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Abstract. Laippala (1979, Scand. J. Statist., 6, 113-118, correction note, 
7, 105; 1985, Ann. Inst. Statist. Math., 37, 315-327) has defined a concept 
within the empirical Bayes framework that he calls "floating optimal sample 
size". We examine this concept and show that it is one of many possibilities 
resulting from restricting the class of component sampling procedures in the 
empirical Bayes decision problem with a sequential component. All ideas 
are illustrated with the finite state component. 
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1. Introduction 

We assume that the reader is familiar with the empirical Bayes decision 
problem (see, e.g., Maritz (1970), Robbins (1956, 1964), Susarla (1982) and 
Suzuki (1975)). As our component we take the m-truncated sequential 
decision problem (see Berger (I 985)). Specifically, let X~,..., Arm i.i.d. Po, O c O, 
be the observable random variables taking values in the sample space .~'. 
The component problem has actions a ~ ~¢, loss function L(O, a)>O, stopping 
rules ~ ~ g ,  (terminal) decision rules ~ ~ 9 ,  d=(r ,  ~ ,  constant cost per 
observation c_>0, (terminal) decision risk r(O, d), Bayes terminal decision risk 
r(G, d) for priors G ¢ ~ ,  and infimum Bayes risk r(G). 

We take g to be the class of nonrandomized stopping rules that take at 
least one observation, i.e., that result in sample size Nwhere 1 <N<_m. (In the 
empirical Bayes application, this ensures that at least one observation is made 
at each repetition of the component which allows for an updating of the 
empirical Bayes estimates.) With our notation, r=(r~,..., rm) where rk: 
fk---{0,1}, k= 1 ..... m, and the random variable N is defined by 
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I N =  1]=[~1= 1], 

[ N = k ] = [ r l = 0 , . . . , z k - l = 0 ,  rk= 1], k - - 2 , . . . , r n .  

The overall risk associated with d, including cost for observations and 
terminal loss, is R(O, d)=r(O, d)+c EoN; we let R(G, d) denote its expectation 
with respect to the G measure on O. The Bayes envelope risk associated with a 
subclass g , ×  ~ , C J x  9 is 

(1.1) R , (  G) = inf{R(G, d)ld ~ g ,  x . ~ , } .  

The idea of restricting the class of component decision rules to a subclass 
appears in Gilliland and Hannan (1974, 1985). 

If ~,~,= Jr={r~,...,  tin} where rk is the fixed-sample-size-k stopping rule 
(i.e., the associated stopping time satisfies Nk=k, k= 1,..., m) and .~, = _~, we 
denote the envelope risk by Rr(G). We call Rrthe fixed sample size envelope. 
The usual envelope in the empirical Bayes problem is the Bayes envelope 
resulting from the largest class of procedures. For g ,  = g and ~ ,  = 9 ,  we 
denote this envelope risk by R(G). Of course, Re(G)>R(G) for all G. 

With Rk=rk+kc denoting the envelope associated with {rk} ×-~, k= 1, ..., 
m, we have 

(1.2) Rr(G) = min{Rk(G)lk = 1,..., m} . 

Laippala ( 1985, (3.11 )) denotes rk(G) by W k . However, as Laippala ( 1985, pp. 
325-326) states, his "optimization rule" (3.7) does not define a minimizer for 
(1,2) since the smallest k such that rk+l(G)--rk(G)+c>_O does not, in general, 
define a minimizer for (1.2) when m>_3. Of course, an optimum fixed sample 
size is defined by 

(1.3) n~ = min{klRk(G) =- RF(G), k = 1,..., m} , 

or, in fact, any function that maps G into a minimizer of Rk(G). This sample 
size together with a fixed sample size Bayes terminal decision rule with respect 
to G achieves minimum risk among all fixed sample size procedures. Berger 
(1985, Subsection 7.2) shows how to approximate no in some examples of 
untruncated sequential decision problems. 

