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Abstract. Suppose that we have two independent random matrices X~ and 
X2 having multivariate normal distributions with common unknown matrix 
of parameters ~ (q×m) and different unknown covariance matrices Z'~ and 
$2, given by Np,,N, ( B~A ~; Z~, I) and Np2.N2 ( B2~A2; ~2, I) respectively. Let ~ 
(~2) be the MLE of ~ based on X~ (X2) only. When q= 1, necessary and 
sufficient conditions that a combined estimator of ~ and ~2 has uniformly 
smaller covariance matrix than those of ~, and ~2 are given. The k-sample 
problem as well as one-sample problem is also discussed. These results are 
extensions of those of Graybill and Deal (1959, Biometrics, 15, 543-550), 
Bhattacharya (1980, Ann. Statist., 8, 205-211; 1984, Ann. Inst. Statist. 
Math., 36, 129-134) to multivariate case. 

Key words andphrases: Common mean of normal distribution, improved 
estimators, multivariate regression, one sample problem, two sample 
problem, several sample problem. 

1. Introduction 

The problem of estimating the common mean of two univariate normal 
distributions has been studied in several papers. Of these, Graybill and Deal 
(1959) are the first who gave necessary and sufficient conditions for the 
combined estimator having a variance uniformly smaller than that of each 
sample mean. Recent works by Brown and Cohen (1974), Khatri and Shah 
(1974) and Bhattacharya (1980) demonstrated a family of combined unbiased 
estimators with uniformly smaller variance than each sample mean. An 
extension to multivariate one-sample problem of estimating common 
components of a mean vector of normal distribution was obtained by 
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Halperin (1961), Rustagi and Rohatgi (1974). Related work by Gupta and 
Rohatgi (1979) is to be noted. Combined estimators in this case can be 
regarded as a special case of multivariate regression problem, in which the 
covariance matrix of MLE was obtained by Rao (1967), Williams (1967) and 
Gleser and Olkin (1972). 

In Section 2 of this paper we shall summarize the results in one sample 
growth curve model which was first formulated by Potthoff  and Roy (1964) 
from our point of view. This will be a basis for the subsequent sections. In 
Section 3 we discuss two-sample problem of growth curve models with 
common matrix of unknown parameters and different covariance matrices. 
When the matrix Bi of internal regressor variables ispix 1 vector for i= 1 and 2, 
we can give necessary and sufficient conditions for a combined estimator to 
have uniformly smaller covariance matrix than those of MLE's based on each 
sample. They are extensions of original results by Graybill and Deal (1959) 
and of Bhattacharya (1980, 1984) to multivariate case, in that the conditions 
are free from population parameters and design matrices. When the matrix Bi 
is pX2, that is, in estimating a common mean vector of p-variate normal 
distributions, Chiou and Cohen (1985) showed that combined estimator 
cannot have uniformly smaller covariance matrix than that of each MLE. 
Hence our restriction on Bi is inevitable, if population covariance matrices are 
unknown. If they are known, combined estimator has always uniformly 
smaller covariance matrix. A class of combined estimators is extended up to 
ni=pi+ 1 where n~ stands for the degrees of freedom for estimating covariance 
matrix of the i-th population by including the difference of individual MLE's 
in the weight function. With some restriction on the matrix of external 
regressor variables, we discuss in Section 4 estimating a matrix of common 
parameters in k growth curve models with different covariance matrices. 
Necessary and sufficient conditions are given for a combined estimator having 
uniformly smaller covariance matrix than that of each MLE, which are 
generalizations of Norwood and Hinkelmann (1977), Shinozaki (1978) and 
Bhattacharya (1978, 1984) to multivariate case. An extension of Brown and 
Cohen type estimator (Brown and Cohen (1974)) is also obtained. 

The following lemma due to Bhattacharya (1984) is a basic tool of our 
proofs in Sections 3 and 4. 

LEMMA 1.1. Let Xi>0, i= 1, 2,..., k be mutually independent random 
variables having E(Xi-2)<oo. Then for any positive numbers pi satisfying 
k 

i~=lPi = 1, 

 ,xi) 
E 1 piXi 

i = 1 

{ E(1/X3 } 
> min --I~i<~ E (1 /X i  2) 
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2. One-sample problem 

Let observed random matrix X ( p × N )  have normal distribution 
Np, N(B~A; ,S, I) where B ( p  × q) and A (rn × N) are known matrices of ranks q 
and m respectively and ( ( q × m )  is a matrix of unknown parameters; each 
column of X is independently distributed according to p-variate normal 
distribution with common covariance matrix ,S(p×p) which is assumed to be 
positive definite. This is called a growth curve model by Potthoff and Roy 
(1964) and practical meaning and applications can be seen in their paper. If we 
put q=p and B=L we get ordinary multivariate regression model. 

