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Abstract. Testing hypotheses on the marginal probabilities of a two-way 
contingency table is discussed. Three statistics are considered for testing the 
hypothesis of specified probabilities in the margins against alternatives with 
certain kind of order restriction. The properties of these statistics are 
discussed and their asymptotic behaviors are compared in depth. An 
application which motivated the consideration of the original testing 
problem is illustrated with a practical data. 
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1. Introduction 

Denote by pab the (a, b)-cell probability of a ( r + l ) × ( c +  1) contingency 
table. Put  

pa. = ~ pab 

where 

p.b=Zpab, a =  1,..., r +  1; b =  l , . . . , c +  1 , 
a 

Ea ~ p a b = Z p a . = ~ p . b = l .  
a 

The purpose of this paper is to consider testing problem of the hypothesis, 

H : p a . = p ° . ,  p .b=pob,  a =  1, . . . , r ;  b =  1 .... , c ,  

against 

149 
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l t ~ m 
K'aZ:lpa.<aZp~. p.b<bZP.°b 1 = 1,..., r; m: l , . . . , c  

= ' b= l  - -  ' 

with at least one inequality strict, wherep °. and p.°b, a= 1,..., r; b -  1,..., c, are 
given constants. 

l l 

Testing the hypothesispa.= pO. for all a against a__E1 pa._<a=E ~ p°a., 1----- 1,..., r, 

that is the hypotheses regarding one of the two margins of a contingency table, 
has been considered by Schaafsma (1966). The problem in this paper is 
concerned with the two margins of a contingency table. 

Three statistics are considered in Section 2 which lead to asymptotic tests 
for testing the hypotheses. The first statistic is constructed directly by 
applying the most stringent somewhere most powerful (MSSMP-) principle 
discussed by Schaafsma and Smid (1966) for a general class of multivariate 
one-sided test. On the other hand, the second and third statistics are 
constructed by combining two MSSMP-test statistics for the hypotheses 
regarding each of two margins: the first one simply adds the two statistics, but 
the second one uses the likelihood ratio (LR-) principle for the combination. 
In Section 3 we consider an example from a multiply matched case-control 
study. This supplies a ground for considering the above hypotheses. The 
approximate p-values of these three tests are obtained for the purpose of 
illustration by using the one-to-three matched data from a case-control study 
for studying the association of stomach cancer and neutritious pattern. The 
asymptotic efficiency of the three tests is considered in Section 4 by 
employing the Pitman efficiency or comparing their asymptotic powers. 

2. The construction of tests 

We consider first in Subsection 2.1 the MSSMP-test statistic for testing 
hypotheses with restricted alternatives under a general framework of 
multivariate normal distribution, and then introduce "approximately 
MSSMP-test" for H vs. K in Subsection 2.2. The T-test and R-test are 
introduced in Subsections 2.3 and 2.4. 

2.1 Preliminary 
Let X=(X~,..., Xh)' be a random vector distributed as an h-variate 

normal distribution with mean/~ and known covariance matrix A=(Alm). 
Consider testing the hypothesis 

H ' : / ~ = 0  against K ' : p _ > 0  (p~O) ,  

where/~>__0 means that all components of/~ are non-negative. 
For the purpose of constructing explicitly the statistic for testing H' 

against K', we employ the MSSMP-principle. The general form of the 
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MSSMP-test given by Schaafsma and Smid (1966) is represented by; Reject 
H' iff<~, X>_> constant, where < . ,  .> is the inner product defined by <u, 
v>=u'A-lv  for u, v e/~, and ~ is a non-negative vector which minimizes the 
maximum angles between 4, 4 ->0, and each axis el--(1,0,..., 0)',..., eh=(0,..., 
0, 1)'. 

Generally it is difficult to express the MSSMP-test statistics explicitly. 
However, we may show: 

THEOREM 2.1. If d( v/--~,..., V/~)'>O, the MSSMP-tes t  for  H' against 
K' is expressed by 

h 

1= I 

(2.1) Reject H'  i f f  ~/:lZ Z l~lm VI--~l m:lh > Ua, ,  

where 2 tl is the (1, l)-element of ,4  -l and ua is the upper a-quantile o f  the 
standard normal distribution. 

