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Abstract. Suppose that we have two independent random matrices X, and
X> having multivariate normal distributions with common unknown matrix
of parameters £ (¢Xm) and different unknown covariance matrices 2; and
%y, given by Np. v (Bil Av; Z1, T) and Npow, (B:E A3 Zs, I) respectively. Let &
(&;) be the MLE of ¢ based on X, (X:) only. When g=1, necessary and
sufficient conditions that a combined estimator of &, and &, has uniformly
smaller covariance matrix than those of &, and &, are given. The k-sample
problem as well as one-sample problem is also discussed. These results are
extensions of those of Graybill and Deal (1959, Biometrics, 15, 543-550),
Bhattacharya (1980, Ann. Statist., 8, 205-211; 1984, Ann. Inst. Statist.
Math., 36, 129-134) to multivariate case.
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1. Introduction

The problem of estimating the common mean of two univariate normal
distributions has been studied in several papers. Of these, Graybill and Deal
(1959) are the first who gave necessary and sufficient conditions for the
combined estimator having a variance uniformly smaller than that of each
sample mean. Recent works by Brown and Cohen (1974), Khatri and Shah
(1974) and Bhattacharya (1980) demonstrated a family of combined unbiased
estimators with uniformly smaller variance than each sample mean. An
extension to multivariate one-sample problem of estimating common
components of a mean vector of normal distribution was obtained by
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Halperin (1961), Rustagi and Rohatgi (1974). Related work by Gupta and
Rohatgi (1979) is to be noted. Combined estimators in this case can be
regarded as a special case of multivariate regression problem, in which the
covariance matrix of MLE was obtained by Rao (1967), Williams (1967) and
Gleser and Olkin (1972).

In Section 2 of this paper we shall summarize the results in one sample
growth curve model which was first formulated by Potthoff and Roy (1964)
from our point of view. This will be a basis for the subsequent sections. In
Section 3 we discuss two-sample problem of growth curve models with
common matrix of unknown parameters and different covariance matrices.
When the matrix B; of internal regressor variables is p; X | vector fori=1and 2,
we can give necessary and sufficient conditions for a combined estimator to
have uniformly smaller covariance matrix than those of MLE’s based on each
sample. They are extensions of original results by Graybill and Deal (1959)
and of Bhattacharya (1980, 1984) to multivariate case, in that the conditions
are free from population parameters and design matrices. When the matrix B;
is pXx2, that is, in estimating a common mean vector of p-variate normal
distributions, Chiou and Cohen (1985) showed that combined estimator
cannot have uniformly smaller covariance matrix than that of each MLE.
Hence our restriction on B;is inevitable, if population covariance matrices are
unknown. If they are known, combined estimator has always uniformly
smaller covariance matrix. A class of combined estimators is extended up to
ni=pi+ 1 where n; stands for the degrees of freedom for estimating covariance
matrix of the i-th population by including the difference of individual MLE’s
in the weight function. With some restriction on the matrix of external
regressor variables, we discuss in Section 4 estimating a matrix of common
parameters in k growth curve models with different covariance matrices.
Necessary and sufficient conditions are given for a combined estimator having
uniformly smaller covariance matrix than that of each MLE, which are
generalizations of Norwood and Hinkelmann (1977), Shinozaki (1978) and
Bhattacharya (1978, 1984) to multivariate case. An extension of Brown and
Cohen type estimator (Brown and Cohen (1974)) is also obtained.

The following lemma due to Bhattacharya (1984) is a basic tool of our
proofs in Sections 3 and 4.

LEMMA 1.1. Let X;>0,i=1,2,..., k be mutually independent random
variables having E(Xi?)<co. Then for any positive numbers p: satisfying

k
zpi=1,

1| )
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2. One-sample problem

Let observed random matrix X(pXN) have normal distribution
Npn(BEA; X, T) where B(pXq) and A (mX N) are known matrices of ranks g
and m respectively and (gXm) is a matrix of unknown parameters; each
column of X is independently distributed according to p-variate normal
distribution with common covariance matrix XZ'( p X p) which is assumed to be
positive definite. This is called a growth curve model by Potthoff and Roy
(1964) and practical meaning and applications can be seen in their paper. If we
put g=p and B=1I, we get ordinary multivariate regression model.

