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Abstract. Some invariance principles are obtained for the one-sample 
rank order statistics of a ~-mixing or strong mixing type time series. The 
estimation of the center of symmetry of the time series and tests for serial 
dependence are considered as applications. 
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1. Introduction 

Rank order statistics have recently received much attention in time series 
analysis. For  a bibliography, see Hallin et al. (1985). The purpose of this paper 
is to obtain invariance principles for the one-sample rank order statistics of a 
general class of time series. The estimation of the center of  symmetry of the 
time series and tests for serial dependence are then studied as applications. 

Let X(t), t = . . . , -  1, 0, 1,... be a real valued strictly stationary time series 
defined on a probability space (£2, F, P). Let M~ and M~÷. be, respectively, the 
a-fields generated by {Xt: t<_k} and {At: t>_k+n}. Let ct and q~ be functions of 
non-negative integers satisfying a(n) I 0 and ~(n)  ~ O. Then Xt is said to be 
strong mixing if for all A e M k and B e Mk+. 

I P(A 0 B) - e ( a ) P ( B ) I  < a ( n ) ,  

where k and n are arbitrary positive integers; it is ~b-mixing if the above 
inequality holds with q~(n)P(A) instead of a(n). 

Let X~,..., X, be n consecutive observations of the time series X~. Define 
u (x )= l  or 0 according as x_>0 or <0. Let R,~ be the rank of ISil among 
IXII,..., IX, I and 

(1.1) T. = n-' ~'. u(Xi)J.((n + l)-lR.i) n > 1 
i=l ' - -  , 

where J,( i / (n+l))=EJ(U,i)  or J(i / (n+l)) ,  l<_i<_n, U,I<_...<_U,, are the 
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ordered random variables of a sample of size n from the uniform (0,1) 
distribution function and J(u)=J*((l+u)/2), 0 < u <  1, is an absolutely con- 
tinuous and twice differentiable score function. We assume that there are 
positive (finite) constants K, 0 < a <  1/2, and 0<kt<a  such that for 0 < u <  1 

(1.2) ] J * ( k ) ( u ) l  = IdkJ*(u)/duk[ <_ K[u(I  - u)] -~+t' , 

for k=0,  1, 2; and Xt is ~-mixing satisfying 

(1.3) Z n2~b(n) < ~ , 
rt=l 

or strong mixing satisfying 

(1.4) a(n) = O(e -°n) for some 0 > 0 . 

Assume X~ has a continuous distribution function F(x). Let H(x) 

=P[IX,  I ___x], fn(x)=n-IY~ u(x-Xi),  - ~ < x < ~ ,  and H,(x)=F,(x)-F,  ( - x - ) ,  
i=I 

x>O. 

Write T.=fo J,(nH~(x)/(n+ 1)) dF,(x). Then 

n 
(1.5) T~ = m + n -1 Z B(Xi) + R, 

i=1 

where B(Xi)=u(Xi) J (H(I  X e l ) + f o [ u ( x - I X i l ) -  H(x)]J'(H(x))dF(x ) - m ,  with 

m=fo J( H(x))dF(x); and 

R, = [J,(nHn(x)/(n + 1)) - J(nH,(x)/(n + 1))]dF,(x) 

+ [J(nH,(x)/(n + 1)) - J(H(x))]dfn(x) 

- f o  [n.(x) - n(x)]J'(n(xI)df(x). 

Let a2= V[B(X1)]+2 E cov[B(X0, B(Xk)]. Assume that 
k=2 

(1.6) 2 > 0 . 

THEOREM 1.1. Let Xt be ~b-mixing satisfying (1.3) or strong mixing 
satisfying ( 1.4). I f  (1.2) and (1.6) hold, then 

L(nl/2(Tn - m)/a)~N(O, 1) as n~o~ . 

THEOREM 1.2. Assume the conditions of  Theorem 1.1 hold. Then 
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limsup nl/Z(Tn - m)/(2 loglog n) m = tr a.s. 

liminf nl/2(Tn - m)/(2 loglog n) 1/2 -- - tr a.s. 