PROOF. It is clear that if there exists ~_>0 which satisfies 

(2.2) 
< ~,el > < ~,e2 > _ < ~ , e h >  

I1 1111e ll II ll lie211 1141111ehll 

then the 4 minimizes the maximum angles between 4 and each axis el, e2,..., eh. 
Thus the MSSMP-test is given by this 4. We now obtain the 4 satisfying (2.2). 

Put 4"A-~=(yl,..., yh), then <4, el>=Yl, and since ffetll it follows that 

4=cA(v/-2Tr,..., X / ~ ) '  for a constant c. When c>0, 4_>0 from the assumption 
of the theorem. Substituting this ~ to the general form we have (2.1). 

Note that the vector cA(x/-~, . . . ,  x / r~ )  ' is a normal vector of the elliptic 

quadric x 'Ax=c (>0), in R h, at the point k(x/-2rr,..., x ~ ) '  with x/k= 

c / ) ? , ~  2~/. The condition A (x /~  r, .... x/rff~)'_>0 is satisfied, for example, 
l , J  

when all random variables X's are positively correlated, or equally correlated 
(also see the application below). 

2.2 

Put 

S-test 
Applying the above result, we construct a statistic for testing H against K. 

1 

Zt = n-1/2• (np °. - Ha.) 
a= 1 

m 

Z,+m = n-l/2Z (np.°b -- n.b) , 
b=l 

l =  1, . . . ,r  , 

m =  1 , . . . , c ,  
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Z = ( Z t , . . . ,  Z h ) '  , h = r + c , 

l 

Or = ~ (pO. _p~ . )  l =  1 , . . ,  r ,  
a = 1 ~ " 

m 

O~+m = ~1= (p°'b - p . b ) ,  m = 1,..., c ,  

0 = (01 ..... Oh)' , h = r + c . 

It is straightforward to show that Z -  n 1/20 is asymptotically distributed as 
an h-variate normal  distr ibution with mean 0 and covariance matr ix Z =  (arm), 
where 

~ l m  = a--]=l b=~l ( p a , b - r  - -  p a .  p . O - r )  

\a=r+ 1 ] \  b=r+ 1 ] 

for 1 <_l<_m<_r ,  

for 1= 1 .... , r ;  m = r +  1 , . . . , h ,  

for r + l < _ l < m < _ h .  

Since the hypotheses H a n d  Kare  equivalent to H": 0=0 and K": 0>0, we may 
use from Theorem 2.1 the following test statistic for testing H against K: 

S = 

h 
Z ~a.u  Zl 
l= 1 

~/ h h 
z 

1=1 rn=l 

when the condit ion 

(2.3) _> o ,  

is satisfied, where Z,=(at*)  is a consistent est imator  of Z under  H and 
- r ,  1 =(at, m) is the inverse of S . .  We call the test based on S the  S-test. The test is 
an approximate ly  MSSMP-tes t .  It follows that  the S-test is asymptotically 
the uniformly most  powerful test for the alternatives in the direction specified 

o 11 ii by 0 = 0  =cZ(X/~ol, . . . ,  ~ ) ' ,  c>0, where ao is the (i, /)-element of Z "-1. 

2.3 T-test 
The approximately MSSMP-tes t  for the corresponding hypotheses 

regarding one of the margins of the contingency table has been considered by 
Schaafsma (1966). The test statistic is given by 

=  (wl'l'J2 
t=l \ Ql ] Z~ , 
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where 

= p~.-l wlt + p~+T! , 1 = 1,..., r , 

and 

r ( QI=~ p'°" r+~-I 2 ~r+l- I  2 

a:l - -  t=-, ,,~ p?" " 

Let T2, W2m, m = 1,..., c and Q2 be corresponding ones for the other margin. We 
consider the following test statistic T for testing H vs. K: 

T~ + T2 
T= ' 

where 

d =  I Iw" l  ':` [w,,i,,2 [w2,1,: [w2q,,q, 
~ O t )  " ' " t O , )  '~--~2) '""~Q21 1" 

T is simpler than S and has no restriction. We call the test based on T the 
T-test. T is asymptotically distributed as the standard normal distribution 

under H. It is easily seen that S= T, when d=c(x/-~,l,... ,  x/-~,~) ' for some 
positive constant c. 

