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Abstract. We present the score and Wald test analogues to Srivastava's 
(1985, Comm. Statist. A--Theory Methods, 14, 775-792) likelihood ratio 
tests for the multivariate growth curve model with missing data, and 
illustrate their use with data from an immunotherapy experiment 
(Fukushima et al. (1982, Int. J. Cancer, 29, 107-112, 113-117)). 
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1. Introduction 

Potthoff and Roy (1964) introduced a generalization of the usual 
multivariate analysis of variance model, and showed that their generalized 
model is pertinent to polynomial growth curve analyses. Rao (1965, 1966) and 
Khatri (1966) further developed the Potthoff-Roy growth curve model, 
deriving appropriate likelihood ratio test procedures and confidence intervals 
for the unknown model parameters. Kleinbaum (1973) considered a further 
extension of the growth curve model to incorporate missing data problems, 
and proposed in these situations asymptotic Wald tests for parameter values 
based on best asymptotically normal estimators. However, various difficulties 
attend Kleinbaum's procedures: his estimated covariance matrices may not 
necessarily be positive definite in small samples; and, Schwertman (1974) and 
later Leeper and Woolson (1982) reported that his procedures can be 
profoundly anticonservative, simulated significance levels being much too 
large with small data sets. Recently, Srivastava (1985) explicitly derived 
likelihood ratio tests for Kleinbaum's growth curve problem with missing 
data. Our aim in this note is to present an alternative development to that of 
Srivastava: in particular, we shall provide the score and Wald tests analogues 
to his likelihood ratio tests. These procedures complement Srivastava's 
approach, and may be computationally more attractive. Section 2 contains 
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preliminaries to the delineation of the test statistics in Section 3. We illustrate 
these procedures with an example in Section 4. 

2. The multivariate growth curve model with missing data: Notational 
conventions 

Let 

Y = C~A + E ,  

where Y: p x n is the observation matrix of n independen tp  x I vectors, C: p x q 
is of rank q<_p, ~: q x m  is the matrix of unknown parameters,  A: m x n  is of 
rank m <n ,  and the n columns of E are independent ly  distr ibuted as Np(O, Z'). 
Following Srivastava (1985), when the data  matrix Ycontains missing values, 
we part i t ion it into k distinct blocks (1 <_k<_2 p -  1) of independent  subsets YI[I, 
Y(2),..., Y(k), the i-th subset consisting of the ni>O independent  observations 
evincing the same pat tern of missing values. We then part i t ion A and E 
accordingly, and write 

r xo : r m )  

= C ~ ( A  1 A 2 , . . . , A m ~ n ) + ( E  ~ E 2  Exk,)  
2''''' mxnl ~ mxn2 t/l' k 

Introduce the p i x p  incidence matrices Bi, 1 _< i<k, each consisting of ones 
and zeros such that  the t ransformation 

Zi : Bi Y(i) , 

recovers all the observed data  in the i-th block Y(i). Then 

Zi = BjCCAi + BiEi, 

and the covariance matrix of the ni independent  column vectors of Zi is 

Ui = B iSB ~ .  

Lastly, we may now write the log likelihood function for our data as 

k n i  l k  
l o g L = c o n s t . - Z  log I U i [ -  ~ tr U#~PiP " 

i = , T  ' i= 1 

where 

Pi : Z i -  B i C ~ A i .  
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3. Derivation of the test statistics 

We may now proceed with the derivation of the score and Wald tests. (In 
the following, our notation for differentiation with vectors and matrices is 
that of Dwyer (1967)). 

We introduce the information matrix I(~, X): 

i(~,~7) = 

0 O l o g L  0 O l o g L  

O OlogL  O O l o g L  
o~, aSr os~ or, 

d¢_r ( I¢~(~, S) I~z(~, X) ) 
Iz¢(~, X) Izz(~, X) " 

In this regard, we may show that 

(3.1) 
k 

I~(~, _r) = ~ - (C'BfUTIBiC)®(AiAD, 

(3.2) 
k 

I~( ~, s )  = x ( C'B" U,-' B,)' ®(  B; U?1PiA') , 

(3.3) 
1 k 

I_r¢(~, .~YT) = -- ~ ~ (O[Ui-lOiC)'(~(AiP[Ui-'Oi) 

+ (BfU[IpiA[)'(~(C'BfUi-IBi) , 

and 

(3.4) 
k ni 

Izz(~, X) = ~ T (B:Ui-tB')@(B;U'-IB') 

l k 
- ~ ~ (B;~-IB,)®(B;V,-'eie;V,-'B,) 

- ~ ~ (s'u,-~m'wi-ls,)®(s;v;ls,). 