When X is known, MLE of £ is given by

(2.1 E=(BZ'BY' B X' XA'(AA')",

which is an unbiased estimator of £. Equivalently we can write & as in Lee
(1974)

(2.2) vec &= {(A4)'AQ (B Z'B)'B'Z "} vec X,

where vec X is defined by pNX 1 vector (X1, X3,..., Xn)' for X=(X1,..., Xn) and
A®Q B stands for Kronecker product defined by (a;B) for A=(ay). Here we
used the identity vec (BEA)=(A"QB)vec £. A good account can be seen in

Muirhead (1982) for the relation between Kronecker product and vec
operator. We easily get

2.3) Cov (vec &)= (44)"' Q (B’Z'B)™" .
Partition X and B according as first p’ components and remaining p—p’
components (p'=g) and put X=(X{, X7)’, B=(Bi{, Bi)’ where X is p’X N and B,
is p’Xq. Similarly, partition X and put (X)) ;=1,. The MLE of £ based on X,
only is given by
(2.4 & = (BiZi'B) ' BiZi' X 4'(AA')"
which is also an unbiased estimate of £. We get
(2.5) Cov (vec &) = (A4')"' @ (BIZii'B) ™" .
Noting the decomposition formula

B'X7'B=(Bf - BIZi'Z1) Zn'(B: — ZuZii' B) + BIZ\'Bi

we can see that
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(2.6) Cov (vec &) < Cov (vec &) ,

for all 2 and . Here the ordering between two positive definite matrices is
defined by the nonnegative definiteness of their difference. In fact Cov(vec &)
attains the lower bound of Cramér-Rao inequality. We can say that if 2 is
known, the estimator £ utilizing all the information given by the data is always
better than the estimator ¢, utilizing only some components of the data. We
will see that this is not the case when 2 is not known.

When X is unknown, MLE of ¢ is obtained by Khatri (1966) as

(2.7) E=(BS"'BY'BS'XA(44")"

where S=X (/- A’(AA’) ' A)X". This is obtainable by substituting S for X in
(2.1). We can show that & is the unique solution of the likelihood equation by
generallzmg Halperin (1961). Note that XA" and § are mdependent We can
see that & is an unbiased estimator of £. As for the dispersion of &, we get the
following theorem.

THEOREM 2.1. Putn=N—mwhere A(mXN) is of rank m and assume
that n=p+1. We get

n—1
-p--1

(2.8) Cov (vec &) = (44 Q (B’ Z7'B)"!

PROOF. Noting that S has Wishart distribution Wp(n, '), we get

Cov (vec f)
= (4A")"' @ E[(B'S'B)'B'ST'ZS'B(B’'S'B) ]
=(A4)" @ (B'Z'BY " E[I + WuWn' Wu)B'Z'B) ",

where W=(Wj);;-1,2 has Wy(n, I) and Wi, is gXq. This is obtained by
transformation S—V=2""28X""* and V— W=HVH for some orthogonal
matrix H. Noting that the conditional distribution of Wi, given Wy is
Ngp-q(0; 1, W2) from Srivastava and Khatri (1979, p. 79), we get
E(WiuWaiWa)=(p—q)I/(n—p+q—1), giving the desired result.

The fact that E[(B’S'B)'B'S'ZS'B(B'S' B J=(n—-1)(B'Z'B)"/
(n—p-+q—1)was already obtained by Rao (1967), Williams (1967) and Gleser
and Olkin (1972). However we believe that our proof is simpler and more
direct. As a byproduct we get the following lemma which will be used in
Sections 3 and 4. This is obtained by noting (B'S™' B)"'= Wii..