It follows that the T-test is asymptotically the uniformly most powerful 
test for the alternatives in the direction specified by o=Ol=c,rd, c>0. 

2.4 R-test 
Kud6 (1963) considered the LR-principle for testing hypotheses with 

restricted alternatives under multivariate normal distribution. Although the 
test by the principle is not easily available when h>4,  we may apply the 
principle to the asymptotic distribution of (T~, T2). Consider the statistic, 

_ 2 -1/2 2 
(1 p,) (T~1 + T2 - 2p ,  T1T2) 1/2 

R = (1 p2,)-l/2(T, - p ,  T2) 
(1 p2,)-'/2(T2 - p,  TI) 

if TI_>0, T 2 _ 0 ,  
if T 2 < 0 ,  T~>T2,  
if T ~ < 0 ,  T2>_Tt, 

wherep ,  is a consistent estimator of p, the correlation coefficient of TI and T2; 

(2.4) 1 k Z, X/~tx/-W--~(p~m-pT.p°,,,) 
? -  x/Q1Q2 t=-i m=l 

under H. If (7"1, /'2) were distributed exactly as the bivariate normal 
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distribution N(/£/1,//./2, 1, 1, p*), the statistic R is the LR-test statistic for the null 
hypothesis,  H":/t~=/~2=0, against the alternative, K":/LI_>0,/~2>_0. The test 
rejects H iff R>_ca, where ca is the critical point  at the significance level a. 
Following Chatterjee and De (1972) we may obtain an approximate  value of 
ca by solving 

a =  { 1 -  Fz~(c2)} { 1 _  (2z0-~cos-lp.} + 1 _ qb(c), 

where Fx~ and • are the distr ibution functions of the central z2-distribution 
with 2 degrees of f reedom and the standard normal  distribution. 

Before compar ing  the asymptotic efficiency of the tests based on statistics 
S, T and R we look at an application of the tests briefly in the next section. 

3. An application 

Several controls  are matched frequently to a case in a comparat ive  study 
by means of extraneous variables. Let Xi be a r andom sample f rom the case, 
Yo be a r andom sample f rom the j - th  control  matched to the case, j =  1,..., k, 
and Vi be the vector of extraneous variables used for the matching.  Suppose  
that  X~ and Y,,.. . ,  Y~k are conditionally independent  and that  Yg~,..., Y~k are 
identically distr ibuted when condi t ioned on Vi. Let F(xl vi) and G(yl v~) be 
condit ional  distr ibution functions of Xi and Y,1 condit ioned on I,'~. We assume 
that  X's and Y's are two-dimensional  r andom vectors and that  F and G are 
continuous.  Let F~(.Iv) and G~('I v), s--1, 2, be the marginal distribution 
funct ions of F(-Iv) and G(.Iv). We discuss the si tuation where F~(xlv ) 
< Gs(x[ v) is presumed. We consider testing the hypothesis 

H0: Fs(xl vi) = G~(xl vi) for all x, i = 1,..., n; s = 1, 2 , 

against 

g0: Fs(xl v3 <- G~(xl I/i), i = 1,..., n; s = 1, 2 , 

for all x with strict inequality at least one x, based on ranks of the 
observations. 

Denote  the components  of Xi and Yo by (X, ,  X2,-) and ( Ylo, YEij), and Rsi 
be the rank of Xs~ among Xsg, Ys,, . . . ,  Ysik, for s-- 1, 2 and i= 1,.,,, n. We may 
summarize the paired ranks (Rli, R2i), i=l , . . . ,  n, in a ( k + l ) × ( k + l )  
contingency table. Let nab be the number  ofi 's satisfying Rl~=a and R2i=b, and 
put 

k+l k+l 
h a .  = ~ n a b  , n . b  = ~ ,  n a b  . 

b=l a=l 
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We assume (Rti, R2i), i= 1,..., n, are identically distributed. This assumption is 
satisfied, for example, when 

F(x ,  y lv)  = F ( x -  ~u~(fl; v), y - ~u2(fl; v)) ,  

G(x,  Yl v) : G(x  - ~u~(/~; v), y - ~u2(/~; v)) .  

Denote the cell probabilities by pab, and put po .=Z  b pab and p .b=~  a pab. Then 

pa. = P(RI  = a), p.b = P(Rz = b), a, b = 1,..., k + 1 . 