When Z" is known, MLE of ( is given by 

(2.1) : (B,E-~B) -1B,S -1XA,(AA,)  -~ , 

which is an unbiased estimator of (. Equivalently we can write ~ as in Lee 
(1974) 

(2.2) vec ~ : {(AA')-IA (~ (B 'S-~B)- 'B 'Z  -'} vec X ,  

where vec X is defined b y p N ×  1 vector (X{, XL..., XN')' for X= (Xl,..., Xu) and 
A t ~ B  stands for Kronecker product defined by (auB) for A=(a0). Here we 
used the identity vec (B~A)=(A' t~B)vec  ~. A good account can be seen in 
Muirhead (1982) for the relation between Kronecker product and vec 
operator. We easily get 

(2.3) Coy (vec ~)= (AA')- '  (~ ( B t , ~ V - I B )  - I  • 

Partition X and B according as first p '  components and remaining p - p '  
components ( i f>q)  and put X=(X{,  X2')', B=(B{, B:~)' where X1 isp '×Nand BI 
is p '×  q. Similarly, partition Z" and put (Z',j)ia--l,2. The MLE of ~ based on X~ 
only is given by 

(2.4) ~l = (B{~'lilBl) -1B(,StllxlA'(aA') -l , 

which is also an unbiased estimate of ~. We get 

(2.5) C o v  (vec  ~1) = ( h a t )  -1 ~ )  (n(,~.l l lnl)  -1 • 

Noting the decomposition formula 

B,..~-~B = (B~ - B{Z'~Z'~2)Z'2~!~(B2 - E,2x.Z~Y~BI) + B:.,.~I-~tB~ , 

we can see that 
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(2.6) Cov (vec ~) _< Cov (vec ~l),  

for all S and ~. Here the ordering between two positive definite matrices is 
defined by the nonnegative definiteness of their difference. In fact Cov(vec ~) 
attains the lower bound of Cram6r-Rao inequality. We can say that if 27 is 
known, the estimator ~ utilizing all the information given by the data is always 
better than the estimator ~ utilizing only some components of the data. We 
will see that this is not the case when £" is not known. 

When Z" is unknown, MLE of ~ is obtained by Khatri (1966) as 

(2.7) -- (B,S-IB) -1B ,S - IXA, (AA, )  -l , 

where S = X ( I - A ' ( A A ' ) - ~ A ) X  '. This is obtainable by substituting S for Z in 
(2.1). We can show that ~ is the unique solution of the likelihood equation by 
generalizing Halperin (1961). Note that X A '  and S are independent. We can 
see that ~ is an unbiased estimator of ~. As for the dispersion of ~, we get the 
following theorem. 

THEOREM 2.1. Put n = N -  m where A (m × N)  is o f  rank m and assume 
that n>_p+ 1. We get 

(2.8) Cov (vec ~) = (AA') -t @ (B'X-1B) 1 n - 1 
n - ( p - q ) -  1 ' 

PROOF. Noting that S has Wishart distribution Wp(n, Z), we get 

Cov (vec ~) 
= (AA,)  -~ (~ E[(B'S-1B) -~ B,S-~ZS-1B(B,S-~B) -~] 
= (AA' )  -~ @ (B'Z-~B)-I/2E[I + W~2 W2~ 2 W2d(B'27-'B) -1/2 , 

where W=(Wo)i,j:I.2 has Wp(n, I) and W~I is qXq.  This is obtained by 
transformation S--V=Z-I/2S27-x/2 and V - - W = H ' V H  for some orthogonal 
matrix H. Noting that the conditional distribution of W~2, given W22 is 
Nq,p-q(O; I, W22) from Srivastava and Khatri  (1979, p. 79), we get 
E( W12 W222 W 2 0 = ( p - q ) I / ( n - p + q  - 1), giving the desired result. 

The fact that E[(B'S-IB)-lB'S-127S-1B(B'S-1B)-l]=(n-1)(B'S-IB)-l /  
( n - p  + q -  1) was already obtained by Rao (1967), Williams (1967) and Gleser 
and Olkin (1972). However we believe that our proof is simpler and more 
direct. As a byproduct we get the following lemma which will be used in 
Sections 3 and 4. This is obtained by noting (B'S-~B) -1= W,~.2. 

LEMMA 2.1. Let S have Wp(n, 27) distribution and let B ( p × q )  be o f  
rank q. Then ( B'S-I B)-t B'S-127S-l B( B'S-I B) -1 and B'S-I B are independent. 



