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Abstract. In this note, a characterization of the Gumbel's bivariate 
exponential distribution based on the properties of the conditional moments 
is discussed. The result forms a sort of bivariate analogue of the characteri- 
zation of the univariate exponential distribution given by Sahobov and 
Geshev (1974) (cited in Lau and Rao ((1982), Sankhya  Ser. A ,  44, 87)). A 
discrete version of the property provides a similar conclusion relating to a 
bivariate geometric distribution. 
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Although different forms of bivariate exponential distributions such as 
those of Gumbel (1960), Freund (1961), Marshall  and Olkin (1967) and Block 
and Basu (1974) exist in literature, how far these distributions can be 
characterized by properties analogous to the results in the univariate case 
have not been fully explored. Among  the characterizations of the univariate 
exponential  distribution, Marshall and Olkin (1967) considered the extension 
of the lack of memory  property to the bivariate case, defining the same as 

i f(s1 + t, s2 + t) = i f(s1,  s2) if(t ,  t), sl, s2, t > 0 , 

where 

(1) i f ( s ,  t) = P(X~ > s, )(2 > t) , 

and used it to characterize the distribution specified by 

-F(xl, x2) = exp[ -- 21xl - 22x2 -- 212 max (xl, x2)] 

Xl, X2 > O; 21, 22, 212 -> 0 . 

Instead of utilizing the conditional probabilities, Shanbag (1970) employed 
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the conditional expectations to prove that a random variable Y has univariate 
exponential distribution if and only if 

(2) E( Y -  y l Y >  y ) =  E( Y) , 

for all y>0. Nair and Nair (1986), in an attempt to generalize this result to the 
bivariate case, found that a straightforward extension of (2) by taking the 
vectors X--(x~, x2) and t=(t~, t2) this, would lead only to the trival result that 
the variables X~ and )(2 are independent and exponentially distributed. 
Accordingly they took up the condition. 

(3) E(Xi - ti I X > t) = E(X~ I X3-i > t3-i), i = 1, 2 ,  

and established that the Gumbel's bivariate exponential distribution. 

(4) /C(xl, x2) = exp [ - alxl - a2x2 - Oxlx2] 

x l ,  x2 > O; a , ,  a2 > O; O >  0 , 

can be characterized by it and proposed (3) as alternative definition of 
bivariate lack of memory. 

The present note extends the characterizing property in terms of the 
conditional means in (3) to the conditional moments, thereby providing a 
bivariate analogue of the S ahobov and Geshev's (1974) result in the univariate 
case which states that for any non-negative random variable Y, 

E [ ( Y - y ) k l  Y > y ] = E ( Y k ) ,  

for every y>0 implies that Y follows the exponential distribution. 

THEOREM 1. Let X=(X1, )(2) be a vector o f  non-negative random 
variables admit t ing probabil i ty  density func t ion  with respect to Lebesgue 
measure, given by f ( x l ,  x2). Then X fo l lows  Gumbel's bivariate exponential  
distribution specified by (4) or equivalently by 

(5) . f ( x N  X2) : [ (a2 ~- O x l ) ( a l  q- OX2) -- O] exp[ - a l x ,  - a 2 x x  - O x l x 2 ]  

Xl, X2 > O; al, a2 > O: 0 > 0 , 

i f  and only i f  f o r  all positive integers k, 

(6) E[(Xi - ti) k I X > t] = a~ il (t3-i), i = 1, 2 , 

where X > t  stands f o r  X l>t l  and Xz>t2, 

(7) a~k ° (/3-i) : E(Xi k I g3-i > t3-i) , 
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are non- increas ing ,  a~ 11 is i n d e p e n d e n t  o f  tt,  a~ 21 is i n d e p e n d e n t  o f  t2 f o r  all  

a~ i) (0) = a; 1 

PROOF. When the conditions of the theorem are true 

(9) a~k i) (/3-i) F(t~, t2) = fix>, (Xi  - ti) k d E  

0 f ~  
: J r  ( X 1 -  tl)~-~Xl [F l (Xl )  -- F(XI, t2)] . 

Where Fi and F are the distribution functions of Xi  and X corresponding t o f  
and F is as defined in equation (1). Successive integration in (9) yields 

O k 
(10) a(k i) (t3-i) Ot---~l F ( t l ,  t2) = ( - 1) k k ! F( t , ,  t2) . 

To solve the above system of differential equations, we consider the case when 
k=  1. On integration, 

[ , ]  (11) f f  (tl,  t2) = C(t3-i) exp a~ii-(~_i )- , 

where 

C(t3-O = 1 - F3-i (t3-i), i = 1, 2 . 

When t3-i tends to zero, by virtue of (8) 

(12) 1 - F,.(t) = exp [ - a~t~]. 

Eliminating ff between the two relations arising out of (11) when i= 1, 2 leaves 
the functional equation, 

tlal2)(ll) -- /2a~ 1) (t2) = (~1/1 - ~2t2) a~2l(tl) a l  l) ( t 2 ) .  

Under  the conditions assumed in the theorem, the above equation can be 
solved using techniques discussed in Hille (1972) in connection with the 
dissolvent equations. The solution is 

(13) al i) (/3-i) = (ai + 0t3-/) -1, i = 1, 2; 0 ----- 0 . 

A detailed discussion of the intermediate steps in arriving at (1 3) is available in 

t~, t2>0 wi th  

(8) 
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Nair and Nair (1986). Further,  f rom (7) we reach the conclusion, 

ff(tl,  t2) = exp [ - altl - a2 t2  - Otlt2] . 

Since this expression for F is an exponential function, with the exponent  a 
linear function of one of the variables, when the other is kept constant,  the 
solution of the partial differential equation (10) will be the same except for the 
change in the multiplicative constant. Hence from (10) 

(14) a}~ ~ (/3-i) = k ! (cti + Ot3-i) -1 . 

That the density function of X is as in (5) is evident from (10) and (13). The 
converse is easily verified f rom direct calculations. 

The corresponding result for the bivariate geometric distribution is as 
follows. 

THEOREM 2. A discrete non-negative random vector X=(X1,  X2) with 
support I~= {(xl, x2)/ Xl, x2 =0, 1, 2,... } has bivariate geometric distribution. 

f(x~, x2) = p~' p;~ 0 .... -' [(1 - p~O~~+L)(1 - p20 ~:+~) + 0 - 1], 

O < p l ,  p z <  1, 0 _ < 0 <  1 , 

i f  and only i f  f o r  all positive integers k, the condition (6) with the statements 
that fo l low it in Theorem 1 holds f o r  the discrete vector X ,  where 

a~°(O) = p~(1 - p~)-l, i = 1, 2 .  
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