Further,  for s= 1, 2, 

P( R~ < a) -- 
k~ 

( a -  l ) [ ( k -  a)[ f - :  {G~(xlv)}~-'{1 - G~(xlv)}k-~ 

x Fs(xl v)dG~(xl v), a - -  1 , . . . , k ,  

P ( R s < k +  1)=  I , 

which are independent  of v f rom the assumption.  
It follows f rom these formulae that  the hypotheses H0 and K0 are 

equivalently represented in the contingency table as follows: 

1 
H,: o po. = l / ( k  + l )  , t = 1 , . . . ,  k ,  

Z p . b  = m / ( k  + 1) m = 1, .... k 
b=l ' ' 

l 
KI: a~pa. <- l / (k  + 1 ) ,  l :  1 , . . . ,  k ,  

m 
Z p . b  ~ m / ( k  + 1) m = 1,..., k 

b=l ' ' 

with either first or last k inequalities strict. We shall apply the tests developed 
in this paper  for testing HI against K~. It is easily seen that  the condi t ion  (2.3) 
in Theorem 2.1 is satisfied if 

P(RI  < l, R2 <- m) > P(R1 < 1)P(R2 < m), l, m = 1,..., k ,  

that  is, if R~ and R2 are positively dependent .  

Example.  A case-control s tudy was conducted in a district of Japan  to 
study the relationship of s tomach cancer and nutr i t ious pattern. Three 
controls  are matched to a case based on sex, location and age. For  an 
illustrative purpose we use here the data  of the total intake of protein and fat 
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from 55 cases and 55×3 controls in the study. Naturally, two factors are 
positively correlated and it is seen that the joint distribution of  the two factors 
is skewed and far away from normal distributions. The ranked data of the two 
factors are summarized in Table 1. 

A set of  first order efficient estimators of  the cell probabilities is obtained 
by minimizing 

Z. ( n o -  npij, , 
,, s nij 

under the restrictions pi. =p.j= 1 /4, i , j =  1 ,..., 4 (Rao (1973)). These estimates 
are listed in Table 2. 

The values of z~, z2,..., -76, TI, T2, p* and d are calculated as follows: 

Zl = 0 . 2 3 6 ,  z2 = 0 . 4 7 2 ,  

z4 = 0 . 3 7 1 ,  z5 = 0 . 4 7 2 ,  

Tl = 1 .025 ,  / '2 = 1 . 2 6 6 ,  

d = ( 4 ) u 2 ( 1 , 1 , 1 , 1 , 1 , 1 )  ' .  

z3 = 0 . 4 3 8  , 

z6 = 0 . 5 7 3  , 

p ,  --- 0 . 5 4 7  , 

The values of  the statistics S, T and R and the approximate p-values of  
the tests based on these statistics are given in Table 3. 

Table I. The ranked data of the total intake of protein and fat from 55 eases 
and 55×3  controls in a district of Japan. 

I 2 3 4 

7 2 2 1 
2 6 2 2 
1 4 4 5 
1 1 5 10 

I1 13 13 18 

12 
12 
14 
17 

55 

Table 2. Estimates of cell probabilities of Table 1 under the null hypothesis. 

1 2 3 4 

0.158 0.037 0.040 0.015 
0.049 0.123 0.044 0.034 
0.022 0.074 0.079 0.075 
0.020 0.016 0.087 0.126 

0.25 0.25 0.25 0.25 

0.25 
0.25 
0.25 
0.25 
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Table 3. The values and approximate p-values of the three test statistics. 

Statistic Values p-values of the tests 

S 1.293 0.097 
T 1.301 0.098 
R 1.325 0.235 

The table shows that the p-values of the S-test and T-test are almost 
equal. Whereas thep-value of the R-test is considerably larger than those of 
the other tests• These findings can be explained as follows: (1) Put n = ( ~ ,  
..., X/~,66) '. Then, in this example, it follows by simple calculation that 

n'! 
--1.  

Therefore we have d -  c ( ~ , . . . ,  x/-~,66) ' for some positive constant c. This 
leads to S= Tas we discussed in the text; (2) Figure I gives a sketch of the 10% 
rejection region of the T-test and R-test: the shaded area for the T-test and the 
dotted area for the R-test. The broken line is the 20% contour of the R-test. P 
shows the sample point of the present data. The figure clearly shows the cause 

T~ 

- . .  
• . - -  ° • J 

I ° ° ° j 

s . . . . . . .  