In the q~-mixing case, Sen and Ghosh (1973) have obtained some 
invariance principles for Tn in a spirit similar to those considered here. They 

have shown that if ,% nk~l/2(n)<oo and (1.2) is replaced by IJ*lk)(u)l 
n=l 

< K[u(1 - u)] -~+k+" with a= (2k-  1) / 2(2k + 1) for some k> 1, then the conclusion 

of Theorem 1.1 holds if a2>0. They also showed that if l~ nkCI)I/2(n)<~ and 
n=l 

(1.2) is replaced by IJ*lkl(u)l<_K[u(1-u)] -~+k+~ with a = ( k - 2 ) / 2 k  for some 
k_>3, then the conclusion of Theorem 1.2 is valid oftr2>0. Thus Theorems 1.1 
and 1.2 give significant improvement of Sen and Ghosh's results for the 
~b-mixing case. 

Our main effort is devoted to the strong mixing case which is more 
interesting than the ~-mixing case since the ~-mixing condition is much more 
restrictive than the strong mixing condition. In fact, if Xt is Gaussian and 
•-mixing, then Xt is m-dependent. From the definition of the q~-mixing 
condition, it is easily seen that if Xt is a sequence of independent random 
variables or if Xt is m-dependent, then Xt is ~-mixing. Thus moving average 
time series models are q~-mixing. Recently, Pham and Tran (1985) have 
shown that a large class of ARMA models are absolutely regular and hence 
strong mixing. Condition (1.4) is satisfied by a general class of ARMA 
models. For an account of this information, see Theorem 3.1 of Pham and 
Tran (1985). 

In Section 2, some preliminaries and auxiliary lemmas are presented. The 
proofs of the theorems are given in Section 3. Section 4 considers some 
applications. 

Throughout the paper, c will be used to denote constants whose values 
are unimportant and may be different from line to line. 

2. Preliminaries and auxiliary l emmas 

Let ~ be M~ measurable and I'/be Mk+, measurable, then if Xt is q~-mixing 

(2.1) ICov(~, r/)l -< 2ll~lla lit/lib [ (1 ) (n ) ]  l/a , 

for all l_<a, b<oo with a-~+b -l= 1, and if Xt is strong mixing 

(2.2) I Cov(~, 11) 1 ~ 1011ella II~llb [a(n)] 1/c , 

for all 1 <_a,b,c<_~ with a-l+b-~+c -1= 1. See Puri and Tran (1980) for more 
information. Let Y,.=F(Xi). 
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LEMMA 2.1. l f  X~ is q~-mixing satisfying (1.3), then 

E ( u ( t -  I S ) - t )  <_c[n2r 2+nr]  where r = t ( l - t ) .  

L e m m a  2.1 can be obtained by a slight variation of the p roof  of L e m m a  
2.6 (ii) of Mehra  and Rao (1975). 

LEMMA 2.2. Let p > 0  and 0_<t_<l. Let r = t ( 1 - t ) .  I f  Xt is qb-mixing 
satisfying ( 1.3), then 

E ~ (u(t - Y,) - t) t <_ cnP((nr)t/2 + nr) where 1 > 4 . 

The proof  of L e m m a  2.2 is given in Puri  and Tran  ((1980), p. 409). 

LEMMA 2.3. Let X, be ~-mixing satisfying (1.3). Then 

sup n 1/2 IFn(x) - F(x)l{F(x)(1 - F(x))} -l/: = o(n ~) 

for  every r/>0, as n ~ .  

a . s .  , 

Remark 2.1. Sen and Ghosh  (1973) have obtained a somewhat  weaker 
version of Lemma  2.3. 

For  examples of ~-mixing  sequences satisfying (1.3) wi thout  satisfying 
Sen and Ghosh's condit ion,  see Bradley (1980). 