LEMMA 2.1. Let S have Wy(n, X) distribution and let B(pXxq) be of
rank q. Then (BS™'B)Y'B'S"'ZS'B(B'S"'B)"' and B'S™'B are independent.
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The MLE of ¢ based on Xi(p"X N) only is given by
(2.9) & = (BISI! B) ' BiSIi X, 4'(44") ",

where S\1 is the partitioned matrix of S similar to (2.4). From Theorem 2.1, we
get the necessary and sufficient condition for Cov(vec {)<Cov(vec &) as

-1 )
(2.10) n—Wod-l peap < prip.
n—(p-q9-1

Note that (n—(p'—g)—1)/(n—(p—q)—1)>1. We can always find 2 such that
reverse inequality of (2.10) holds. For such X, the MLE &is not better than ;.

Take B=e, and A=ex with e,=(1,..., 1) of length p. Then the MLE
becomes E=¢,5 ' X/e;S e, where X stands for the sample mean vector and
the problem reduces to estimate mean vector (&, £,..., &)’ based on a random
sample of size N from p-variate normal distribution Ny(ep, ). This is the
simplest case of growth curve model as Potthoff and Roy (1964) stated.
Halperin (1961) considered this case and compared & with ,=e;X/p. He
already observed the possibility of losing precision by using all the data. When
A=ef and B is arbitrary, Rao (1967), Williams (1967) and Gleser and Olkin
(1972) discussed the properties of &.

3. Two-sample problem

Let Xi(p1XN1) and X(p:XN:) be independent observed random
matrices having normal distribution N~ (BiéA41; 21, I) and Np,v, (B2 A2y X3,
I) respectively where B;(p:Xq) and A:(mXx N;) are known matrices of ranks g
and m respectively. The problem is to estimate common &(gxXm). If 21 and 25
are known, the MLE of £ is given by

. 2 _ 12 _ -
G.0)  vec &= ( 5 A4 ® BIE ‘B,) S (Adi @ Bix'B) vec &,

where &=(B.Z;'B) ' Bi.Z ' X;A/(A:4)" is the MLE of ¢ based on X.. The
covariance matrix of vec ¢ is given by

-1

2 2
(3.2) Cov (vec ) = ( 2 A4 BD:,-_'B,)

In view of (2.3), we get Cov(vec &)<Cov(vec &) uniformly for all X and 2.

When X and 2 are unknown, an extension of Graybill-Deal estimator
(Graybill and Deal (1959)) is obtained by substituting 2; by an unbiased
estimator S;/#; in (3.1) as



124 NARIAKI SUGIURA AND TATSUYA KUBOKAWA

- 2 -1 2 “
(3.3) vecéop = ( igl AA: R B;Si_lBini) Iz::l (A4 R B;SiﬂlBini) vec &,
where

& = (BiS; ' B) ' BiS; XiAi(Aid}) "
Si= Xi(I - A(AA) ' A)X

and S; has Wy(n;, 2) distribution with n;= N;—m. A more general class of
unbiased estimators is obtained if we put

. 2 P2 -
(3.4)  vec s = ( S bnddl @ B;S[‘B,) S bnfAid: @ BiSTB) vec &,

for positive constants b, and b, the univariate case of which was discussed by
Khatri and Shah (1974). This class can be further generalized by considering

3.9) vec & = vec & + d(vec & — vec 51) ,
where
(3.6) ¢ = a(bmA,Af Q BiST'B

+ mAA; Q B3S:'B)) 'naAaAS Q BiS:'B,

for positive constants a and b, the univariate case of which was discussed by
Bhattacharya (1980). Putting a=b=1, we get &sp and putting a=1 and
b=b1/b,, we get Exs.

It is easily seen that E(£)=¢ and that Cov(vec E)<Cov(vec &) is
equivalent to

(3.7 E[¢{Cov (vec & | S1) + Cov (vec &) S2)}¢']
< E[Cov (vec &1 | S1)@” + ¢ Cov (vec & | S1)] .