I t . . . . . . . .  

t j . . . . . . . .  

i 
i . . . . . .  , • • , ° 

/ 

Fig. 1. 
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of the considerable difference of the p-values between the tests, namely P is 
almost in the (1, 1) direction which makes the R-test most conservative 
compared to the T-test. If the sample point were, for example, at Q in the 
figure, the results would be reversed. In general, the T-test provides smaller 
p-value than the R-test in the region around the straight line of the (1, 1) 
direction. 

4. Asymptotic comparison of the tests 

We first compare the S-test and T-test in Subsection 4.1 by using the 
Pitman efficiency, then compare the asymptotic powers of the T-test and 
R-test in Subsection 4.2. 

4.1 Comparison o f  the S-test and T-test 
For arbitrary fixed {pg} such that 

pL = pO. , p:b = p°.b, a = 1,..., r + 1; b = 1,..., c + 1 , 

we consider the following sequence of alternatives: 

Hl,: p~)b = P'b + n-I/26ab , a = 1,..., r + 1; b = 1,..., c + 1 , 

where {3,,b} is a set of real numbers such that 

r+l c+l 

Z Z &b = 0, 
a=l b=l 

l 

N &.<_O, Y. &b_< O, 
a : l  b=l 

l =  l , . . . , r ;  m =  l , . . . , c ,  

with at least one inequality strict. 
We shall obtain the Pitman efficiency of the S-test with respect to the 

T-test under HI,. 
It is easy to see that a*m--'a~m in probability as n--.oo, under Hi,, where a~,, 

is the (1, m)-element of the covariance matrix Z" generated by the {p'b}. We 
denote by go tm the (/, m)-element ofL "-1. Also it may be easy to show that, under 
HI,, S and Tare  asymptotically distributed as normal distributions with unit 
variances and means A~ and A2 respectively as n--.oo, where 

A I  ~ m  

k - = = S l  
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12=- s--I i=I t=l =I 

dx/TZ-d 

((Wllll[2 [Wlr] 1/2 (W2111/2 [W2clI/21t 
d = ~ Q 1 ]  " ' "~Q,}  '~-~2] " '"~Q2] ] " 

Then the P i tman efficiency of the S-test relative to the T-test is given by 

/ 
e?(S, T) = I 

/12 / ' 

(see Mitra (1958)). 
We evaluate ee(S, T) in detail when r = c= 2 andp~. =p.b = 1 / 3, a, b = 1, 2, 3. 

Since 8 parameters  are involved in/1~ and/12, the numerical  comparison 
would be voluminous  unless the parameters are restricted in some way. We 
shall consider  a class of {p~b; a, b=  1, 2, 3} generated by the bivariate normal  
dis tr ibut ions N(0, 1, I, p), - l < p < l ,  as follows: Let(U1, U2) be a r andom 
vector f rom this distribution. Put  q~(p)=P( U~>ut/3, U2>ul/3), q2(p) = P(I UII< 
u~/3, U2>u~/3), q3(p)= P( U~<-u~/3, U2>u~/3) and q4(p)= P(I U~l <ul/3, I U21 <u~/3) 
where u~/3 is the upper  1 / 3-quantile of the s tandard normal  distribution. Then 
one of {pdb; a, b=  1, 2, 3} satisfying pL=p'.b= 1/3 is given by 

[qffp) q2(p) q3(p)) 
Q= [q2(p) q4(p) q2(p) . 

~q3(p) q2(p) qffp) 

We consider matrices {fib; a, b= 1, 2, 3} generated f rom Q by repeating 
the following operation; 

(01) interchanging two rows, 
(02) interchanging two c o l u m n s ,  
(03) interchanging two rows and then two c o l u m n s .  