PROOF. Let G,( t )=n -~ Z u ( t -  Yi), 0-<t-  < 1, n_> 1, and h,( t )=nmt G,( t ) - t l  
i=1 

• {t(1 - t )}  -t/2. The conclusion of L e m m a  2.3 is equivalent to sup h,(t)=o(n ~) a.s. 
0~t~l  

for some r/>0, as n ~ .  For  reasons of  symmetry,  it is sufficient to prove 
sup h~(t)=o(n ~) a.s., as n---~. Let r > l .  Then 

0<~t<_ 1'2 

P[ G,(n -~) >_ n -1 for some n >_ k] 

<- iX=oP[nG,(n _> 1 for some 2ik < n < 2i+lk] 

<_ E 2'+lk(Tk) -~= 2k-'+'/(2 ~-' - 1),  
i=0 

which goes to zero, as k ~oo. Thus  for every r>  1, sup h,(t)--'O a.s., as n--.oo. 

Define V,j=h,(jn-') , j= 1,..., [nr-~]+ 1. Now 

(2.3) sup h,(t) <- x/~ [ max V,i + O(n-1'-l~/2)l 9 

n % t ~ n  ~ [ I<_jz[n" ~].- 1 ] 
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Also, 

(2.4) P[V.j > n"] < P[ ~l {u ( jn - r -  Yj) -Jn-r} > cn"+l/2(jn-r)l/2] 

n p  nPn-r+l-(l/2)(-r+l+2q)" 

<_ c 7 + f/2-~ 

Pick •>4. Summing up overj  in (2.4) we obtain 

P[ max Vnj>n"]<_cn -1-~ forsome e > 0  
Ll<_j_<[n ' ~]+1 

 yc oos'n ' max[   rmax 
r /  ' - r + 1 + 2q ]" Finally, ~1 tj_~:~_t°-l+l 

<~.  By Borel-Cantelli Lemma and (2.3), it follows that sup h,( t)=o(n ~) 
n-r<t<n -1 

a.s., as n--.oo. 
Let W,j=hn(j/n): j= 1,..., [n/2]+ 1. Then 

(2.5) sup h,(t) <_ x/~ I max W,j + o(nq)}. 
n-l <_t<_ l / 2 U <_j<[n / 2]+ l 

By Lemma 2.2 

(2.6) P[Wnj > n '7] <_ c + n.tjll/2)_ 1 ' . 

Using (2.6), it is easy to show that ~. P[ max W,j>n"]<oo. Borel-Cantelli 
n=l L l<-J<-[n/2] +1 J 

Lemma and (2.5) imply that sup h,(t)=o(n ~) a.s., as n---~. 
n-~<t<_l/2 

Our main tool for the strong mixing case is based on an approximation of 

u( t -  Y,.) by martingales as done in Philipp and Stout (1975) and Philipp 
i=1 

(1977). 

LEMMA 2.4. Let ~ be an arbitrarily small positive number and 
r= t(1 - t). I f  Xt is strong mixing satisfying (1.4), then 

(u(t Y,) t) 4 _ _ < c[n2r 2 + nr]r -~ , 
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L e m m a  2.4 can be proved by using similar lines of a rgument  as in the 
proof  of Lemma 2.6 (i) of Mehra  and Rao (1975). 

LEMMA 2.5. Let ~>0 a n d  r = t ( l - t ) .  A s s u m e  Xt  is s t r o n g  m i x i n g  

sa t i s f y ing  (1.4). T h e n  

E u ( t  - Yi) - t <_ c n r  

PROOF. Apply (2.2) with a = b = 2 ( l - c ~ )  ~, we obtain 

E[i~l ~U(t- ri)- t)] ~ 
n 

= z F~(u~t - Y~) - 0 2 

+ 2 E E E ( u ( t  - Yi) - t ) ( u ( t  - Yj) - t) 
I<l 

~ -  c n T  ~ -  CT 1-6 ~,Y~e -°(j-i)6 
i<i 

1-6 
cnT 

Let 7 be a small positive number  to be specified later. Define blocks/-/l- 
and I~ of consecutive integers inductively as follows: Hi consists o f [F]  and I~ 
consists of [i y] consecutive integers, respectively. No gaps are allowed between 
the blocks. The order is H~,/1,/42, 12 . . . . .  Let 

A~, = j ~ [ u ( t -  ~ ) -  t], B,,, = X [ u ( t -  r)) - t ] .  

Let M =  M,  be the index of the block Hi or I; containing n and let hi be the 
smallest member  of H~. 

