!s2L'~&} . 

For j=  1 the first and second terms of (4.8) together yield (4.9). Hence, using 
(4.8) and (4.9), (4.7) becomes 

Vn ld(J) 
( - - 1 ) ~ !  Vn ( - 1 )  j 

2sJ+~ + 2s:+----- T -  {(j + 2)!L~o. + j!s2L'~o.} 

+ (-1) j ~ .(j+:) ( J+  2)!(-1) J 
- -  l~ ajlL.o, -- L.L 

2s 2s j+3 

(-1) / $ ,(j+2) 
l~=oaJll-,nO, , 2s 

where a/= (-1)  ~, so ~ ajt=O for j_> 1. Thus, finally, 

.r..(J) [ ~ajt(L,o, -- L,o. I~X,s I = (1/2)V, -1 ~ ..(m) -(i-~:)~ 
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J 
_< (1 /2 )VZ '  ~ l a j t t s u p l t ~ :  - L.o."+2)'l • 

C,, 

[] 

LEMMA 4.6. Under the assumptions and notation of Lemma 4.3 
M 

(a) I.(h, ~)=£0At(h, ~) V-.It+1~/2/ I!+O(V~IM+2)/2), 
M 

(b) OI. (h, ~ V-~/2)/0~= ~ [OAt(h, ~)/0~] V-~(t+l)/2/ l! + O(V-~(M+2)/2). 

PROOF. (a) Take ~.=c7, IV 1/2. Then, as in the proof of Lemma 4.3, 
/lj(~)-/lj(~.) = O(V~(M+2)/2). Hence At(h, ~)-At(h,  ~.)= O(v#(M+2)/2). It follows 

M 
from Lemma 4.3 that L(h, ~.V-~/2)=ZAt(h, ~)V-~It+~)/2/I!+O(V-~(M+2)/2). 

1=0 

Finally, by Lemma 4.2, L(h, ~ ) -L(h ,  ~. V-.1/2) = O(V-~(M+2)/2). 
(b) It has to be verified that differentiation with respect to ~ does not 

affect the order of magnitude of the error term in Lemma 4.3 with ~.--~, i.e., 
that 

__0 t'¢~,, '~ [ 1V, 2) , 0~ J',,' e x p l - 2  .s R.sds = O( VT, IM+2)/2) 

for Ill-<c7,1 v~/2. But the left hand side is bounded by 

e-¢2/2 R.,~vo .... < exp(-- 2 ~2){ KMu[~ V-~/21M+I ~J2k / k! 

+ H1[ V.(~ v-nl/2)2+6'lU+lexp(~2/6)} 
= O ( V - n  (M*21/2 + V-n 6'(N*1)'2) , 

since suplexp(-(2/6)(al=O(1) for a>0; also the choice N>(M+2)/61-1 
ensures the required order of magnitude. [] 

PROOF OF THEOREM 2.1. It is easily verified that conditions CI-C5 
are just the stochastic versions of those of Lemma 4.3, incorporating those of 
Lemmas 4.1 and 4.2. The three results are proved as follows: 

1. E.q(O)= ~ q(O)p(OI Y.)dO= oo q(O)p(O)p( Y.lO)dO/p( Y.) 

f5 =f ~ q( O)p( O)exp( L.o)dO / ~ p( O)exp( L.o)dO 

=i . (qp ,  ~ ) /  i . ( p ,  ~ )  . 

The result now follows from Lemma 4.6(a). 

rO.+~ v~ '"= rb.+~ v. ~,,2 
2. P.(~)=J_:~ p(OI Y.)dO=J = p(O)p(Y.lO)dO/p(Y.) 
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f ~"+¢V:''2 /~° = _oo p(O)exp(L.o)dO ~ p(O)exp(L.o)dO 

=I.0, ~v-~'/~)/ l . (p ,  ~ )  . 

The result follows from application of Lemma 4.3 with ~n--~ to the 
numerator, and Lemma 4.6(a) to the denominator. 

3. The fact thatpn(()--dPn(~)/d( has the indicated expansion with error 
O( V-~ IM+21/2) follows from Lemma 4.6(b). [] 
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