Note that S; and X:A4: are independent. We get

(3.8)  Cov (vec & [ 8)
= (44N ® (BIST'B) ' BIST X, ST Bi(BIST'B) ! .

In view of Lemma 2.1, we can write the condition (3.7) as

(3.9)  E[¢{(41A])" @ Ztki + (4245 @ Ztka}eb']
< E[{(A14)™ @ kiZH} ¢’ + o{(414D)” @ kiZ¥}],

where Z*=(B:2"'B) ' and ki=(ri— 1)/ (mi—pi+q—1). Put C=(4243)""(4:1A40)
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(A2A4%)"'" and Vi=(B!S;'B)™". Then we get
(3.10) ¢ =af(AAN)" QLRI QI+ — CQ VaVy

(424D Q L},

and the condition (3.9) can be expressed by

bnl } 1

(3.11) aE[y(In @ k2Z¥ + C' @ kiZF)v’]
S E(CT @ kiZMy + w(C' @ k2P,

where y=(Ing+(br/n) CQ V2V .

From here we should assume that g=1, in order to get definite condition
for @ and b. In this case & is a row vector and V; and Z;* are scalars. The
condition (3.11) is further simplified as

bm, ZH L bm Ve )
(.12) aE[(Im 2 C) (kl):* I+ C )(1m+ - c) ]

- b V -
sE[C“(1m+%—Z2—C)] (et 22 '© -

n2 1

Let C=H diag(cy,..., cm)H' for some orthogonal matrix H. Then ¢/’s are all
positive. Diagonalizing the matrix Cin (3.12) by multiplying A" and H from
left and right, we get an equivalent condition to (3.12) as

a 1+ (1 + )’
G139 ZSE (Hb_”_lﬁc) £ (H%ﬁc)z ’
n V[ ' n; V1

i=12,...m,

where 7,=k,25* ¢i/ (k127*). By Lemma 1.1, a sufficient condition for (3.13) is
given by

. E(VL/V.
< min 1!’—"—‘3——(‘—/—2)2—} forall i.

(3.14) “m o E(]V2)Y)

(TR
A

Note that ¥;/ Z* has y’~distribution with #,—p;+ 1 degrees of freedom and that
V2/(7:¥1) has a distribution free from parameters Z* and 27* . Putting 7;=01in
(3.13) yields a<2. Letting 7; tend to infinity in (3.13) yields a<2{bnic:/ (n.7)}-
E(V1] V2)] E(V3] V3). Hence the sufficient condition (3.14) is also necessary,
which gives the following theorem.

THEOREM 3.1. Let mi=Ni—m and assume that q=1, ni=pi+1 and
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m=p:+4. Then a necessary and sufficient condition for the combined
estimator & of £ to have covariance matrix uniformly less than or equal to the
covariance matrix of &1 is

(3.15)  a<2min 1, p 20 = DOB = p2)na = ps = 3) } |

na(nz — 1)(m — p1)(m — p1 + 3)

Put a=b=1 in Theorem 3.1, and symmetry consideration yields the
following corollary.

COROLLARY 3.1.  Assume that q=1 and nizpi+4 for i=1, 2. Then a
necessary and sufficient condition for Cov(égp)<Cov(¢\) and Cov(&,) is

2ni(m — 1)(n2 — pa)(n2 — p2 — 3)
= m(n — D(m — p)(m — pr + 3),

(3.16) dna(n — 1) — pi)m — p1 — 3)

= n1(n1 - 1)(712 — pz)(nz —p2+ 3) .

If we put pi=p,=1 in Corollary 3.1, we get (n—2)(n,—8)=16 and
(n2—2)(n,—8)=16. Further put m=1, we get the results by Graybill and Deal
(1959) and corrected by Norwood and Hinkelmann (1977). If we put a=1 and
b=b,/b: for b>0 in Theorem 3.1, we get a result for Exs discussed by Khatri
and Shah (1974). Symmetry consideration yields the following corollary.