ESTIMATING C O M M O N  P A R A M E T E R S  OF G R O W T H  CURVE MODELS 123 

The MLE of ( based on X~(p'×N) only is given by 

(2.9) ~, = ( B(Sfi' B,)-' B(SfilX, A ' (AA ' )  -~ ' 

where S~I is the partitioned matrix of S similar to (2.4). From Theorem 2.1, we 
get the necessary and sufficient condition for Cov(vec ~)<Cov(vec ~)  as 

(2.1o) 
n - ( p ' -  q) - 1 

n - (p - q) - 1 
B{SfilBt <_ B'~F-1B. 

Note that ( n - ( p ' - q ) - 1 ) / ( n - ( p - q ) - 1 ) >  1. We can always find S such that 
reverse inequality of(2.10) holds. For such Z', the MLE ~ is not better than ~.  

Take B=ep and A = e k  with ep=(l,..., 1)' of length p. Then the MLE 
becomes ~=e/S-1X/e~S-lep where )( stands for the sample mean vector and 
the problem reduces to estimate mean vector ((, ~,..., () '  based on a random 
sample of size N from p-variate normal distribution Np(~ep, S) .  This is the 
simplest case of growth curve model as Potthoff and Roy (1964) stated. 
Halperin (1961) considered this case and compared ~ with ~l=e~X/p. He 
already observed the possibility of losing precision by using all the data. When 
A = e k  and B is arbitrary, Rao (1967), Williams (1967) and Gleser and Olkin 
(1972) discussed the properties of ~. 

3. Two-sample problem 

Let Xl(pl×N~) and X2(p2×N2) be independent observed random 
matrices having normal distribution Np,,u, (BI~AI; X1, I) and Np2,u2 (B2~A2; Z'z, 
I) respectively where Bi(piX q) and Ai(m × Ni) are known matrices of ranks q 
and m respectively. The problem is to estimate common ~(qXm). IfZ't and -r2 
are known, the MLE of ~ is given by 

(3.1) 2 )-l 2 BiZi Bi) vec ~i, vec ~ = E A,A~ Q B~Xi-IB~ E (AiA; (~ ' - 1  

i=1 

where ~i=(B'Xi-lBi)-lB~ri-lXiA~(AiAT) -1 is the MLE of ~ based on Xi. The 
covariance matrix of vec ~ is given by 

(3.2) Cov (vec () = Y. AiA'i (~ BTSi -l -1 . 

i= 1 

In view of (2.3), we get Cov(vec ~)_<Cov(vec ~1) uniformly for all Z'l and -r2. 
When Z'l and X2 are unknown, an extension of Graybill-Deal estimator 

(Graybill and Deal (1959)) is obtained by substituting Z'i by an unbiased 
estimator &~hi in (3.1) as 
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(3.3) 
2 )-12 

vec ~GD = /--~l AiA;  Q B~Si -1 Bini ~=1 (AiA~ ~ B~Si -1 BiFli) vec ~, ,  

where 

~i : (B[Si-1Bi)-iB~Si-IXiA,i(AiA~)-1 , 

Si = X i ( l -  A~(AiA;)-IAi)X~, 

and & has Wp,(ni, Xi) distribution with ni=N~-m. A more general class of 
unbiased estimators is obtained if we put 

2 )-1 2 
(3.4) vec ~KS = E bin~A~A~ Q B~Sf Bi E b~n,(AiA~ @ B~Si-IBi) vec  ~ 

i= I i= 1 

for positive constants b~ and b2, the univariate case of which was discussed by 
Khatri and Shah (1974). This class can be further generalized by considering 

(3.5) vec ~--  vec ~l + th(vec ~2 - vec ~1), 

where 

(3.6) c~ = a(bnlA1A{ (~ B{S[1B1 
B,S-In x-1 -- --,  B,t~-i D + n2AzAd t~ 2 2 /~2) n2A2A2 (~ 2~.12 02 , 

for positive constants a and b, the univariate case of which was discussed by 
Bhattacharya (1980). Putting a = b = l ,  we get ~CD and putting a = l  and 
b=bl/b2, we get ~Ks. 

It is easily seen that E ( ~ ) = (  and that Cov(vec ~)_<Cov(vec ~1) is 
equivalent to 

(3.7) E[th{Cov (vec ~t IS1) + Coy (vec ~2 I S2)}~b t] 
< E[Cov (vec ~l [S0~b' + ~ Cov (vec ~l [ S1)] . 

Note that Si and XiA7 are independent. We get 

(3.8) Cov (vec ~, IS,) 
= (A,AO -~ ~ (BfS{1BO-~BfS[tX, S[1BI(BfS[IBI) -l . 