Example 1.1 (Testing Simple vs. Simple). Let O={0,1 }, ~¢={0,1 } and 
L(0,0)= L(1,1)=0, L(0, 1)=L(1,0)= L>0, a constant. We identify a prior Gon 
19 by the mass rr it puts on the state 1 so that f~ can be identified with the unit 
interval. Let P0 be N ( -  1,1) and P1 be N(1,1). (Our example is the sequential 
version of that used by Robbins (1951) to introduce the idea of compound 
decision theory.) The posterior probability of 0= 1 given X~ =x~,..., Xk=xk is 
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k k k 
nk=n exp(~xj)/{n e x p ( ~ x j ) + ( 1 - n ) e x p ( - ~ x j ) }  and a Bayes nonrandomized  

decision rule is 

1 if nk-> 1/2 
(1.4) 6k(n) = 0 if nk < 1/2 . 

k 
The event n,>_l/2 is equivalent to E xj>_c(n) where c(n)= 1/2 In ( (1 -n ) /n ) .  

Consider  the case of t runcat ion at m=2 .  Let the loss for misclassification 
be L---1 and the cost per observation be c=.05. 

A Bayes s topping rule r(n) is defined by r2(n)= 1 and 

(1.5) 

Here 

and 

1 if r l ( n 0 + . 0 5 - - r o ( n l ) > > - 0  
Z'I(/~) = 0 if r l (n0  + .05 - r0(n0 < 0 . 

ro(n) = n In ___ 1/2] + (1 - n)[n > 1 /2 ] ,  

rl(n) = n~(c (n )  - l) + (1 - n){1 - ~b(c(n) + l )} ,  

where ¢~ denotes the s tandard normal  cdf. Calculations show that  (1.5) is 
equivalent to 

r l ( n ) = l l  if 1 n , - . 5 [ _ < . 3 6 1 5 6 7  
(1.6) 

l0 if [ n ~ -  .51 > . 3 6 1 5 6 7 ,  

and 

(1.7) r l ( n ) = { ~  if Ixl-c(n)l<-c(.138433) 
if Ix1 - c(n)l > c(.138433) . 

The envelope risk R(n) resulting f rom the Bayes procedure d(n)=(r(n), 
5(n)) was calculated for selected values o f n  and is plotted in Fig. 1 along with 
the fixed sample size envelopes Rk(n), k= 1, 2, where 

(1 ,8 )  R ~ ( ~ )  = ~ ¢ , ( ( c ( n )  - k ) / x / k )  

+ (1 - 7c){1 - ~ ' ( ( c 0 z )  + l c ) / x / k ) }  + . 0 5 k .  
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Fig. 1. Envelope risk functions--testing N ( -  1,1) vs. N(I,I). 

Of course, the optimal fixed sample size risk envelope is RF(Tr)=min {Rl(rr), 
R2(zr)}. Note that R(n) is considerably less than RF(rc) for priors 7r near .5. 

Theorem 2.1 of the next section shows that the Bayes envelope risk R (re) 
for the truncated sequential component is achieved in the limit by empirical 
Bayes decision procedures d"=(r  ~, ~') where t ~ and 8" are Bayes with respect to 
consistent estimates of ft. The theorem as stated and proved also subsumes the 
usual fixed sample size case since, through restriction of the class of 
component stopping rules, one can produce the envelope Rk for any desired k 
or the envelope RF. 

2. Empirical Bayes 

Let N, denote the random sample size and X,=(X,~,... ,  X.N3 denote the 
observed random vector in the n-th repetition of the sequential component 
problem. Of course, the event [Nl=k] is (XI~,..., X~k)--measurable, k= 1 ..... 
m, and [N,=k] is (Xl,..., X,-1; X,~,..., X,k)--measurable, k= 1,..., m; n=2, 
3, . . . .  This formalizes the empirical Bayes setup where data accumulated in 
stages 1,2,..., n -  1 are available to the decision maker going into stage n. The 
empirical Bayes rule determines the sample size sequence in contrast to the 
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nonrandom varying sample size problem of O'Bryan (1972, 1976, 1979) and 
O'Bryan and Susarla (1977). 