LEMMA 2.6. Let t/>0, 1 < r <  1 + t  1 a n d  ~ < q ( 2 - n )  -~. T h e n  f o r  a n y f i x e d  

t e [ n  -~, 1] 

h,~, i - ] 

n -1/2 Z lu ( t  - Yi) - t l [ t ( l  - 0 ]  -1/2 = o ( n  ~) a.s. as 
i=h~ 

n--- .e~ . 

PROOF. Since M/<_cn  ~'/ly~I) and -r we t>_n , have 

n-l~2 
hM*l ] 

Z lu ( t  - Yi) - tl[t(1 - / ) ] - 1 / 2  
i =h 41 

< cMYn-~/2n ~/2 = o ( n  ~) as 

Denote  by ~ .., ~i.t the a-field generated by A 1,.. Ai, t. 

LEMMA 2.7. Let 1 < a < 2 .  A s s u m e  X t  is s t r o n g  m i x i n g  a n d  (1.4) holds .  
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Then 

, E ~ A , , , ~ , , , , , 2 ~ c , , ~ i , , , 4 e x p ( - O , ~ (  ' ' ) )  
- 2 a  4 " 

PROOF. By (2.2) 

(2.7) E[E(Ai., I ._~-~,t) 2~] = E[Ai,,(E(Ai., [ ~._~,,))2~-1] 
<_ cliAi,,li4[EiE( Ai,,iJ,._m,t)12a] t2~-l)12a 

I 1 
" e x p ( - O F ( 2 a  4 ) ) "  

The lemma is then obtained by dividing both sides of (2.7) by E[IE(Ai.d 
~ i_ l , t )  12a] (2a-1)12a. 

LEMMA2.8. Let l < a < 2 b e c h o s e n s o t h a t x ~ > _ O f o r a l l x e ( - ~ , ~ ) a n d  
X, be strong mixing satisfying (1.4). Then 

II E([A,,, - E(hi,,l,~.-l,,)]21~-l,,) - EA~,,II~ 

<--c(EAi4,t)l/2 exp( _ 0F( 1_ _ 1)) 
a 2 " 

PROOF. As in the proof of Lemma 2.7, we have 

(2.8) IIE(A~,I.~i-,,,) - EA~, I la  = IIE((A~,,- EA~,)Io~-I,,)II: 

a 2 " 

By (2.8) and Lemma 2.7 

II E([A, , , -  E(A4tl<~i-t,,)]21~.-1,,) - EA~,IIa 

_~ ~i4,,,,~ ex~ ( o i ' ( '  - - ')) 
a 2 " 

LEMMA 2.9. Let 

/ x [A,,,- E(A,,,/~-,,)1 
Uk,, { UM, t 

for  k <  M ,  

for  k >  M ,  

S 2 I ~k E([Ai, t - E(Ai, t/,~i-l,t)]2/~i-i,t) for  k <_ M ,  
k , t  = 2 ( sM, t for  k > M .  
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Let 2>0 with 2MY<_I/2. Define  

( 12 ) T k , , : e x p  2 U k , t - ~ 2  (1 +2Mr)s2k, t , k>_ 1 . 

Tj oo Then the sequence  { k.t, ~,~-k,t}k:~ is a non-negat ive  supermart ingale  sat is fy ing 

P[sup  Tk , t>~]<_ l / f l f o reach  ]~>0. 

PROOF. It is easy to check that { Uk,t"  k -  > 1 } is a martingale. Observe that 
EU~,I=O and Ilk,,--Uk-~,,<-2M y for each k. Lemma 2.9 follows from Stout 
((1974), p. 299). 

LEMMA 2.10. A s s u m e  Xt is s t rong  m i x i n g  sat is fy ing (1.4). Then the 
conclusion o f  L e m m a  2.3 cont inues  to hold.  

PROOF. It is sufficient to show that for some r>  1 

(2.9) sup h,(t)  = o(n") a.s. as n---~ , 
n'<_l~l/2 

Let S'% be the a-field generated by Bl,t,..., Bi, t. Clearly 

(2.10) 
n ] hM+:! 