In view of Lemma 2.1, we can write the condition (3.7) as 

(3.9) IA  A t\-I E[qb{(A1AO -1 (~ ~,~kl + ~.e':t2 2j Q $2~k2}~ ,] 
< E[{(A,AO-' Q klSl~}~ t q'- ch{(A1A[)-' Q k,S~*}], 

where Si*=( B~Zi-l Bi) -l and ki=(ni-1)/ (ni-pi+q-1).  Put C=(A2A~)-I/2(AIAO 
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• (A2A~) -1/2 and V,.=(B~&-IBi) -l. Then we get 

(3.10) qb = a{(AzAO -'/2 @ Iq}{Im ~ Iq + bnln2 C ~ V2 Vl-' ]-1 

• {(A2A~) 1/2 ~ lq} , 

and the condition (3.9) can be expressed by 

(3.11) aE[ (lm k2S* + C-' 
<- E[(C-' ® + ® k,St')], 

where ~=( lmq + ( bnl / n2) C@ 1:2 Vl11) -1. 
From here we should assume that q= I, in order to get definite condition 

for a and b. In this case ~ is a row vector and V~ and Z'~* are scalars. The 
condition (3.11) is further simplified as 

(3.12) aE In+ . . . .  n2 VI k lS* Ira+ C -1 lm + n2 Vl 

<_ E C -~ Ira+ - - - -  + Ira+ - -  - -  • 
n2 V1 n2 Vl 

Let C=H diag(c~,..., c m ) n  p for some orthogonal matrix H. Then c:s are all 
positive. Diagonalizing the matrix C in (3.12) by multiplying H' and H from 
left and right, we get an equivalent condition to (3.12) as 

-<_ E bnl V2 bnl V2 2 ' (3.13) 2 1 + - - - -  ci 1 + - -  ci 
n2 VI n2 V1 

i =  1, 2,..., m ,  

where zi=k2E~'ci/(klS*). By Lemma 1.1, a sufficient condition for (3.13) is 
given by 

a { bnm c~ E(VI/V2) } 
(3.14) ~ _ m i n  1, for all i .  

Fl2 "gi E((V1/ V2) 2 ) 

Note that Vj/Z)* has g2-distribution with nj-pj+ 1 degrees of freedom and that 
V2/(zi VO has a distribution free from parameters Z *  and Z'*.  Putting r~=0 in 
(3.13) yields a_<2. Letting r~ tend to infinity in (3.13) yields a<_2{bn~ci/(n2"ri)}. 
E( V1/V2)/E(V~/V2). Hence the sufficient condition (3.14) is also necessary, 
which gives the following theorem. 

THEOREM 3.1. Let n i=Ni -m and assume that q = l ,  n~>_pl+l and 
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n2_>p2+4. Then a necessary and sufficient condition for  the combined 
estimator ~ o f  ( to have covariance matrix uniformly less than or equal to the 
covariance matrix o f  ~1 is 

(3.15) 
nl(nl - 1)(nz - p2)(n2 - p2 - 3) } 

a _ < 2 m i n  l , b  n2(n2 1 ) ( n l - p l ) ( n l - p l + 3 )  " 

Put a=b= 1 in Theorem 3.1, and symmetry considerat ion yields the 
following corollary. 

COROLLARY 3.1. Assume that q= 1 and ni_>pi+4 for  i= 1, 2. Then a 
necessary and sufficient condition for  Cov(~6D)_<CoV(~l) and Cov(~2) is 

(3.16) 

2re(n1 - l)(n2 - p2)(n2 - p2 - 3) 
>- n2(n2 - 1)(m - p l ) ( n l  - pl + 3),  

2nz(n2 - l)(n~ - pl)(nl - p~ - 3) 
>_ n~(n~ - 1)(n2 -p2)(n2 - p 2  + 3) .  

If we put p~=p2=l in Corollary 3.1, we get (nl-2)(n2-8)_>16 and 
( n 2 - 2 ) ( n l - 8 ) >  16. Fur ther  put m =  1, we get the results by Graybill and Deal 
(1959) and corrected by Norwood  and Hinke lmann  (1977). If we put  a= 1 and 
b=bl/b2 for bi>O in Theorem 3.1, we get a result for ~Ks discussed by Khatri  
and Shah (1974). Symmetry  consideration yields the following corollary. 