COROLLARY 3.2. Assume that =1 and nizpi+4 for i=1, 2. Then a
necessary and sufficient condition for Cov(¢ks)<Cov(¢1) and Cov(<y) is that

G.17) lnl—p1+3sb;nl(m—l)(nz—pz)Sznl—p1—3.
2nm—pr—3 bamy(n — )(mi — p1) m-p2+3

It is easily seen that such b1/ b, exists if and only if (1 —p1—5)(n2—p>,—95)=
16. Reasonable choice of bi/b, may be ny(na— 1)(ni—pi1)(ni—pi—1)/
{m((ni—1)(n2—p2)(na—p>—1)}, which satisfies (3.17) whenever (n1—p:—35)
«(n2—p2—5) 216. When p,=p,=m= 1, these results are obtained by Khatri and
Shah (1974) and Bhattacharya (1980). If ni=n; and p,=p-, the condition
(3.16) and the condition (ni—pi—S5)(n2—p2—5)=16 are the same, giving
ni=mz=p+9.

The assumption that g=1in Theorem 3.1 cannot be avoided, since Chiou
and Cohen (1985) has shown that for estimating common mean vector of two
bivariate normal distributions with different unknown covariance matrices,
the combined estimator cannot have uniformly smaller covariance matrix
than that of sample mean of the first sample. This is the case with g=2 in our
notation. The other assumption that n,=p;+4 in Theorem 3.1 can be
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weakened up to n2=p,+1 by using nonsingular matrix H such that H4;A/H'=
D= dlag(d(') ., dd) and considering a wider class of unbiased estimators
vec E=vec & +p(vec &,—vec &) with

(A:41)"

3.18) ¢=“7ﬂfﬁi{

bm (445" (A4
n, BiS;'B,  BiS''B

o - EYH'LHY' (& - EYHLH|

where L;= dlag(l(') 19y and [>0. When p1=p:=1 and A;=e’v, Brown and
Cohen (1974), Khatri and Shah (1974) and Bhattacharya (1980) discussed this
class of estimates with additional restriction between positive constants a, b,
and c. It is easily seen that

(3.19) E[¢p(& - E(& - &y & - &)]=0
so that E[vec &]=vec £. We shall give the result first.

THEOREM 3.2.  Assume that q=1 and ni=pi+1 for i=1,2. Let H be a
nonsingular matrix such that HA;A'H'=diag(d\’,..., d%) for i=1, 2. Take
positive constants a, b, ¢ satisfying

(3.20) a <2 min

(m=-p)m-—pr+tm-1 . (bn  (D1Lo)min
m-Dm-pi+3 " ( 2> < (DaLt)mas )}

1,

where (D2L1)max=rlr<liz<1’)§ d? 11" and (Dsz)min=}l<rlii<{ln dP1P. Then Cov(é)<
Cov(&1) uniformly for all X\ and Z».

PROOF. Note that € is a 1Xm vector. We easily get

(3.21) Cov (§) = Cov (&) + E[¢(& — &)'(&: - &)o'l
+ E[(é - &) (52 c)e’]
+ E[¢& - &y -9].

Since conditional distribution of vec & given S is M(vec &, (4140 X
(BiS ' B.) ' BiS' 2181 Bi(BiSi ' B1)"), we can see that conditional distribu-
tionof & and &,—&, given S; and $-, is normal with mean (£, 0) and covariance
matrix
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( T, -1 )

-1, T+ T/’

where T,=(A:A/) ' B/S'ZiS;'B./(B/S/'B)’. This gives E[(&—~¢)|&~E]=
- T(T\+ Tz)_l(ffz—fl)' and

E[¢ - & (& - &y¢'l =~ EIT(Ti + To) (& - &y(& - & e .