} ~ ( u ( t -  Y~)- t) <_ i } o l ( u ( t -  r e ) -  t)l 
M M 

+ E I E ( A i , t / ~ - ~  ,)1 + ~__E 11E(Bi, t /di- l , t ) l  
i=l ' '= 

M 
+ Ai, t -  E ( A i : / ~ i  l,/)] 

+ .= [Bi , , -  E(B. /~-~ , , ) ]  . 

Note that (2.9) is implied by 

(2.11) 
n 

sup n -t/2 ~, (u(t  - Yi) - t) It(1 - t)] -1/2 = o(n  ~) a.s. 
n'<-t~l/2 i=I 

Set  jn-r=tj, and drop the subscripts in Ai,,j, ~ -1: , ,  Bi,,, ~i-l.~,. 
By Lemmas 2.4 and 2.7 

(2.12) P[ max E I E ( A / J ) l n - m t f  m > cn ~ 
I_i<_j<_[n ~ ]+1 i=1 

(EA4) 1/4 exp  - O i  ~ - 
[n~-l]+l M 

_<c Z Y. - - - - -  
j=l i=1 n 1/2+rl t j  1/2 
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C [nT+l 
j=l 

<i ¢r1-1-~ 

M 
]2 

'/2a 
H l/2+r/ 12.112 i=1 

for some e > O .  

By Borel-Cantelli L e m m a  

(2.13) 
M 

max E I E ( A l o ~ ) l n  -112 t: -t12 = o (n  ~) 
l<_j<_[n" I]+ 1 i=1 

a . s .  

as n~ :~ .  Similarly 

(2.14) 
M 

max E I E ( B I S a ) l n  - m  t f  112 = o(n") 
l_<j_<[n'l]+ 1 i=1 

a . s .  

Next 

(2.15) > c°"] 

<- E P [A - E ( A / ~ ) ] n  - m  t f  v2 > cn ~ 
j=l "= 

+ ~, P [ - A + E ( A / ~ ) ] n  -1/2 t f  1/2 > cn ~ 
j=1 " 

The first term on the right hand side of (2.15) is bounded  by 

Enr-']+l [ ] 
(2.16) E P sup U~.,, > 2 K  

j=l t k->0 

where 4= 1/cn (~+~)/~ tj I/2, K=cZn 1+3"/2 tj. Choose  r <  1 +r/ /2 and 7 small enough  
so that  7(7+1) -1 <q/4.  Then 2Mr_< 1. Pick 6 small enough  so that  r6<3rl /2 .  By 
Lemmas  2.5, 2.8 and 2.9, we obtain that (2.16) equals 

[n~']+l 
(2.17) 

j=l  
P sup Tk,,, > exp(22K - )].2(1 + 2 M  y) su.tj 

k_>0 

_< E P T~,.,, > exp(2-122K)] + P[sZs: > 2 -l 
j=l  

<- cn r-1 exp( - 2-1n "2) 

t,,"'I+, ~ IIE([A - E ( A / J ) ] 2 / ~ )  - EA211a + :E i:i . . . .  

j=l cnt:(nSm2 _ tf~) 
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<_ cn "-t exp( - 2-1n '#'2) 

[n' ']+1 i=1 ~ [(i:ytf + i;'tj) tj-°] t/z exp - 0 y i ~ - 
+ E 

j= 1 I +3q,'2 
c n  t j  

1 ~/2~ l-~ 
<-- c n  r - I  exp - ~ n / + ¢ n  

z l 
for some e > O ,  

by choosing ~ small,  then r close to 1 and a close to 2. A bound  for the second 
term on the right hand side of(2.15) can be found similarly. By Borel-Cantetli  
Lemma,  (2.15), (2.16) and (2.17) 

(2.18) M E ( A / J ) ]  max iY~_i [A - n -1/2 tj 1,,2 = o(n ~) a.s. 
I~i<_[n" ~]~ I = 

Similarly 

M 
(2.19) max iZ1 [B - E ( B / Z ) ]  n -l/~ ¢1t2 =_ o(n ~) a.s. 

I :'_z/<_[n~l]. I "= 

F r o m  (2.10), it is easily seen with Lemma  2.6 and (2.3), (2.13), (2.14), (2.18) 
and (2.19) that  (2.1 I) holds for n-r<_t<_n -l. 