COROLLARY 3.2 .  Assume that q = l  and ni_>pi+4 for  i = 1 ,  2. Then a 

necessary and sufficient condition for  Cov(~Ks)_<CoV(~l) and Cov(~2) is that 

1 nl - p l  + 3 btnl(nl  - l)(n2 - p 2 )  
< < 2  

(3.17) 2 n2 - p 2  - 3 - b2n2(n2 - 1)(nl - p l )  - 

nl - pl  - 3 

n2 - p 2  + 3 " 

It is easily seen that  such bl / b2 exists if and only if (n~ - p l  - 5 ) (nz -p2-  5)_> 
16. Reasonab le  choice of b~/b2 may be n 2 ( n 2 - 1 ) ( n l - p l ) ( n l - p l - l ) /  
{n f fn l - l ) (n z -p2 ) (nz -p2 -1 ) } ,  which satisfies (3.17) whenever ( n l - p l - 5 )  
• (n2 -p2-5 )  >_ 16. Whenp~ =p2 = m =- 1, these results are obtained by Khatri  and 
Shah (1974) and Bhat tacharya (1980). If n~--n2 and p~=p2, the condi t ion 
(3.16) and the condit ion (n l -pl -5)(n2-p2-5)_>16 are the same, giving 
nl=n2>_pl+9. 

The assumpt ion that  q= 1 in Theorem 3.1 cannot  be avoided, since Chiou 
and Cohen (1985) has shown that  for est imating c o m m o n  mean vector of two 
bivariate normal  distributions with different unknown  covariance matrices, 
the combined estimator cannot  have uniformly smaller covariance matrix 
than that  of sample mean of the first sample. This is the case with q--2 in our 
notation.  The other assumption that  n2_>p2+4 in Theorem 3.1 can be 
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weakened up to n2>_p2+ 1 by using nonsingular matrix Hsuch that HAiAi'H'= 
Di=diag(d}il,..., d~ I) and considering a wider class of unbiased estimators 
vec ~=vec ~1 +¢(vec ~2-vec ~)  with 

(A,AI') -* { bn, (A2A;)-' (AIA[)-' 
(3.18) ck = a B{SI-IBI n 2  B~S21B2 + B{SI-IB, 

+ C(~2- ~,)(H'LIH)-'(~2 - {,)'H'L2H}-', 

where Li=diag(l}il,..., l~ I) and/j(i)>0. Whenp,=p2= 1 and Ai=e's,, Brown and 
Cohen (1974), Khatri and Shah (I 974) and Bhattacharya (1980) discussed this 
class of estimates with additional restriction between positive constants a, b, 
and c. It is easily seen that 

(3.19) E[cb(~2 - ~I)1(~2 -- ~I)'(~2 -- ~])] = O ,  

so that E[vec ~]=vec ~. We shall give the result first. 

THEOREM 3.2. Assume that q= 1 and ni>pi+ 1 for i= 1, 2. Let H be a 
nonsingular matrix such that HAiATH'=diag(d~il,..., d~ ~) for  i= 1, 2. Take 
positive constants a, b, c satisfying 

(3.20) a _ 2 min 

1, (n2 - p2)(m - p: + 
K l-p, 

m - 1) ( bnl 
+3)  min --,Cn2 

(D2L2).,i.) } 
(D2L,)m~x ' 

where (D2Ll)max=maxdi(21li ('~ and (D2L2)mi,=mindit21li 121. Then Cov(~)< 
I <_i<_m I <_i<_m 

Cov(~,) uniformly for all Xl and X2. 

PROOF. Note that ~ is a l×m vector. We easily get 

(3.21) Coy (~) = Cov (~,) + 
+ 

+ 

EE~(~z - ~,)'(& - ~,)~'] 
E[(~, - ~)'(~2 - ~,)¢'] 
E[~b(~2 - ~ , ) ' ( ~ ,  - ~ ) ] .  

Since conditional distribution of vec ~, given S, is N(vec ~, (AIA;)- '@ 
(BfS,-IBO-1BfS,-1Z, SdlB,(BIS,-'BO-'), we can see that conditional distribu- 
tion of~l and ~2-~1 given S1 and $2, is normal with mean (~, 0) and covariance 
matrix 
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TI, - T1 ) 
- T~, TI + T2 ' 

where Ti=(AiAi')-lBi'Si-l,~isi-lBi/(Bi'si-lBi) 2. This gives E[(~l-~)'l~2-~d= 
- T~(T~+ T2)-~(~2-~1) ' and 

E[(~I - ~)'(~2 - ~l)~b'] = -  E[T~(T1 + T2)-~(~2 - ~,)'(~2 - ~1)(/)']. 

Combined with (3.21), a necessary and sufficient condition for Cov(~)_< 
CoV(~l) is given by 

(3.22) E[~b(~2  - ~1)P(~2 - ~1)1~) ' ]  

_ E [ r l ( r l  + - - 

+ E[(/)(~2 - ~1)'(~2 - ~1)(T1 + T2)-' T~]. 