Comlzined with (3.21), a necessary and sufficient condition for Cov(é)<
Cov(¢)) is given by

(3.22) E[¢& - &y & -Ey¢]
<E[T(T + T)'(& - ¢
+ E[¢( - &y — ¢

' (& - )¢l
W1+ Tz)_1 7] .

Put
(3.23) Z: = (B.Z'B)B!S ' %S B) | (BIS'B) ,

and Z*=1/(B/%S'B). Then Ti=ZZ*(A4:A7)". Note that Z=1 and the
distribution of Z; is free from X and X,. Let Q be a square root of Ti+T>»
defined by Q=(D\'Z\ZF* + D;' Z,Z*)" H where Di=diag(d}",..., d). Then
for given Sy and Sz, V'=(&,~&,)Q " has N(0, I) which is independent of S}, S;.
We can rewrite the condition (3.22) by V, Z;, Z* as

(3.24) E[¢Q'V'VQ ¢'] < E[ZiZF(A1A1) ' Q' V'V Q¢']
+ E[6Q'V'VQ ' Z X AAN '],

where

bn,

n;

(3.25) ¢ = aUZFEH' DY U.ZE D3 + U Z¥ Dy

-1
+ V(DU ZZF + D;‘zzzz*)L;lV'Lz} H™,

with Ui=(B/Z;'B)/ B/S:' B: having x° distribution with n,—p;+1 degrees of
freedom.

Multiplying H ' and H"' from right and left respectively in (3.24) and
noting that E[V’V|VDV’] is diagonal for any diagonal matrix D, we can
simplify the condition (3.24) to the inequality between two diagonal matrices,
giving

(3.26)  aE[¢i(Z + pZ) VI < 2E[Z:6:V?], i=1,2,....m,
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where

bn m d.-ml.-(z) -1
¢i:Ul[_n—zlpiU2+U1+CF21W(ZI+[7]'ZZ)V"Z ,
i

with p=2*d"/(Z*d*) and V=(W,..., V»). Here V7, j=1,..., m have
independently 4° distributions with one degree of freedom. Regarding Vi’ as

a y’ variate with three degrees of freedom in (3.26), we can delete ¥’ from
both sides in the expectations of (3.26) and get

_ E[Z,¢i]
(3.27) a <2 inf E[(Z1 + piZ2)di]

for i=12,..,m,

which is necessary and sufficient for Cov(€)<Cov(&)). Since Zi+p;Z; and ¢
have negative covariance with respect to Zz, we can get for a;=FE(Z;)

E(Z:¢) - E[Z:¢1]
E(Z: + piZ2)d?] = E[(Z1 + pian)di]

. E[(Z, + piax)di| Z1, Z2]
> inf Z
22 “UENZ + pa) ol Zs, Z2)

v

inf min {1,
21,2,

1 EWU) E(lwilZy, Z)) }
w E(UY) E(/yi|Z:, Z2) )

where
bn, c m di“)li(z) 2
wi= —; U + ;ng W (Z\ + piZ) V.

The last inequality is obtained by applying Lemma 1.1 to the expression

1 Wi
+ i P = e + - e »
(Z1+ pio)$ {p 2 td-no

with p=Z,/(Z:+pia2). Since U2+7§1 V7 has x* distribution with r2—p2+m+3
=
degrees of freedom and is independent of (U, V3,..., V.2)/(Us +_‘231 V%), we can
1:
simplify the lower bound further to get

E[l/yi| Z,, Z5]
E[l/yi| 2\, Z5]
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m -1
E[(U2 + Vﬁ) ] E[(Uz +3 Vﬁ)/wi’zl, Zz]
> 2

- m -2 m 2
E[(Uz + 3 V,—Z) ] E[(Uz +¥ V,~2) /lel, Zz]

Jj=

e v
2(?12—1?24'm—I)Lllzr‘lyf2 ", U2+F§”‘;Vj2
2 2
+ﬁ§%(ll+pjlz)*—n:‘—z
U, +j:21 4
_{ bny ¢ dihi®
z2(m—-—pr+m-1) mln[*;l‘z‘,gl]gmlzij}

. bm (D2 L2)min ]
>(m—pr+m—1 —, === b
m-—p+tm-1) mm{ P c (DrLooes

Hence a sufficient condition for (3.27) is given by

a <2 min
1 E(U) ) bm (D2 L2)min ]
l,— —prtm—1 2
{ w E@h W tm D m‘“( " "'(Dle)mx)

Noting that a;=(n,—1)/(n2—p:) by Theorem 2.1, we get the desired result.