The proof  that  (2.11) holds for n -~ _<t<_ 1 / 2 is similar and hence is omitted.  

R e m a r k  2.2. It is not hard to verify that  the conclusion of L e m m a  2.10 
remains valid if (1.3) is weakened to a(n)=O(e  -°lnl~°gn) where 0(n) t 
arbitrarily slowly. 

LEMMA 2.11. Let  O<_t 1. I f  Xt is qLmix ing  satisfying (1.3) or strong 
mix ing  satisfying (1.4), then 

Hn(a.) - H(a,)  = o(n +2 'u+,) a.s. as n - . ~  , 

where an is def ined by H(an)= 1 - n  -j+p. 

PROOF. By L e m m a  2.2 in the ~-mix ing  case and mart ingale approx-  
imation in the strong mixing case, Lemma  2.11 follows. 

o o  

LEMMA 2.12. (i) I f  Xt is q~-mixing satisfying hE1 q~U2(n)<oo, then 

supsup {IFn(t) - F,(u)  - t + ul} 
0 < u < l , t :  It ul<n ~iz 

~-- o ( n  -3/4 (log n) 1/2 (loglog n )  1/4) a . s .  
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(ii) I f  X, is strong mixing satisfying (1.4), then 

supsup {[F~(t) - F~(u) - t + ul} 
0<u<l,t: It-ul<n -~/2 

= o ( n  -3/4 log n(loglog n) 1/4) a.s .  

Lemma 2.12 can be obtained by using the same line of arguments as in 
Theorems 1, 2, 3 and 4 of Babu and Singh (1978). 

3. Proof of the theorems 

LEMMA 3.1. Let X, be ~b-mixing satisfying (1.3) or strong mixing 
satisfying (1.4). If(1.2) holds, then 

nl/2R, = o(n -~) a.s. as n-- ,~  f o r  some 11 > 0 . 

Lemma 3.1 can easily be obtained by a careful analysis of the proof of 
Theorem 4.1 of Sen and Ghosh (1973). Using Lemmas 2.11 and 2.12 in place 
of their (4.14) and (4.26) and Lemmas 2.3 and 2.10, R, can be shown to be of 
order n -1/2-~ a.s. for some r/>0. 

Sen and Ghosh (1973) have obtained a somewhat weaker version of 
Lemma 3.1. 

PROOF OF THEOREM 1.1. Using (1.2), by a simple computation we 
have El B(X1)I2<~. In the q~-mixing case, Theorem 1.5 of Ibragimov (1962) 

Sincenl/2R,=o(n-~)a.s. by Lemma 3.1, gives 

Theorem 1.1 follows. 

In the strong mixing case, (1.2) gives El B(X~) 12+~<oo for some 6</1. The 
theorem then follows from Theorem 1.7 of Ibragimov (1962) and Lemma 3.1. 

LEMMA 3.2. Assume the conditions o f  Theorem 1.1 hold. Let 

B[x ] 
S(t) = Z , t >>_ 0 .  

k <-t ¢7 

Then without changing the distribution o f  S( t), t>0, we can define the process 
S(t) on a richer probability space together with standard Brownian motion 
{ W(t): t_>0} such that S ( t ) -  W(t)<_t 1/2-~ a.s. as t--*~for some 2_>0. 

PROOF. In the oh-mixing case, since I EB(X~)I2+~<~ for some J>0, the 
conclusion of the lemma is a consequence of Theorem 4.1 of Philipp and Stout 
(1975). 
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In the strong mixing case, we will show that the lemma is a consequence 
of Theorem 7.1 of Philipp and Stout (1975). Note that El B(X~)I 2+a for 6 </2. By 
(2.2) with a=b=2/(1-~), we have 

E[ ~ B(Xk)] = a-2[nE(B(X~))2 

n-1 

+ 2 Z, (n - k)E(B(X1)B(Xk+I))] 
k=l 

= n - 2mr -2 k E E(B(XllB(Xk+I)) 
n-1 

- 2 a  -2 Y. kE(B(X~)B(Xk<)) 
k=l 

<_ n + O(q 1-a/3°) as n---oo. 