Put 

(3.23) Zi -= ( B: ~i-  I Bi)( B: Si- I.-,FiSi- I Bi) / ( B: Si- I Bi) 2 , 

and Xi*=l/(B/Xi-lBi). Then Ti=ZiXi*(AM:) -~. Note that Zi_>l and the 
distribution of Zi is free from 271 and L'2. Let Q be a square root of Tt + T2 
defined by Q=(D-11ZI,S * + D21Z2S~' )1/2 H where D:diag(d~i),. . . ,  d~il). Then 
for given S1 and $2, V=(~2-~0Q -1 has N(0, I)  which is independent of Sl, $2. 
We can rewrite the condition (3.22) by V, Zi, St* as 

(3.24) E[4~Q'V'VQ 49'] <- E[Z1S*(A1Af)-I q ~ V'VQqb'] 
+ E[4)Q'V'VQ'-~Z1Z*(A,Af)-~],  

where 

( 3 . 2 5 )  4) = aUIX*H'D11 { bnl U2S.D21 + U1,S.D_I1 
n2 

-1 , -1 , } - ln ,_ l  + cV(D-11Z1X * + D2 Z2,SI)L1 VL2 , 

with Ui--(B:,SFIB3/B[&-'Bi having Z 2 distribution with ni-p~+l degrees of 
freedom. 

Multiplying H -1 and H '-1 from right and left respectively in (3.24) and 
noting that E[V'VI VDV'] is diagonal for any diagonal matrix D, we can 
simplify the condition (3.24) to the inequality between two diagonal matrices, 
giving 

(3.26) aE[4,~(Z, + piZ2) V 2] <- 2E[Z,tbiV~] , i = 1, 2,..., m ,  
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where 

{ m } cki = U, bn____2 -.rr -I- U1 + ¢j~--1 d/(')/i(2) 2 -1 
/12 p, U2 4{1)b(l) (Zl + p j Z 2 ) b  , 

w i t h  pi=~'*di(ll/(~r'~di 121) and V=(V,,..., Vm). Here VT, j = l  .... , m have 
independent ly  ;(2 distr ibutions with one degree of freedom. Regarding 1,5 z as 
a X 2 variate with three degrees of f reedom in (3.26), we can delete Vi 2 f rom 
both sides in the expectations of (3.26) and get 

(3.27) a < 2 inf E[ZlC~d for i = 1, 2,..., m ,  
- p, E[(Z, + p,Zz)4~, 2] 

which is necessary and sufficient for Cov(~)_<Cov(~O. Since Z~ +piZ2 and $i 2 
have negative covariance with respect to Z2, we can get for az=E(Z2) 

E ( Z~ dp~) E[ Z l qbi] 
Z 2 ~" ol 2 E[(Z, + pi 2)~bi ] E[(ZI + pi 2)(~i ] 

_> inf Z, 
Z,,Z2 

E[ (Z l  + pia2)(~i [ Zl ,  Z2] 
E[(ZI + pia2)2c~i2l Z,, Z2] 

> inf m i n / l ,  1 E(U,) E(l /v i lZ1 ,  Z2) I 
- z,,z~ ( ct2 E(U 2) E(1/gz2IZI, Z2) J ' 

where 

c d i l ' l i  c21 
bn, U2 + - -  if-, (Zl + pjZ2) Vj 2 
n2 pi J=' 4(1}]J "(I) 

The last inequality is obtained by applying Lemma 1.1 to the expression 

1 j__L./ }-1 
(Zl + piCt2)~)i = p ~ l  + (1 - p )  •2UI ' 

m 
with p = Z, / (Z, +pia2). Since U2 +=2 ~j2 has  X 2 distribution with n2-p2 + m  + 3 

degrees of  f reedom and is independent  of(U2, V~,..., V~m)/(U2+Z=l Vj2), we can 

simplify the lower bound further to get 

E[I / ~U, I Zl, Z2] 
E[I / ~,} I Z~, Zd 
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E[(U2 +j~ Vg) -l] E[(U2 + ~ VjZ)/~ui ZL, Z2] 
z 

[ 

( n z - p 2 + m -  1) inf / 
bnl U2 

- e.,, v/ n2 U2 + if, ~ 2  
( j=l 

~_L ~ ,~.1 (Zl + pjZ2) + p~ j:l ~l 
j= I 

di(l) kl2) pj } 
41"~l'l 

f bn__2 C 
_ > ( n 2 - p 2 + m -  l) m in{  r a i n  

n 2  ' I<_j',5_m pi ( 

--> ( n 2  - -  p2 + m - 1) min { --,cbnln2 
(D2L2)min 

(D2L1)max }" 

Hence a sufficient condit ion for (3.27) is given by 

a _< 2 min 

{ , (   2L2,min)} 1, (n2 p 2 + m  l) min bnl 
a2 E(U~) n2 (D2L1)max 

Noting that  az=(n2 - 1)/(n2-p2) by Theorem 2.1, we get the desired result. 