It is noted that the condition in Theorem 3.2 depends on d'*) but not on
d" and that it is free from A;4/ if we take Li=L,=D>'. Put py=p,=m=1and
Li=1;in Theorem 3.2, and we get

n—-1 . (bnl )}
min | —, ¢t ,
n+?2 N

in which the case bni/n;=c¢ was obtained by Bhattacharya (1980).

a<2min{l,

4. k-sample problem

Let Xi(p:XN;) be observed random matrix having normal distribution
Non(Bi€Ai; 2, I) and assume that Xi,..., X are mutually independent, where
Bi(pixq) and A{(mx N;) are known matrices of ranks g and m respectively.
The problem is to estimate £ when Z; are unknown. We shall consider the
following class of unbiased estimators as an extension from two-sample
problem:
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. k oYk . _
4.1) vec ¢y = ( 21 cnidiA! Q BSi Bi) Zl cni(A:Af Q BiS: By vec &,
i= =

where ¢; are positive constants and &; is the MLE of £ based on X; only and is
given by

4.2) vee & ={(AiA)) " A: Q (BIS'B) ' BIS'} vee Xi,
for
Si = Xi(I — A(AAN AN X! .

The notation [k] in (4.1) denotes the combined estimator from first up to k-th
samples. When p;=1, g=1 and Ai=¢'x, this class of estimators is discussed by
Shinozaki (1978) and Bhattacharya (1978, 1984). Further special case of ci=1
was discussed by Norwood and Hinkelmann (1977). The following theorem is
an extension of Bhattacharya (1984).

THEOREM 4.1. Let g=1, n=pi+1 for i=1, 2,..., k—1 and m=pi+4.
Assume that HAA/H' (1<i<k) are simultaneously diagonal for some
nonsingular matrix H. Then a necessary and sufficient condition for
Cov(f[k])SCov(E[k_l]) is given by

Sk ni(n — 1)(ne — p)(ne — pr — 3)
@ o~ ? ni(me — 1)(mi = p)(ni — pi + 3)

for i=1,2.., k-1,

Successively using Theorem 4.1 with respect to k, we get

COROLLARY 4.1. Let g=1, mi=p\+1 and nizpi+4 for i=2,..., k.
Assume that HA,A/H' are simultaneously diagonal for some nonsingular
matrix H. Then a necessary and sufficient condition for Cov(&ug)< Cov(&)) is
given by
Gy ni(ni — )(ni — p)(m; — pi — 3)
¢ n(m— D — p)(ni — pi + 3)

(4.4) for 1=i<j<k.

COROLLARY 4.2. Let g=1,n=pi+4 for i=1,2,..., k and assume that
HA:A/H' are simultaneously diagonal for some nonsingular matrix H. Thena
necessary and sufficient condition for Cov(Sx)<Cov(¢) for all i is given by

@s) lmomt3 _onty-Deu-p)_,mop=3
2 n—pi—3  cndni— 1)(n— p) ni—pit3

I<i<j=<k.
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It 1s easy to see that such ¢/c¢; in Corollary 4.2 exist if and only if
(ni—pi—S5)(nj—p;—5) =16 for all i#j, which is an extension of Shinozaki (1978),
Bhattacharya (1978). If we put pi=1, c;=1 and g=m=1 in Corollary 4.2, the
conditions become (n;—2)(nj—8)=16 for all i#j which was obtained by
Norwood and Hinkelmann (1977).