All of the matrices {p~b} generated satisfy the constraint  pL =fib--- l / 3. Since 
qffp)=q3(-p), q2(p)=q2(-p) and q4(p)=q4(-p), such matrices for all - l < p <  1 
may be classified into the following 9 types: Put t ing q~=q,(p), 

Type 1. ( q l ,  q2, q3; q2, q4, q2; q3, q2, ql), - l < p < 1 , 
Type 2. (qt, q2, q3, q3, q2, ql, q2, q4, q 2 ) ,  - -  l < p < 1 , 
Type 3. (q2, q4, q2; ql, q2, q3; q3, q2, ql), - l < p < l , 
Type 4. (ql, q3, q2; q2, q2, q4, q3, ql, q 2 ) ,  - -  1 < p < 1 , 
Type 5. (q2, ql, q3; q4, q2, q2; q2, q3, q l ) ,  - -  l < p < l , 
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Type 6. (ql, q3, q2; q3, ql, q2, q2, q2, q4) ,  --  1 < p < 1 , 
Type 7. (q4 ,  q2, q2; q2, ql, q3; q2, q3, ql), -- 1 < p < 1 , 
Type 8. (q2, ql, q3; q2, q3, qi; q4, q2, q2), - 1 < p < 1 , 
Type 9. (q2 ,  q2, q4; q~, q3, q2; q3, ql, q2) ,  --  1 < p < 1 . 

Here the entries in the parentheses correspond top~l, p12,p13;p21,p2%p23;p3~, 
p32, p33. 

Note that the 9 types of {p~b} with p=-0.9(0.1)0.9 generate altogether 
9× 19 sets of {p~b}. Next we select {6ab}. The ee(S, T) depends only on the 
marginals, i.e., (61., 62, 63.; 3.1, 6.2, 6.3). We specified the following 20 types of 
(61., 62., 63.; 6.1, 6.2, 6.3) in the calculation. 

(1) ( 0 , -  1, 1; 0, 0 , 0 ) ,  (11) ( -  1 , -  1, 2; 0 , -  1, 1), 
(2) ( 0 , - 1 ,  1; 0 , - 1 ,  1), (12) ( - 1 , - 1 ,  2 ; - 1 ,  0 , 1 ) ,  
(3) ( - 1 ,  0, 1; 0, 0 , 0 ) ,  (13) ( - l , -  1, 2 ; -  1, 1 ,0 ) ,  
(4) ( -  l, 0, 1; 0 , -  l, l ) ,  (14) ( -  l , -  l, 2 ; -  1 , -  1 ,2 ) ,  
(5) ( -  1, 0, 1 ; -  1, 0, 1), (15) ( - 2 ,  1, 1; 0, 0 , 0 ) ,  
(6) ( -  1, 1, 0; 0, 0, 0),  (16) ( - 2 ,  1, 1; 0 , -  1, 1), 
(7) ( -  1, 1, 0; 0 , -  1, 1), (17) ( - 2 ,  1, 1 ; -  1, 0, 1), 
(8) ( -  l, 1, 0 ; -  1, O, 1), (18) ( - 2 ,  1, 1 ; -  1, 1, O), 
(9) ( -  1, 1, 0 ; -  1, 1 ,0) ,  (19) ( - 2 ,  1, 1 ; -  l , -  1 ,2 ) ,  

(10) ( -  1 , -  1, 2; 0, 0 , 0 ) ,  (20) ( - 2 ,  1, 1 ; - 2 ,  1, 1). 

Thus, altogether 9× 19×20=3420 sets of {p~b); a, b= 1, 2, 3} are generated. It 
was found that among these 3420 sets, 540 sets led to ee(S, T)= 1 and 1432 sets 
led to ee(S, T)> 1. Table 4 summarizes the values ofee(S, T). The table shows 
that the T-test competes well with the S-test. We found by calculation that 
when the sample size is large enough, the S-test satisfies the condition (2.3) for 
all set of {fib} generated. 

Table 4. The distribution of ee(S, T). 

ee(S, T) 0.75 0.85 0.85 0.95 0.95-1.05 1.05-1.15 1.15-1.25 Total 

Frequency 6 142 3131 134 7 3420 

4.2 Comparison of the T-test and R-test 
We next compare the T-test and R-test. Under the sequence of the 

alternative hypothesis Hln described in the last section it follows that the 
random vector (TI, T2) converges in law to ( U~, U2) which is distributed as a 
bivariate normal distribution N2(z~, zz, 1, 1, p) where 
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T2 ~ ~ ~ tW2rnl 1/2 
m=,~=, I--~--~ J & '  

and p is given in (2.4). F r o m  this the asymptot ic  power of the T-test, asymp- 
totically with level a, is given by 