It is noted that  the condi t ion in Theorem 3.2 depends on ~2t but  not on 
~1) and that  it is free f rom AiA/i f  we take L1 = L2 = D~ ~. Put  p l =p2 = m = 1 and 
L~=L2 in Theorem 3.2, and we get 

a < 2 min {1, n2 - 1  min ( bn~ )} 
nl + 2 n2 

in which the case bnl/n2 = c was obtained by Bhattacharya (1980). 

4. k-sample problem 

Let Xi(pi×Ni) be observed r andom matrix having normal  distribution 
Np,.N,(BdA~; S~, I) and assume that  XI,. . . ,  Ark are mutual ly independent ,  where 
Bi(pi× q) and A i(m× Ni) are known matrices of ranks q and m respectively. 
The problem is to estimate ( when Si are unknown.  We shall consider the 
following class of unbiased estimators as an extension from two-sample 
problem: 
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(4.1) 
k )-1 k 

vec ~[k] = ~ ciniZiA; (~  B[Si-IBi ~ cini(AiA[ ~ B[Si-tBi) vec ~i, 

where ci are positive constants and ~ is the MLE of ( based on Xi only and is 
given by 

(4.2) vec ~i = { ( A i A ' ) - 1 A i  ( ~  (B'Si-lBi)- '  B'Si -l} vec X~, 

for 

Si = X i ( I -  A ; ( A i A ; ) - ' A i ) X ' .  

The notat ion [k] in (4.1) denotes the combined estimator from first up to k-th 
samples. When p,--1, q= 1 and A i  = e'N,, this class of estimators is discussed by 
Shinozaki (1978) and Bhattacharya (1978, 1984). Further special case of c~ = 1 
was discussed by Norwood and Hinkelmann (1977). The following theorem is 
an extension of Bhattaeharya (1984). 

THEOREM 4.1. Let q = l ,  ni>_p~+l f o r  i=1, 2,..., k - 1  and  nk>pk+4. 
A s s u m e  that HAiAi 'H" ( l < / _ k )  are s imul taneous ly  diagonal  f o r  some  
nons ingular  ma t r i x  H. Then a necessary a n d  suff icient condi t ion  f o r  
Cov(~[kl)<Cov(~[k-q) is given by 

(4.3) 
c--L <_ 2 ni(ni - 1)(nk - pk)(nk -- pk -- 3) 
ci m(nk  - l ) ( n i - p i ) ( n i -  p i  + 3) 

f o r  i =  1, 2,..., k -  1 . 

Successively using Theorem 4.1 with respect to k, we get 

COROLLARY 4.1. Let  q = l ,  n~>p~+l  and  n i > _ p i + 4  f o r  i=2, . . . ,  k. 
A s s u m e  that HAiA i 'H '  are s imul taneous ly  d iagonal  f o r  some  nonsingular  
ma t r i x  H. Then a necessary a n d  suff icient condi t ion  f o r  Cov(~tkj)< Cov(~I) is 
given by 

(4.4) c j  < 2 ni(ni -- l ) (n j  -- p j ) ( n j  - p j  -- 3) f o r  1 <_ i < j < k .  
ci nj(nj - l)(n, - pi)(ni -- p~ + 3) 

COROLLARY 4.2. Let q-- 1, ni>_pi+4 f o r  i-- 1, 2,. . . ,  k and  assume  that 
HAiA i 'H '  are s imul taneous ly  d iagonal  f o r  some  nonsingular  ma t r i x  H. Then a 
necessary and  sufficient condi t ion f o r  Cov(~[g]) < Cov((i) f o r  all i is given by 

1 nj - pj + 3 cynj(ny - 1)(ni - pi) nj - pj - 3 
< < 2  

(4.5) 2 ni - pi - 3 - cini(ni - 1)(nj - pj) - ni - pi + 3 ' 
l < _ i < j < _ k .  
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It is easy to see that such eric, in Corollary 4.2 exist if and only if 
(ng-pi-  5) (n j -p j -  5) _> 16 for all ivsj, which is an extension of Shinozaki (1978), 
Bhattacharya (1978). If we put p~= 1, ci-1 and q = m =  1 in Corollary 4.2, the 
conditions become (n/-2)(nj-8)_>16 for all i~ j  which was obtained by 
Norwood and Hinkelmann (1977). 