Thus (7.1.7) of  Theorem 7.1 of Philipp and Stout (1975) is satisfied. Other 
conditions of their Theorem 7.1 can easily be verified. 

PROOF OF THEOREM 1.2. Theorem 1.2 is a direct consequence of the 
law of the iterated logarithm for Brownian motion, Lemmas 3.1 and 3.2. 

4. Applications 

4.1 Estimation of the center of symmetry 
Here assume that  the distribution F(x) of Xt satisfies F(x)=Fo(x) 

=Fo(x-O) where -oo<O<oo and F0 is symmetric about 0. Define T,(b) as in 
(1.I) but the X; being replaced by Xi-b, l<i<n, where - ~ < b < o o .  Define 

0,1 = sup{b: T,(b) >/ t0} ,  0,2 = inf{b: Tn(b) > po}, 

& = (On, + & 2 ) / 2  • 

g Here/~0=(l/2) J(u)du=(1/2n) ZlJ~(i/(n+ l))if J.(i/(n+ l))=EJ(Uni), l<_i<_n, 

where the U.i's are as defined in Section 1. Consider 0. as an estimator of 0. 
Using Theorem 1.1 and following an argument similar to Theorems I and 5 of 
Hodges and Lehmann (1963), one obtains: 

THEOREM 4.1. Let ~b(x)=(1 / 2n)£~ e -'~/2 dt, J* be as defined in Section 1 

and B( Fo)=f_= [ dJ *( Fo( x) / dx) ] fo( x)dx where fo= F6. Assume J( u) is a non- 

decreasing score function and (d/ dx) J(Fo(x)) remains bounded as x - ~  for 
- ~ < x < ~ .  Then under the assumptions of Theorem 1.1 P[nU2(O~-O) 
• B(Fo)/tr<_x]--~l~(x)for every -oo<x<oQ. 
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As an example, let X(t) be a first order autoregressive time series model 
given by X(t)-O=a(X(t- 1)-O)+e(t), where J a[ < 1. The densityf(x) of e(t) is 
assumed to be symmetric about the origin and has a heavy tailed non- 
Gaussian distribution e.g., (1 -y)N(O, 1)+yN(0,cr :) where y>0 and tr:> 1. This 
model may fit a time series with outliers. For more information and discussion 
of this model, see Denby and Martin (1979). Consider the problem of 
obtaining robust estimates for the center of symmetry 0. 

Assume that f lxl~f(x)dx<~ for some 6>0 and f l f ( x ) - f ( x - 2 ) l d x  
--O(IAI a) as 2--0, for some fl>0. Then X(t) is absolutely regular and hence 
strong mixing. The mixing rate also satisfies (1.4). See Pham and Tran 
((1985), p. 301). The sample means X, may not bea robust estimator of 0 when 
f(x) is heavy tailed. An alternative estimator is 0, defined above. 

4.2 Rank tests for serial dependence 
Assume the distribution of X, is symmetric about zero. Let Z,=XtXt+k 

where k is a positive integer. Then a simple way of defining positive (negative) 
serial dependence at lag k consists in saying that the median of Zt is positive 
(negative). 

Let X~,..., X, be n consecutive observations of Xt. Consider the problem 
of testing the null hypothesis H0 that X~,..., X, are mutually independent 
against the alternatives that these variables are positively or negatively serially 
dependent. Under H0, the median of Zt is zero. Dufour (1982) proposed to test 
H0 versus serial dependence by applying rank tests for symmetry about zero, 
applied to the variables Zt, t= 1,2,..., n-k .  

Note that if Xt is ¢~-mixing satisfying (1.3) or strong mixing satisfying 
(1.4), then Zt is also ¢~-mixing or strong mixing satisfying the same mixing 
conditions. Thus the statistic considered in (1.1) can be used to test for 
independence versus serial dependence. 

Rank tests are especially useful when there is evidence of non-normality 
of distributions. Potential applications are found in the studies of stock prices 
or exchange rates. See for example, Mandelbrot (1967). In terms of power, 
rank tests compare favorably with well-known alternative tests under a wide 
range of circumstances. Some discussion on rank tests for serial dependence 
can be found in Dufour (1982). 
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