PROOF OF THEOREM 4.1. From Lemma 2.1 and Theorem 2.1 we get
o k
(4.6) Cov (vec ) = E[ z§1 VV:‘H;’W"] ,
where

k .‘l
W, = ( ElciniAiAi' ® B;Si—lBi) cnididl @ BS'Bi
0: = (Aid)" @ (BZ'BY"

(4.7)

for Li=(n.—1)/(ni—p:). By the assumption of Theorem 4.1, we can find a
nonsingular matrix H such that HA;4/ H'=diag(d{",..., d¥) simultaneously.
Since g=1, we can write a necessary and sufficient condition for Cov(f[k])s
COV(E[k—!]) as

k k-1
(4.8) E[ge,,»mf—gle,,m;ﬂ]so for j=1,2...m.
where

k
I’Vij = Cinilie;jl Ui'l/ 1§1 Cil’lilil%'1 UEI s

kel
4.9) Wk = Cinilif);'l U/ El Cinilﬂ;‘l v,
05 = L (BiZi ' Bd}")

and Ui=B/Z;'B;/B/S'B; has x° distribution with ni—p;+1 degrees of
1yl k-1
freedom. Put 0*,:(21 9;-’) . Noting that < z W;¥’0+; and

k k-1
2 0W; — ZOWI < Wily + Wy(Wy = 20+,

as in the proof of Theorem 3.1 in Bhattacharya (1984), we get a sufficient
condition for (4.8)
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< min —— £W¥e)

1
(410) 2 Isj=m | + T E(ijz) ’

where 7,=0i;/6+. By Lemma 1.1, a lower bound of RHS of (4.10) is given by

| I EW) E(/g)
1 — — ,
@10 B a6y E(UC) E(/g)

where
k-1 -1
&= Z cnil(05/0) U™ .

Applying Lemma 1.1 again, we get for all j=1,..., m

E/e) o i {cn_,_ﬂ)_}
E(ljgh ~=ise 7 E(UY )

Combined with (4.11), we finally get a sufficient condition for (4.8) as

{ cinil; nk——pk—3}

1 .
~—< min
2 el mi—pi+ 3

l<i<k-1
which is equivalent to (4.3). The necessity of the condition (4.3) follows from
k
nonpositiveness of the derivative of £ [’}::1 ;W] with respect to 1/ at 1/6,=0
for all 6; (i#k) in view of (4.8) and putting further 1/60;=0 for i=r (r<k).

Assuming that g=1, we can consider another class of unbiased estimators
given by

- -1 = o
A = &+ 5 o — &)

where

ni - BiS'B )“
i = ail b — (AimAw) A\Al ————+ In]| ,
¢ a( Ri+1 ( : l) e f+1Si+}Bi+1

for positive constants a; and b.. This is an extension of (3.6) to k-sample
problem. When p;=1, m=1 and A;=e', this class of estimators is discussed by
Brown and Cohen (1974) and Bhattacharya (1980). Noting that ¢;<a;/ and the
same argument as Brown and Cohen (1974) yields the following theorem.
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THEOREM 4.2. Assume that g=1, m=p1+1, n=pi+4 for i=2,... k
and that HA;A{ H' are simultaneously diagonal for some nonsingular matrix
H. Take positive constants a; and b; such that

a1 < min ] 1, 2b, ni(m — 1)(n2 — pa)(n2 — pa — 3) } |

nz(n2 — 1)(m — pi)(m — p1 + 3)

k-2 < min { L 2bes ni(m — D(#-1 — pi-1)(Pr-1 — Pi-1 — 3) } ’
l—a - — a3 -1 (Mg-1 — 1)(711 — p1)(n - p1+ 3)

k-1 < min {2’ i m(m — D(m — p)(ne — px — 3) ] ‘
l—a -~ a2 k(e — (1 — po)(m — p1 + 3)

Then we have
Cov(fix) < Cov(fr-1) < - < Cov(h) < Cov(fl)

uniformly for all ;.
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