PROOF OF THEOREM 4.1. From Lemma 2.1 and Theorem 2.1 we get 

(4.6) Coy (vec ~tkl) = E gd,.OiW; 

where 

(4.7) 
k A t )-1 l'Vi = ~., Cirli iai @ B'Si-I Bi ciniAiA; @ n'si-l ni 

i= l  

I gB'X -I/~-1 Oi ~ - ( a i A [ ) - l  @ it i i 0i1 , 

for l i - - (n , -1) / (n i -p3 .  By the assumption of Theorem 4.1, we can find a 
nonsingular matrix H such that HAiAi'H'=diag(d~il, . . . ,  d~ I) simultaneously. 
Since q= 1, we can write a necessary and sufficient condition for Cov(~m)< 
Cov(~t*-q) as 

(4.8) E O~jW~ - O~jWi~ <_ 0 for j =  1 2,. m 
i= I = " ' " " '  

where 

(4.9) 

Wij = ciniliO~' Ui-l / ~  ciniliOu 1 Ui 1 
i=1 

-1  k - 1  

glZi~ = cigliliOol ui  /~1 ciniliO0l Ui-l ' 

Oij = li/ ( B;Si  -1Bidj (i)) , 

and Ui=Bi'•i-tBi/Bi'Si-lBi has X 2 distribution with n i - p i + l  degrees of 
[k-I 1\-1 k-I 

freedom. Put 0./= / ~i 0F ) " Noting that 0,j___/__E l W/*20.j and 

e-~ 2 0 i= ~100"W2 - ~= OijWi]c2 ~ Wkj kj + Wkj(Wkj  - -  2 ) 0 . )  , 

as in the proof of Theorem 3.1 in Bhattacharya (1984), we get a sufficient 
condition for (4.8) 
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I I E(Wkj) 
(4.10) - < min - -  - -  ~/~j 2 2 ,<_j<_m 1 + rj E ( k j )  

where r~=OkjlO,j. By Lemma 1.1, a lower bound of RHS of (4.10) is given by 

(4.11) min {1, l E(Uk -I) E(I/~.) } 
,<_j<_m rjCknklkOkj'O*j E(Uk -2) E(1/gj  2) ' 

where 

k-1 
gj = Y-, cinJi(O*j/ O~j) U~-' . 

i=1 

Applying Lemma 1.1 again, we get for all j =  1,..., m 

E(U~) } 
E(1/gj) > min c i n i l i -  . E(I/g~. 2) -,_<,<_k-, E(U}) 

Combined with (4. I 1), we finally get a sufficient condition for (4.8) as 

1 { cinili n k - - p k - - 3  } 
< min ~ + ~- , 
- -  l<-i<-k-I Cknklk ni 

which is equivalent to (4.3). The necessity of the condition (4.3) follows from 
k 

nonpositiveness of the derivative of E [ E  10~j W/}] with respect to 1 / 0kj at 1 / 0kj= 0 

for all 0 o ( i~k)  in view of (4.8) and putting further 1/0,7=0 for i~r  (r<k). 

Assuming that q-- 1, we can consider another class of unbiased estimators 
given by 

~ j  ~--- ~ {  q'- (~ i (~ i+ l  - -  ~ { )  , 

where 

B{S[IB1 )-1 
cki = ai bi r/i+lni (Ai+IA~+I)_IA1A { Bi+ISi+IBi+I' -l + I.. . 

for positive constants ai and bi. This is an extension of (3.6) to k-sample 
problem. Whenp i=  1, m-- 1 and Ai=e'N,, this class of estimators is discussed by 
Brown and Cohen (1974) and Bhattacharya (1980). Noting that qb~<_ailand the 
same argument as Brown and Cohen (1974) yields the following theorem. 
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'THEOREM 4.2. Assume that q=l ,  nl_>p~+l, ni>pi+4 f o r  i=2,..., k 
and that H A i A /  H' are simultaneously diagonal f o r  some nonsingular matrix 
H. Take positive constants ai and b~ such that 

nl(nl - 1)(n2 - p2)(n2 - p2 - 3) } 
al _< min 1, 2bl n2(n2 1)(n~ pO(nl p l +  3) ' 

ak-2 

1 -- al . . . . .  ak-3 

n l ( n ,  - l)(nk-, - pk-,)(nk-_..._..~, - -  p k - ,  - -  3) } 
< min 1, 2bk-2 n----~--~nk~--- i-)(n;--- p,)(n,  - ~  +-3 i ' 

ak-I 

1 - a~ . . . . .  ak-2 
< min { 2, 2bk-~ 

nl(nl - 1)(nk - pk)(nk-- P_2 -- 3) / 
m(nk l)(nl pl)(nl - p 1 +  3) J" 

Then we have 

Cov(O,) _< Cov(&-,)  _< .-. _< Coy(O,) _< Cov( ,) 

uniformly f o r  all Zi. 
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