The calculations leading to (3.1)-(3.4) are straightforward, along the lines 
given in Srivastava (1985), but are somewhat tedious; hence, details are 
regulated to a technical report available from the authors. 

Upon taking expectations, certain simplifications arise: 
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e[z¢~(~, x ) ]  = 0 ,  

E[I~¢(~, S ) ]  -- 0 ,  

and 

k Hi 
E[Iss(~ ,  S)]  = - ~ T (B'U~-'B~)(~(B'U~-~B')" 

Nevertheless, the information matrix I(~, X) depends on unknown para- 
meters, consistent estimates of which can be used without affecting distribu- 
tional results. Thus, let ~ and 2 denote the solutions of the systems of 
equations for the complete model: 

8 log L 
- -  - -  0 ~ a~ 

a log L _ 0 .  
8Z 

We may now describe the Wald and score test statistics in a straightforward 
manner. Let 

i(O) = i(~, S )  = -  E[ I (~ ,  S ) ] .  

Then (Cox and Hinkley (1974)), the Wald statistic for the general null 
hypothesis H0:0  ~ 12o, where 12o is a specified subspace of the general 
parameter space g2, is 

We = (0 - 0o)' i(O) (0 - 0o) • 

In particular, the Wald statistic for H0: ~ ~ =-0 is 

We : (~ - &)' ~(~, 2 )  (~ - &)  . 

Since ~ and ~ are the maximum likelihood estimates of ~ and X respectively 
under the full model, we have 

i(~, 2)  = i¢¢(~, 2 )  - i¢~(~, 2)  i~  (~, 2 )  i~(~, 2)  
k 

P t A--I P : (CB~Uz B , C ) ( ~ ( A , A ~ ) .  
i= 1 

Therefore, 



Similarly, let 
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k 
We = (~ - ~o)' ~ ( C ' B [ ( l i - l B i C ) ( ~ ( A i A [ )  • (~ - ~o) . 

m k U~(~, Z) - O log L _ Z C'B[Ui-Ip~A[. 
~ i:1 

Then, the score test IV, for the null hypothesis H0: ~ ~ ~0 is 

where 

W. = U[(~o, --eo) i ¢¢ (~o, ~o) U¢ (~o, ~o), 

i ~¢ = i~  + i~  i c z ( i r s -  is¢ i~  icz) -l is¢ i¢~ . 
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Under rather general conditions (Sundberg (1974)), the score and Wald tests 
are asymptotically equivalent under the null hypothesis, and are asymptotical- 
ly distributed as chi-squared random variables with degrees of freedom 
equalling the difference in the dimensions of the parameter space under the 
full and the null model. 

4. An example 

A series of immunotherapy experiments was recently undertaken to 
investigate whether a combination of syngeneic normal spleen cells, xeno- 
geneic immune RNA, and other tumor antigen, injected subcutaneously at the 
sites of induced CT26 (colon carcinoma) tumors in a homogeneous popula- 
tion of BALB/c mice, would lead to significantly smaller tumor growth and 
enhanced survival compared with mice not receiving injections of this ternary 
immunotherapy regimen. These experiments and their implications are 
discussed in detail by Fukushima et al. (1982a, 1982b). Here we focus on one 
experiment, in which 30 BALB/c mice with induced CT26 tumors were 
randomly divided into three groups of 10 mice each, and subjected to different 
immunotherapy regimens: Group 1 received injections of tissue culture 
medium around the growing tumors; Group 2 received injections of tissue 
culture medium and normal spleen cells; and Group 3 received injections of 
normal spleen cells, immune RNA and tumor antigen. The relevant data are 
presented in Table 1. In Fig. 1, where mean tumor size in each group is plot- 
ted against time, there is some indication that Group 3 had consistently 
smaller tumor sizes than the other groups. Nevertheless, we cannot reject the 
hypothesis of equality of tumor size across time among the three groups with 
either the score test or the Wald test: we find that I4:,=4.932 and We=5.359, 
each statistic approximately chi-squared with 22 degrees of freedom. In 
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Table 1. Tumor sizes (mm 3) over the course of the experiment. 