A goal in empirical Bayes theory is asymptotic optimality. For an 
envelope R. ,  this means the construction of a sequence of stopping rules 
(r 1, it2,...) and decision rules (~,  62,...) where d"=(~,  ~)  depends uponXt,. . . ,  
X,-~, n=2, 3,..., such that 

(2.1) lim E R(G, d") = R, (G)  for all G ~ f f .  
n 

The fact that the sequence X~, X2,... is not the usual i.i.d, sequence (as it is 
in the fixed sample size component) raises interesting and difficult questions 
concerning the efficient use of the data. With our restriction to stopping rules 
resulting in sample sizes N,_> 1, the first components X~, X2~,... do form an 
i.i.d, sequence with common distribution being the G-mixture of {Pol 0 e O}. 
This makes possible at least consistent estimation of G or of Bayes stopping 
rules and decision rules for the standard loss structures and distributions. For 
the case O={0, 1,..., b} finite with the family of mixtures Y. g; Pi identifiable, it 
is easy to construct consistent estimators of G=(g0,..., gb). 

THEOREM 2.1. Suppose that 0={0, 1,..., b} and that the loss function 
L is bounded. Suppose that ~ .  is a specified subset o f  T, R .  denotes the 
associated envelope risk function and that R . (  G) is attained by the ~ .  × ~ -  
valued d( G)=( r( G), ~( G)), Ge f¢. Suppose further that G,= G,(X~,..., X,-l), 
n=2, 3,... is a f f  -valued a.s. consistent estimator o f  Go f¢. (Here we identify f¢ 
with the b-dimensional simplex o f  probability vectors on 0 and we denote the 
sup norm on Enclidean (b+ 1)-dimensional space by II II.) Then the empirical 
Bayes procedure d"=d((~,) is a.o. on f¢, that is, satisfies (2.1). 

PROOF. We abbreviate t~, by 6~. Using the definition of R .  and adding 
subtracting the nonnegative quantity R ((~, d(G))-  R (6~, d(t~)) results in 

(2.2) 0 < R(G,  d((~)) - R , ( G )  
<_ R(G, d(G)) - R(G, d(G)) + R(G, d(G)) - R(G, d(G)) 

for G, d e  ~'. 

Bounds like (2.2) are basic in empirical Bayes analysis and go back at least to 
Hannah (1957). Hence, 

(2.3) o <_ R(G, d(d)) - R . (G)  

_< 2 sup {IR(d, ark - R(G, d)[. d e  3 .  × ~ } .  

Thus, if the convergence of the estimator is in the metric defined in RHS (2.3), 
the empirical Bayes procedure based on (~ will be a.o. Since L is bounded, the 
risk set associated with the component is bounded; specifically, O<_R(O, 
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cl)<_L+c m for 0=0, 1,..., b. Hence, RHS (2.3)_<2(L+c m)IIC~-GII which 
together with (2.3) and the assumed consistency of t~ implies R (G, d")--- R ,  (G) 
a.s., G ~ f~. Taking expectation with respect to X1,..., X~-~ establishes the L~ 
convergence (2.1).l-q 

Of course, choices J ,={zg},  ~ , =  g r ,  3 , = g  result in envelopes 
R,=Rk,  R ,=Re ,  R , = R  defined in the last section and displayed for a 
particular component in Fig. 1. For a component where g ,  includes truly 
sequential stopping rules, the implementation of the empirical Bayes stopping 
rule v(t~,) may require considerable calculation. 

When J , =  ~p, an optimal sample size no is defined by (1.3). The 
random sample size sequence N, resulting from implementation of an a.o. 
empirical Bayes rule need not converge to no in any sense. This is clear in the 
context of the finite state component, in particular, the two state problem in 
Example 1.1. At a n where Rffn)= R2(n), say no, n~0= 1. Of course, when ~. takes 
values in the region where R2(n)<Rffn), then N,=2 so that at n=n0, N~ can 
equal 2 infinitely often with positive probability. 

Laippala (1985, Theorem 1) claims convergence of N, to na in probability 
in his case. The condition that appears in the first line of this proof essentially 
removes boundary sets that prevent the convergence.-This condition should 
be given in the hypothesis of the theorem since it is not without loss of 
generality. 

This note was written in order to present the idea of the empirical Bayes 
model with a sequential component in clear and concise way. Our theorem 
shows that asymptotic optimality is achieved by simple empirical Bayes 
procedures in this general setting for a finite state component. Of course, 
small and moderate sample size behavior is of critical concern in most 
applications. We will not attempt to review the large literature involving fixed 
sample size components in regard to applications and the smoothing and 
admissibility and small to moderate sample size risk behavior of empirical 
Bayes procedures. 
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