1 - ¢ > ( u ~ -  r~ + r2 ] 

On the other hand,  following Bar tholomew (1961) and Chatterjee and De 
(1972), the corresponding asymptotic power of the R-test is given by 

[1 - ¢'(ca - 2 cos ~)],/'( - 2 sin () 

+ [1 - ~(ca - 2 cos (~' - ~))]~( - 2 sin (~u - ~)) 

1 ~ { 1 Z2 
+ f,,o e x p  - + - cos 0)} drdO , 

where 

k = (1 - p2)-l/2(r2 + r 2 - 2pT12"2) 1/2 , 

~, = cos-~( _ p ) ,  
"[" 2 = cos-~[(r~ - p  2)/(r,  + r~ - 2p~1r2) '/2] 

Fixing a, p and 2, and denot ing the asymptot ic  powers of the T-test and 
R-test by f i r ( l )  and fiR(i), we consider the powers as functions of (. It is 
s t raightforward to see that  both  f i r ( l )  and fiR(l) attain their m a x i m u m  values 
at ~=~u/2, symmetrically decrease as 1¢-~'/21 increases and attain their 
min imum values at ~=0 or ~,. Note that  ( = 0 ,  ~u/2, ~u correspond to r2=0, 
r~ =r2 and r l = 0  respectively, and that  the vector O~=cZd(c>O), to which the 
T-test is a uniformly most  powerful in an asymptotic sense, implies r~ =r2. 
We studied the behavior  of f ir(()  and fiR(l) for selected values of a, 2 and p. 
Figure 2 illustrates the case when a=0.05;  2=2;  p-- -0 .5 ,  0.0, 0.5. The figure 
shows that  the T-test is superior to R-test a round rl =r2, but  inferior a round 
~ =0 or ~2=0. Incidentally, this reinforces the finding in the example in the 
previous section. The figure also shows that  the superiority of the T-test 
a round rl =r2 increases as the value o fp  decreases; that  the power of the R-test 
is fairly stable for various directions of the alternatives. These findings are 
unalterd for different values of 2 and a. 

5. Concluding r e m a r k s  

In this paper  we have discussed the problem of testing pa. =p:. ,  p.b=p.% 
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Asymptotic powers fir(O and fla(~) for a=0.05; 2=2; p = - 0 . 5 ,  0.0, 0.5. 

1 1 m m 
for a= l , . . . ,  r, b= l , . . . ,  c against alternatives ~Epa. <_~_ pa., ° b~= P'b<-- b~= p.b,° for 

l= 1,..., r, m =  1,.. . ,c, with at least one inequality strict. The problem is not only 
interesting by itself as a testing hypothesis in a contingency table, but  also it 
has been shown in this paper that the alternative hypothesis is related to the 
one-sided alternative in a comparative study under a bivariate nonparametric 
formulation. 

We have considered the three tests, S-test, T-test and R-test. The S-test is 
an approximately most stringent somewhere most powerful test. The T-test 
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and R-test combine approximately most stringent somewhere most powerful 
tests obtained from each marginal of the contingency table. Whereas the 
T-test simply adds, R-test employs the likelihood ratio criterion for the 
combination. 

The alternative hypothesis is composite with restriction and it is difficult 
to compare the three tests in general. We have considered the restricted family 
of alternative hypothesis which is generated by a bivariate normal distribution 
for the comparison of the S-test and T-test. Also we have directly compared 
the asymptotic powers of the T-test and R-test. Under  these setups it has been 
shown that the three tests are competitive regarding their asymptotic powers, 
in particular 

i) T-test is highly competitive with the S-test. 
ii) T-test is superior to the R-test around E(T1) = E(T2), but inferior to the 

R-test around E(T0=0  or E(T2)=0. 
iii) The superiority of the T-test around E(TO=E(T2)  increases as the 

correlation of T~ and T2 decreases. 
iv) The power of the R-test is fairly stable for various directions of the 

alternatives. 
We could not compare the powers of the S-test and T-test directly 

because of the involvement of too many parameters. 
The usefulness of the tests has been shown by the practical data from a 

case-control study. It has been shown that the T-test has smallerp-values than 
the R-test in the region around the straight line, TI-- T2. 
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