Day 

7 11 12 13 14 15 17 18 19 20 21 

Group I 

Group 2 

Group 3 

29.8 157.0 126.8 202.5 225.0 307.2 320.1 NA NA NA NA 
70.0 129.7 196.0 205.8 375.7 419.1 421.2 573.4 701.8 NA NA 
35.3 157.1 122.5 217.6 340.3 379.0 556.6 661.3 634.8 NA NA 
27.0 122.4 196.1 196.1 332.2 388.9 469.3 397.1 505.4 541.5 NA 
24.6 168.8 135.3 196.0 340.2 340.4 507.3 767.2 820.0 937.5 NA 
55.0 95.0 205.9 205.9 270.0 307.3 405.1 726.0 950.4 661.5 798.6 
19.6 152.2 129.6 176.6 213.9 317.9 356.4 580.0 415.2 460.0 520.1 
12.6 85.0 70.1 225.1 225.1 289.0 317.9 529.1 653.4 687.7 750.2 
35.2 129.8 180.0 274.7 420.1 340.3 507.2 634.8 714.3 777.6 912.6 
29.5 156.9 176.7 225.0 289.0 372.6 379.2 529.2 573.3 560.1 520.0 

29.4 152.1 122.4 186.3 186.3 274.7 485.1 397.0 NA NA NA 
41.1 186.2 176.6 274.6 361.0 379.1 440.0 415.2 NA NA NA 
48.6 115.3 90.8 176.5 317.9 421.2 529.2 388.8 629.0 NA NA 
24.5 143.7 115.0 90.7 194.3 559.6 629.3 573.3 540.0 NA NA 
66.7 289,0 215.6 268.8 388.8 487.4 551.3 767.1 677.6 846.4 634.9 
14.4 84.7 135.2 191.2 176.4 356.4 397.1 551.4 605.0 480.0 634.8 
10.8 70.0 80.0 118.3 156.8 215.6 268.8 346.8 551.3 946.4 440.0 
11.3 15.0 205.8 289.0 346.8 529.2 629.2 551.3 714.2 772.6 806.4 
18.0 56.7 115.3 96.8 177.5 268.8 320.0 372.6 487.4 573.3 683.6 
60.0 166.6 166.7 324.0 420.0 440.0 634.8 500.0 289.0 560.0 748.8 

66.6 147.0 260.1 420.0 460.0 653.4 806.4 NA NA NA NA 
40.5 156.8 65.0 84.7 191.2 291.5 400.0 NA NA NA NA 
12.5 108.0 96.8 186.2 202.5 213.8 379.1 379.0 433.2 379.0 500.0 
23.4 129.6 176.5 196.6 320.0 397.1 500.0 687.7 767.1 806.4 937.5 
22.2 65.0 176.4 191.3 213.8 274.6 405.0 520.0 796.6 978.7 864.0 
11.2 52.9 70.0 129.6 152.1 303.5 415.0 440.0 556.7 812.51014.0 
11.4 115.2 65 .1  32.0 10.8 3.2 1.4 0.0 0.0 0.0 0.0 
22.1 55.0 115.2 55.0 93.6 118.8 118.3 230.4 217.6 243.2 217.6 
32.0 44.6 108.9 258.8 247.5 405.0 372.6 388.0 451.3 580.0 573.3 
10.0 118.3 166.6 176.4 t86.2 340.2 361.0 556.6 556.6 268.8 346.8 

Group 1 received 
Group 2 received 
Group 3 received 

injections of tissue culture medium around the growing tumor, 
injections of tissue culture medium and normal spleen cells, 
injections of normal spleen cells, immune RNA and tumor antigen. 

comparison, the value of Srivastava's likelihood ratio statistic is 1.34, also 
with 22 degrees of freedom; and, the nonparametric directional test statistic of 
Koziol et  al. (1981) yields a p-value of .16 for this experiment. More 
pronounced inhibition of tumor growth with the ternary immunotherapy 
regimen was achieved in subsequent experiments by optimizing dose levels 
(Fukushima et  aL (1982a, 1982b)). 
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Fig. 1. Mean tumor sizes for three groups. 
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